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Preface to the first edition

When I joined the staff of the College of Aeronautics some years ago I was presented
with a well worn collection of lecture notes and invited to teach Aircraft Stability and
Control to postgraduate students. Inspection of the notes revealed the unmistakable
signs that their roots reached back to the work of W.J. Duncan, which is perhaps not
surprising since Duncan was the first Professor of Aerodynamics at Cranfield some
50 years ago. It is undoubtedly a privilege and, at first, was very daunting to be given
the opportunity to follow in the footsteps of such a distinguished academic. From
that humble beginning my interpretation of the subject has continuously evolved to
its present form which provided the basis for this book.

The classical linearised theory of the stability and control of aircraft is timeless, it
is brilliant in its relative simplicity and it is very securely anchored in the domain of
the aerodynamicist. So what is new? The short answer is; not a great deal. However,
today the material is used and applied in ways that have changed considerably, due
largely to the advent of the digital computer. The computer is used as the principal
tool for analysis and design, and it is also the essential component of the modern flight
control system on which all advanced technology aeroplanes depend. It is the latter
development in particular which has had, and continues to have, a major influence
on the way in which the material of the subject is now used. It is no longer possible
to guarantee good flying and handling qualities simply by tailoring the stability and
control characteristics of an advanced technology aeroplane by aerodynamic design
alone. Flight control systems now play an equally important part in determining the
flying and handling qualities of an aeroplane by augmenting the stability and control
characteristics of the airframe in a beneficial way. Therefore the subject has had to
evolve in order to facilitate integration with flight control and, today, the integrated
subject is much broader in scope and is more frequently referred to as Flight Dynamics.

The treatment of the material in this book reflects my personal experience of using,
applying and teaching it over a period of many years. My formative experience was
gained as a Systems Engineer in the avionics industry where the emphasis was on
the design of flight control systems. In more recent years, in addition to teaching a
formal course in the subject, I have been privileged to have spent very many hours
teaching the classical material in the College of Aeronautics airborne laboratory
aircraft. This experience has enabled me to develop the material from the classical
treatment introduced by Duncan in the earliest days of the College of Aeronautics to
the present treatment, which is biased towards modern systems applications. However,
the vitally important aerodynamic origins of the material remain clear and for which
I can take no credit.

Modern flight dynamics tends be concerned with the wider issues of flying and
handling qualities rather than with the traditional, and more limited, issues of stability
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x Preface to the first edition

and control. The former is, of course, largely shaped by the latter and for this reason
the emphasis is on dynamics and their importance to flying and handling qualities.
The material is developed using dimensional or normalised dimensional forms of the
aircraft equations of motion only. These formulations are in common use, with minor
differences, on both sides of the North Atlantic. The understanding of the dimen-
sionless equations of motion has too often been a major stumbling block for many
students and, in my experience, I have never found it necessary, or even preferable,
to work with the classical dimensionless equations of motion.

The dimensionless equations of motion are a creation of the aerodynamicist and
are referred to only in so far as is necessary to explain the origins and interpretation of
the dimensionless aerodynamic stability and control derivatives. However, it remains
most appropriate to use dimensionless derivatives to describe the aerodynamic
properties of an airframe.

It is essential that the modern flight dynamicist has not only a through understanding
of the classical theory of the stability and control of aircraft but also, some knowledge
of the role and structure of flight control systems. Consequently, a basic understanding
of the theory of control systems is necessary and then it becomes obvious that the
aircraft may be treated as a system that may be manipulated and analysed using
the tools of the control engineer. As a result, it is common to find control engineers
looking to modern aircraft as an interesting challenge for the application of their skills.
Unfortunately, it is also too common to find control engineers who have little or no
understanding of the dynamics of their plant which, in my opinion, is unacceptable.
It has been my intention to address this problem by developing the classical theory of
the stability and control of aircraft in a systems context in order that it should become
equally accessible to both the aeronautical engineer and to the control engineer. This
book then, is an aeronautical text which borrows from the control engineer rather
than a control text which borrows from the aeronautical engineer.

This book is primarily intended for undergraduate and post graduate students study-
ing aeronautical subjects and those students studying avionics, systems engineering,
control engineering, mathematics, etc. who wish to include some flight dynamics in
their studies. Of necessity the scope of the book is limited to linearised small perturba-
tion aircraft models since the material is intended for those coming to the subject for
the first time. However, a good understanding of the material should give the reader
the basic skills and confidence to analyse and evaluate aircraft flying qualities and
to initiate preliminary augmentation system design. It should also provide a secure
foundation from which to move on into non-linear flight dynamics, simulation and
advanced flight control.

M.V. Cook,
College of Aeronautics,
Cranfield University.

January 1997
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Preface to the second edition

It is ten years since this book was first published and during that time there has been
a modest but steady demand for the book. It is apparent that during this period there
has been a growing recognition in academic circles that it is more appropriate to
teach “Aircraft stability and control’’ in a systems context, rather than the traditional
aerodynamic context and this is a view endorsed by industry. This is no doubt due
to the considerable increase in application of automatic flight control to all types
of aircraft and to the ready availability of excellent computer tools for handling the
otherwise complex calculations. Thus the relevance of the book is justified and this
has been endorsed by positive feedback from readers all over the world.

The publisher was clearly of the same opinion, and a second edition was proposed. It
is evident that the book has become required reading for many undergraduate taught
courses, but that its original emphasis is not ideal for undergraduate teaching. In
particular, the lack of examples for students to work was regarded as an omission too
far. Consequently, the primary aim of the second edition is to support more generally
the requirement of the average undergraduate taught course. Thus it is hoped that the
new edition will appeal more widely to students undertaking courses in aeronautical
and aeronautical systems engineering at all levels.

The original concept for the book seems to have worked well, so the changes are
few. Readers familiar with the book will be aware of rather too many minor errors in
the first edition, arising mainly from editing problems in the production process. These
have been purged from the second edition and it is hoped that not so many new errors
have been introduced. Apart from editing here and there, the most obvious additions
are a versatile computer programme for calculating aircraft trim, the introduction of
material dealing with the inter-changeability of the North American notation, new
material on lateral-directional control derivatives and examples for students at the
end of most chapters. Once again, the planned chapter on atmospheric disturbance
modelling has been omitted due to time constraints. However, an entirely new chapter
on Coursework Studies for students has been added.

It is the opinion of the author that, at postgraduate level in particular, the assessment
of students by means of written examinations tends to trivialise the subject by reducing
problems to exercises which can be solved in a few minutes – the real world is not
often like that. Consequently, traditional examining was abandoned by the author
sometime ago in favour of more realistic, and hence protracted coursework studies.
Each exercise is carefully structured to take the student step by step through the
solution of a more expansive flight dynamics problem, usually based on real aircraft
data. Thus, instead of the short sharp memory test, student assessment becomes an
extension and consolidation of the learning process, and equips students with the
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essential enabling skills appreciated by industry. Feedback from students is generally
very positive and it appears they genuinely enjoy a realistic challenge.

For those who are examined by traditional methods, examples are included at the
end of most chapters. These examples are taken from earlier Cranfield University
exam papers set by the author, and from more recent exam papers set and kindly
provided by Dr Peter Render of Loughborough University. The reader should not
assume that chapters without such examples appended are not examinable. Ready
made questions were simply not available in the very tight time scale applying.

In the last ten years there has been explosive growth in unmanned air vehicle (UAV)
technology, and vehicles of every type, size and configuration have made headlines
on a regular basis. At the simplest level of involvement in UAV technology, many
university courses now introduce experimental flight dynamics based on low cost
radio controlled model technology. The theoretical principles governing the flight
dynamics of such vehicles remain unchanged and the material content of this book is
equally applicable to all UAVs. The only irrelevant material is that concerning piloted
aircraft handling qualities since UAVs are, by definition, pilotless. However, the
flying qualities of UAVs are just as important as they are for piloted aircraft although
envelope boundaries may not be quite the same, they will be equally demanding.
Thus the theory, tools and techniques described in this book may be applied without
modification to the analysis of the linear flight dynamics of UAVs.

The intended audience remains unchanged, that is undergraduate and post gradu-
ate students studying aeronautical subjects and students studying avionics, systems
engineering, control engineering, mathematics, etc. with aeronautical application in
mind. In view of the take up by the aerospace industry, it is perhaps appropriate to
add, young engineers involved in flight dynamics, flight control and flight test, to the
potential readership. It is also appropriate to reiterate that the book is introductory
in its scope and is intended for those coming to the subject for the first time. Most
importantly, in an increasingly automated world the principal objective of the book
remains to provide a secure foundation from which to move on into non-linear flight
dynamics, simulation and advanced flight control.

M.V. Cook,
School of Engineering,
Cranfield University.
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Nomenclature

Of the very large number of symbols required by the subject, many have more than
one meaning. Usually the meaning is clear from the context in which the symbol
is used.

a Wing or wing–body lift curve slope: Acceleration. Local speed of sound
a′ Inertial or absolute acceleration
a0 Speed of sound at sea level. Tailplane zero incidence lift coefficient
a1 Tailplane lift curve slope
a1f Canard foreplane lift curve slope
a1F Fin lift curve slope
a2 Elevator lift curve slope
a2A Aileron lift curve slope
a2R Rudder lift curve slope
a3 Elevator tab lift curve slope
a∞ Lift curve slope of an infinite span wing
ah Local lift curve slope at coordinate h
ay Local lift curve slope at spanwise coordinate y
ac Aerodynamic centre
A Aspect ratio
A State matrix
b Wing span
b1 Elevator hinge moment derivative with respect to αT

b2 Elevator hinge moment derivative with respect to η

b3 Elevator hinge moment derivative with respect to βη

B Input matrix
c Chord: Viscous damping coefficient. Command input
c Standard mean chord (smc)
c Mean aerodynamic chord (mac)
cη Mean elevator chord aft of hinge line
ch Local chord at coordinate h
cy Local chord at spanwise coordinate y
cg Centre of gravity
cp Centre of pressure
C Command path transfer function
C Output matrix
CD Drag coefficient
CD0 Zero lift drag coefficient
Cl Rolling moment coefficient
CL Lift coefficient

xv
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CLw Wing or wing–body lift coefficient
CLT Tailplane lift coefficient
CH Elevator hinge moment coefficient
Cm Pitching moment coefficient
Cm0 Pitching moment coefficient about aerodynamic centre of wing
Cmα Slope of Cm–α plot
Cn Yawing moment coefficient
Cx Axial force coefficicent
Cy Lateral force coefficient
Cz Normal force coefficient
Cτ Thrust coefficient
D Drag
D′ Drag in a lateral–directional perturbation
D Direction cosine matrix: Direct matrix
Dc Drag due to camber
Dα Drag due to incidence
e The exponential function
e Oswald efficiency factor
F Aerodynamic force: Feed forward path transfer function
Fc Aerodynamic force due to camber
Fα Aerodynamic force due to incidence
Fη Elevator control force
g Acceleration due to gravity
gη Elevator stick to surface mechanical gearing constant
G Controlled system transfer function
h Height: Centre of gravity position on reference chord: Spanwise coordinate

along wing sweep line
h0 Aerodynamic centre position on reference chord
hF Fin height coordinate above roll axis
hm Controls fixed manoeuvre point position on reference chord
h′

m Controls free manoeuvre point position on reference chord
hn Controls fixed neutral point position on reference chord
h′

n Controls free neutral point position on reference chord
H Elevator hinge moment: Feedback path transfer function
HF Fin span measured perpendicular to the roll axis
Hm Controls fixed manoeuvre margin
H ′

m Controls free manoeuvre margin
ix Dimensionless moment of inertia in roll
iy Dimensionless moment of inertia in pitch
iz Dimensionless moment of inertia in yaw
ixz Dimensionless product of inertia about ox and oz axes
I ′ Normalised inertia
Ix Moment of inertia in roll
Iy Moment of inertia in pitch
Iz Moment of inertia in yaw
I Identity matrix
Ixy Product of inertia about ox and oy axes
Ixz Product of inertia about ox and oz axes
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Iyz Product of inertia about oy and oz axes
j The complex variable (

√−1)
k General constant: Spring stiffness coefficient
kq Pitch rate transfer function gain constant
ku Axial velocity transfer function gain constant
kw Normal velocity transfer function gain constant
kθ Pitch attitude transfer function gain constant
kτ Turbo-jet engine gain constant
K Feedback gain: Constant in drag polar
K Feedback gain matrix
Kn Controls fixed static stability margin
K ′

n Controls free static stability margin
lf Fin arm measured between wing and fin quarter chord points
lt Tail arm measured between wing and tailplane quarter chord points
lF Fin arm measured between cg and fin quarter chord point
lT Tail arm measured between cg and tailplane quarter chord points
L Lift: Rolling moment
L′ Lift in a lateral–directional perturbation
Lc Lift due to camber
Lw Wing or wing–body lift
LF Fin lift
LT Tailplane lift
Lα Lift due to incidence
m Mass
m′ Normalised mass
M Local Mach number
M0 Free stream Mach number
Mcrit Critical Mach number
M Pitching moment
M “Mass’’ matrix
M0 Wing–body pitching moment about wing aerodynamic centre
MT Tailplane pitching moment about tailplane aerodynamic centre
n Total normal load factor
nα Normal load factor per unit angle of attack
n′ Inertial normal load factor
N Yawing moment
o Origin of axes
p Roll rate perturbation: Trim reference point: System pole
q Pitch rate perturbation
Q Dynamic pressure
r Yaw rate perturbation: General response variable
R Radius of turn
s Wing semi-span: Laplace operator
S Wing reference area
SB Projected body side reference area
SF Fin reference area
ST Tailplane reference area
Sη Elevator area aft of hinge line
t Time: Maximum aerofoil section thickness
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xviii Nomenclature

T Time constant
Tr Roll mode time constant
Ts Spiral mode time constant
Tu Numerator zero in axial velocity transfer function
Tw Numerator zero in normal velocity transfer function
Tθ Numerator zero in pitch rate and attitude transfer functions
Tτ Turbo-jet engine time constant
T2 Time to double amplitude
u Axial velocity perturbation
u Input vector
U Total axial velocity
Ue Axial component of steady equilibrium velocity
UE Axial velocity component referred to datum-path earth axes
v Lateral velocity perturbation
v Eigenvector
V Perturbed total velocity: Total lateral velocity
Ve Lateral component of steady equilibrium velocity
VE Lateral velocity component referred to datum-path earth axes
V0 Steady equilibrium velocity
V f Canard foreplane volume ratio
V F Fin volume ratio
V T Tailplane volume ratio
V Eigenvector matrix
w Normal velocity perturbation
W Total normal velocity
We Normal component of steady equilibrium velocity
WE Normal velocity component referred to datum-path earth axes
x Longitudinal coordinate in axis system
xτ Axial coordinate of engine thrust line
x State vector
X Axial force component
y Lateral coordinate in axis system
yB Lateral body “drag’’ coefficient
yτ Lateral coordinate of engine thrust line
y Output vector
Y Lateral force component
z Normal coordinate in axis system: System zero
zτ Normal coordinate of engine thrust line
z Transformed state vector
Z Normal force component

Greek letter

α Angle of attack or incidence perturbation
α′ Incidence perturbation
αe Equilibrium incidence
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αT Local tailplane incidence
αw0 Zero lift incidence of wing
αwr Wing rigging angle
β Sideslip angle perturbation
βe Equilibrium sideslip angle
βη Elevator trim tab angle
γ Flight path angle perturbation: Imaginary part of a complex number
γe Equilibrium flight path angle
Γ Wing dihedral angle
δ Control angle: Increment: Unit impulse function
δξ Roll control stick angle
δη Pitch control stick angle
δζ Rudder pedal control angle
δm Mass increment
Δ Characteristic polynomial: Transfer function denominator
ε Throttle lever angle: Downwash angle at tailplane: Closed loop

system error
ε0 Zero lift downwash angle at tail
ζ Rudder angle perturbation: Damping ratio
ζd Dutch roll damping ratio
ζp Phugoid damping ratio
ζs Short period pitching oscillation damping ratio
η Elevator angle perturbation
ηe Elevator trim angle
ηT Tailplane setting angle
θ Pitch angle perturbation: A general angle
θe Equilibrium pitch angle
κ Thrust line inclination to aircraft ox axis
λ Eigenvalue
Λ Wing sweep angle
� Eigenvalue matrix
μ1 Longitudinal relative density factor
μ2 Lateral relative density factor
ξ Aileron angle perturbation
ρ Air density
σ Aerodynamic time parameter: Real part of a complex number
τ Engine thrust perturbation: Time parameter
τe Trim thrust
τ̂ Dimensionless thrust
φ Roll angle perturbation: Phase angle: A general angle
� State transition matrix
ψ Yaw angle perturbation
ω Undamped natural frequency
ωb Bandwidth frequency
ωd Dutch roll undamped natural frequency
ωn Damped natural frequency
ωp Phugoid undamped natural frequency
ωs Short period pitching oscillation undamped natural frequency
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Subscripts

0 Datum axes: Normal earth fixed axes: Wing or wing–body aerodynamic
centre: Free stream flow conditions

1/4 Quarter chord
2 Double or twice
∞ Infinite span
a Aerodynamic
A Aileron
b Aeroplane body axes: Bandwidth
B Body or fuselage
c Control: Chord: Compressible flow: Camber line
d Atmospheric disturbance: Dutch roll
D Drag
e Equilibrium, steady or initial condition
E Datum-path earth axes
f Canard foreplane
F Fin
g Gravitational
H Elevator hinge moment
i Incompressible flow
l Rolling moment
le Leading edge
L Lift
m Pitching moment: Manoeuvre
n Neutral point: Yawing moment
p Power: Roll rate: Phugoid
q Pitch rate
r Yaw rate: Roll mode
R Rudder
s Short period pitching oscillation: Spiral mode
T Tailplane
u Axial velocity
v Lateral velocity
w Aeroplane wind or stability axes: Wing or wing–body: Normal velocity
x ox axis
y oy axis
z oz axis

α Angle of attack or incidence
ε Throttle lever
ζ Rudder
η Elevator
θ Pitch
ξ Ailerons
τ Thrust
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Examples of other symbols and notation

xu A shorthand notation to denote the concise derivative, a dimensional
derivative divided by the appropriate mass or inertia parameters

Xu A shorthand notation to denote the American normalised dimensional

derivative
◦

Xu/m
L′

v A shorthand notation to denote a modified North American lateral–
directional derivative

Cxu A shorthand coefficient notation to denote a North American dimensionless
derivative

Xu A shorthand notation to denote the dimensionless derivative ∂X̂ /∂û
◦

Xu A shorthand notation to denote the dimensional derivative ∂X /∂u
N y

u (t) A shorthand notation to denote a transfer function numerator polynomial
relating the output response y to the input u

û A shorthand notation to denote that the variable u is dimensionless
(∗) A superscript to denote a complex conjugate: A superscript to denote that a

derivative includes both aerodynamic and thrust effects in North American
notation

(◦) A dressing to denote a dimensional derivative in British notation
(ˆ) A dressing to denote a dimensionaless parameter
(T) A superscript to denote a transposed matrix
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A full Solutions Manual with worked answers to the exercises in the main text is
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for use in lecture slides and class presentations.
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and optimization is available for downloading. It is suitable for use as is, or for further
development, to solve student problems.
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Chapter 1

Introduction

1.1 OVERVIEW

This book is primarily concerned with the provision of good flying and handling
qualities in conventional piloted aircraft, although the material is equally applicable
to the uninhabited air vehicle (UAV). Consequently it is also very much concerned
with the stability, control and dynamic characteristics which are fundamental to the
determination of those qualities. Since flying and handling qualities are of critical
importance to safety and to the piloting task it is essential that their origins are properly
understood. Here then, the intention is to set out the basic principles of the subject at
an introductory level and to illustrate the application of those principles by means of
worked examples.

Following the first flights made by the Wright brothers in December 1903 the pace
of aeronautical development quickened and the progress made in the following decade
or so was dramatic. However, the stability and control problems that faced the early
aviators were sometimes considerable since the flying qualities of their aircraft were
often less than satisfactory. Many investigators were studying the problems of stability
and control at the time although it is the published works of Bryan (1911) and Lanch-
ester (1908) which are usually accredited with laying the first really secure foundations
for the subject. By conducting many experiments with flying models Lanchester was
able to observe and successfully describe mathematically some dynamic characteris-
tics of aircraft. The beauty of Lanchester’s work was its practicality and theoretical
simplicity, thereby lending itself to easy application and interpretation. Bryan, on the
other hand, was a mathematician who chose to apply his energies, with the assistance
of Mr. Harper, to the problems of the stability and control of aircraft. Bryan devel-
oped the general equations of motion of a rigid body with six degrees of freedom to
successfully describe the motion of aircraft. His treatment, with very few changes, is
still in everyday use. What has changed is the way in which the material is now used,
due largely to the advent of the digital computer as an analysis tool. The stability and
control of aircraft is a subject which has its origins in aerodynamics and the classical
theory of the subject is traditionally expressed in the language of the aerodynamicist.
However, most advanced technology aircraft may be described as an integrated system
comprising airframe, propulsion, flight controls and so on. It is therefore convenient
and efficient to utilise powerful computational systems engineering tools to analyse
and describe its flight dynamics. Thus, the objective of the present work is to revisit
the development of the classical theory and to express it in the language of the systems
engineer where it is more appropriate to do so.

Flight dynamics is about the relatively short term motion of aircraft in response to
controls or to external disturbances such as atmospheric turbulence. The motion of

1
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interest can vary from small excursions about trim to very large amplitude manoeu-
vring when normal aerodynamic behaviour may well become very non-linear. Since
the treatment of the subject in this book is introductory a discussion of large ampli-
tude dynamics is beyond the scope of the present work. The dynamic behaviour of
an aircraft is shaped significantly by its stability and control properties which in turn
have their roots in the aerodynamics of the airframe. Previously the achievement of
aircraft with good stability characteristics usually ensured good flying qualities, all of
which depended only on good aerodynamic design. Expanding flight envelopes and
the increasing dependence on automatic flight control systems (AFCS) for stability
augmentation means that good flying qualities are no longer a guaranteed product
of good aerodynamic design and good stability characteristics. The reasons for this
apparent inconsistency are now reasonably well understood and, put very simply,
result from the addition of flight control system dynamics to those of the airframe.
Flight control system dynamics are of course a necessary, but not always desirable,
by-product of command and stability augmentation.

Modern flight dynamics is concerned not only with the dynamics, stability and
control of the basic airframe, but also with the sometimes complex interaction between
airframe and flight control system. Since the flight control system comprises motion
sensors, a control computer, control actuators and other essential items of control
hardware, a study of the subject becomes a multi-disciplinary activity. Therefore, it is
essential that the modern flight dynamicist has not only a thorough understanding of
the classical stability and control theory of aircraft, but also a working knowledge of
control theory and of the use of computers in flight critical applications. Thus modern
aircraft comprise the airframe together with the flight control equipment and may be
treated as a whole system using the traditional tools of the aerodynamicist together
with the analytical tools of the control engineer.

Thus in a modern approach to the analysis of stability and control it is conve-
nient to treat the airframe as a system component. This leads to the derivation of
mathematical models which describe aircraft in terms of aerodynamic transfer func-
tions. Described in this way, the stability, control and dynamic characteristics of
aircraft are readily interpreted with the aid of very powerful computational systems
engineering tools. It follows that the mathematical model of the aircraft is immedi-
ately compatible with, and provides the foundation for integration with flight control
system studies. This is an ideal state of affairs since, today, it is common place to
undertake stability and control investigations as a precursor to flight control system
development.

Today, the modern flight dynamicist tends to be concerned with the wider issues of
flying and handling qualities rather than with the traditional, and more limited issues
of stability and control. The former are, of course, largely determined by the latter.
The present treatment of the material is shaped by answering the following questions
which a newcomer to the subject might be tempted to ask:

(i) How are the stability and control characteristics of aircraft determined and how
do they influence flying qualities?
The answer to this question involves the establishment of a suitable mathematical
framework for the problem, the development of the equations of motion, the
solution of the equations of motion, investigation of response to controls and
the general interpretation of dynamic behaviour.
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(ii) What are acceptable flying qualities, how are the requirements defined,
interpreted and applied, and how do they limit flight characteristics?
The answer to this question involves a review of contemporary flying qualities
requirements and their evaluation and interpretation in the context of stability
and control characteristics.

(iii) When an aircraft has unacceptable flying qualities how may its dynamic
characteristics be improved?
The answer to this question involves an introduction to the rudiments of feedback
control as the means for augmenting the stability of the basic airframe.

1.2 FLYING AND HANDLING QUALITIES

The flying and handling qualities of an aircraft are those properties which describe
the ease and effectiveness with which it responds to pilot commands in the execution
of a flight task, or mission task element (MTE). In the first instance, therefore, fly-
ing and handling qualities are described qualitatively and are formulated in terms of
pilot opinion, consequently they tend to be rather subjective. The process involved
in the pilot perception of flying and handling qualities may be interpreted in the
form of a signal flow diagram as shown in Fig. 1.1. The solid lines represent phys-
ical, mechanical or electrical signal flow paths, whereas the dashed lines represent
sensory feedback information to the pilot. The author’s interpretation distinguishes
between flying qualities and handling qualities as indicated. The pilot’s perception
of flying qualities is considered to comprise a qualitative description of how well the
aeroplane carries out the commanded task. On the other hand, the pilot’s perception
of handling qualities is considered a qualitative description of the adequacy of the
short term dynamic response to controls in the execution of the flight task. The two
qualities are therefore very much interdependent and in practice are probably insep-
arable. Thus to summarise, the flying qualities may be regarded as being task related,
whereas the handling qualities may be regarded as being response related. When the
airframe characteristics are augmented by a flight control system the way in which the
flight control system may influence the flying and handling qualities is clearly shown
in Fig. 1.1.

Handling qualities

Flying qualities

AircraftPilot Response
Mission

task

Flight
control
system

Figure 1.1 Flying and handling qualities of conventional aircraft.
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Handling qualities

Flying qualities

Flight
control
system

Pilot Aircraft Response
Mission

task

Figure 1.2 Flying and handling qualities of FBW aircraft.

An increasing number of advanced modern aeroplanes employ fly-by-wire (FBW)
primary flight controls and these are usually integrated with the stability augmentation
system. In this case, the interpretation of the flying and handling qualities process
is modified to that shown in Fig. 1.2. Here then, the flight control system becomes
an integral part of the primary signal flow path and the influence of its dynamic
characteristics on flying and handling qualities is of critical importance. The need for
very careful consideration of the influence of the flight control system in this context
cannot be over emphasised.

Now the pilot’s perception of the flying and handling qualities of an aircraft will
be influenced by many factors. For example, the stability, control and dynamic char-
acteristics of the airframe, flight control system dynamics, response to atmospheric
disturbances and the less tangible effects of cockpit design. This last factor includes
considerations such as control inceptor design, instrument displays and field of view
from the cockpit. Not surprisingly the quantification of flying qualities remains
difficult. However, there is an overwhelming necessity for some sort of numerical
description of flying and handling qualities for use in engineering design and evalu-
ation. It is very well established that the flying and handling qualities of an aircraft
are intimately dependent on the stability and control characteristics of the airframe
including the flight control system when one is installed. Since stability and control
parameters are readily quantified these are usually used as indicators and measures
of the likely flying qualities of the aeroplane. Therefore, the prerequisite for almost
any study of flying and handling qualities is a descriptive mathematical model of the
aeroplane which is capable of providing an adequate quantitative indication of its
stability, control and dynamic properties.

1.3 GENERAL CONSIDERATIONS

In a systematic study of the principles governing the flight dynamics of aircraft it is
convenient to break the problem down into manageable descriptive elements. Thus
before attempting to answer the questions posed in Section 1.1, it is useful to consider
and define a suitable framework in which the essential mathematical development may
take place.
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Figure 1.3 Basic control–response relationships.

1.3.1 Basic control–response relationships

It is essential to define and establish a description of the basic input–output relation-
ships on which the flying and handling qualities of unaugmented aircraft depend.
These relationships are described by the aerodynamic transfer functions which pro-
vide the simplest and most fundamental description of airframe dynamics. They
describe the control–response relationship as a function of flight condition and may
include the influence of atmospheric disturbances when appropriate. These basic
relationships are illustrated in Fig. 1.3.

Central to this framework is a mathematical model of the aircraft which is usually
referred to as the equations of motion. The equations of motion provide a complete
description of response to controls, subject only to modelling limitations defined at the
outset, and is measured in terms of displacement, velocity and acceleration variables.
The flight condition describes the conditions under which the observations are made
and includes parameters, such as Mach number, altitude, aircraft geometry, mass and
trim state. When the airframe is augmented with a flight control system the equations
of motion are modified to model this configuration. The response transfer functions,
derived from the mathematical solution of the equations of motion, are then no longer
the basic aerodynamic transfer functions but are obviously the transfer functions of
the augmented aeroplane.

1.3.2 Mathematical models

From the foregoing it is apparent that it is necessary to derive mathematical models
to describe the aircraft, its control systems, atmospheric disturbances and so on. The
success of any flight dynamics analysis hinges on the suitability of the models for the
problem in hand. Often the temptation is to attempt to derive the most accurate model
possible. High fidelity models are capable of reproducing aircraft dynamics accu-
rately but are seldom simple. Their main drawback is the lack of functional visibility.
In very complex aircraft and system models, it may be difficult, or even impossible,
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to relate response to the simple physical aerodynamic properties of the airframe, or to
the properties of the control system components. For the purposes of the investigation
of flying and handling qualities it is frequently adequate to use simple approximate
models which have the advantage of maximising functional visibility thereby drawing
attention to the dominant characteristics. Such models have the potential to enhance
the visibility of the physical principles involved thereby facilitating the interpretation
of flying and handling qualities enormously. Often, the deterioration in the fidelity of
the response resulting from the use of approximate models may be relatively insignifi-
cant. For a given problem, it is necessary to develop a model which balances the desire
for response fidelity against the requirement to maintain functional visibility. As is
so often the case in many fields of engineering, simplicity is a most desirable virtue.

1.3.3 Stability and control

Flying and handling qualities are substantially dependent on, and are usually described
in terms of, the stability and control characteristics of an aircraft. It is therefore essen-
tial to be able to describe and to quantify stability and control parameters completely.
Analysis may then be performed using the stability parameters. Static stability analysis
enables the control displacement and the control force characteristics to be determined
for both steady and manoeuvring flight conditions. Dynamic stability analysis enables
the temporal response to controls and to atmospheric disturbances to be determined
for various flight conditions.

1.3.4 Stability and control augmentation

When an aircraft has flying and handling qualities deficiencies it becomes neces-
sary to correct, or augment, the aerodynamic characteristics which give rise to those
deficiencies. To a limited extent, this could be achieved by modification of the aero-
dynamic design of the aircraft. In this event it is absolutely essential to understand
the relationship between the aerodynamics of the airframe and controls and the sta-
bility and control characteristics of that airframe. However, today, many aircraft are
designed with their aerodynamics optimised for performance over a very large flight
envelope, and a consequence of this is that their flying qualities are often deficient.
The intent at the outset being to rectify those deficiencies with a stability augmen-
tation system. Therefore, the alternative to aerodynamic design modification is the
introduction of a flight control system. In this case it becomes essential to understand
how feedback control techniques may be used to artificially modify the apparent aero-
dynamic characteristics of the airframe. So once again, but for different reasons, it
is absolutely essential to understand the relationship between the aerodynamics of
the airframe and its stability and control characteristics. Further, it becomes very
important to appreciate the effectiveness of servo systems for autostabilisation whilst
acknowledging the attendant advantages, disadvantages and limitations introduced
by the system hardware. At this stage of consideration it is beginning to become
obvious why flight dynamics is now a complex multi-disciplinary subject. However,
since this work is introductory, the subject of stability augmentation is treated at the
most elementary level only.
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1.4 AIRCRAFT EQUATIONS OF MOTION

The equations of motion of an aeroplane are the foundation on which the entire frame-
work of flight dynamics is built and provide the essential key to a proper understanding
of flying and handling qualities. At their simplest, the equations of motion can describe
small perturbation motion about trim only. At their most complex they can be com-
pletely descriptive embodying static stability, dynamic stability, aeroelastic effects,
atmospheric disturbances and control system dynamics simultaneously for a given
aeroplane configuration. The equations of motion enable the rather intangible descrip-
tion of flying and handling qualities to be related to quantifiable stability and control
parameters, which in turn may be related to identifiable aerodynamic characteristics
of the airframe. For initial studies the theory of small perturbations is applied to the
equations to ease their analytical solution and to enhance their functional visibility.
However, for more advanced applications, which are beyond the scope of the present
work, the fully descriptive non-linear form of the equations might be retained. In this
case the equations are difficult to solve analytically and recourse would be made to
computer simulation techniques to effect a numerical solution.

1.5 AERODYNAMICS

1.5.1 Scope

The aerodynamics of an airframe and its controls make a fundamental contribution
to the stability and control characteristics of the aircraft. It is usual to incorporate
aerodynamic descriptions in the equations of motion in the form of aerodynamic
stability and control derivatives. Since it is necessary to constrain the motion to well
defined limits in order to obtain the derivatives so, the scope of the resulting aircraft
model is similarly constrained in its application. It is, however, quite common to
find aircraft models constrained in this way being used to predict flying and handling
qualities at conditions well beyond the imposed limits. This is not recommended prac-
tice! An important aspect of flight dynamics is concerned with the proper definition
of aerodynamic derivatives as functions of common aerodynamic parameters. It is
also most important that the values of the derivatives are compatible with the scope
of the problem to which the aircraft model is to be applied. The processes involved
in the estimation or measurement of aerodynamic derivatives provide an essential
contribution to a complete understanding of aircraft behaviour.

1.5.2 Small perturbations

The aerodynamic properties of an aircraft vary considerably over the flight envelope
and mathematical descriptions of those properties are approximations at best. The
limit of the approximation is determined by the ability of mathematics to describe
the physical phenomena involved or by the acceptable complexity of the description.
The aim being to obtain the simplest approximation consistent with adequate physical
representation. In the first instance this aim is best met when the motion of interest is
constrained to small perturbations about a steady flight condition, which is usually,
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but not necessarily, trimmed equilibrium. This means that the aerodynamic character-
istics can be approximated by linearising about the chosen flight condition. Simple
approximate mathematical descriptions of aerodynamic stability and control deriva-
tives then follow relatively easily. This is the approach pioneered by Bryan (1911) and
it usually works extremely well provided the limitations of the model are recognised
from the outset.

1.6 COMPUTERS

No discussion of flight dynamics would be complete without mention of the very
important role played by the computer in all aspects of the subject. It is probably
true to say that the development of today’s very advanced aircraft would not have
been possible without parallel developments in computer technology. In fact there
is ample evidence to suggest that the demands of aeronautics have forced the pace
of computer development. Computers are used for two main purposes, as a general
purpose tool for design and analysis and to provide the “intelligence’’ in flight control
systems.

1.6.1 Analytical computers

In the past all electronic computation whether for analysis, simulation or airborne
flight control would have been analogue. Analogue computer technology developed
rapidly during and immediately after World War II and by the late 1960s had reached
its highest level of development following the introduction of the electronic integrated
operational amplifier. Its principal role was that of simulation and its main advantages
were: its ability to run in real time, continuous electrical signals and its high level of
functional visibility. Its main disadvantage was the fact that the electronic hardware
required was directly proportional to the functional complexity of the problem to
be simulated. This meant that complex aircraft models with complex flight control
systems required physically large, and very costly, electronic computer hardware.
During the 1960s and 1970s electronic digital computing technology advanced very
rapidly and soon displaced the analogue computer as the primary tool for design and
analysis. However, it took somewhat longer before the digital computer had acquired
the capacity and speed necessary to meet the demands of simulation. Today, most of
the computational requirements for design, analysis and simulation can be provided
by a modest personal computer.

1.6.2 Flight control computers

In the present context flight control is taken to mean flight critical stability augmen-
tation, where a computer malfunction or failure might hazard the continued safe
operation of the aircraft. In the case of a FBW computer, a total failure would mean
total loss of control of the aircraft, for example. Therefore, hardware integrity is a
very serious issue in flight control computer design. The modern aircraft may also
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have an autopilot computer, air data computer, navigation computer, energy man-
agement computer, weapon systems computer and more. Many of these additional
computers may be capable of exercising some degree of control over the aircraft, but
none will be quite as critical as the stability augmentation computer in the event of a
malfunction.

For the last 60 years or more, computers have been used in aircraft for flight
control. For much of that time the dedicated analogue electronic computer was
unchallenged because of its relative simplicity, its easy interface engineering with
the mechanical flying controls and its excellent safety record. Toward the end of the
1970s the digital computer had reached the stage of development where its use in
flight critical applications became a viable proposition with the promise of vastly
expanded control capability. The pursuit of increasingly sophisticated performance
goals led to an increase in the complexity of the aerodynamic design of aircraft.
This in turn placed greater demands on the flight control system for the mainte-
nance of good flying and handling qualities. The attraction of the digital computer
for flight control is its capability for handling very complex control functions easily.
The disadvantage is its lack of functional visibility and the consequent difficulty of
ensuring safe trouble free operation. However, the digital flight critical computer
is here to stay and is now used in most advanced technology aircraft. Research
continues to improve the hardware, software and application. Confidence in digital
flight control systems is now such that applications include full FBW civil transport
aeroplanes.

These functionally very complex flight control systems have given the modern
aeroplane hitherto unobtainable performance benefits. But nothing is free! The con-
sequence of using such systems is the unavoidable introduction of unwanted control
system dynamics. These usually manifest themselves as control phase lag and can
intrude on the piloting task in an unacceptable way resulting in an aircraft with poor
flying and handling qualities. This problem is still a subject of research and is very
much beyond the scope of this book. However, the essential foundation material on
which such studies are built is set out in the following chapters.

1.6.3 Computer software tools

Many computer software tools are now available which are suitable for flight dynamics
analysis. Most packages are intended for control systems applications, but they are
ideal for handling aeronautical system problems and may be installed on a modest
personal computer. Software tools used regularly by the author are listed below, but
it must be appreciated that the list is by no means exhaustive, nor is it implied that
the programs listed are the best or necessarily the most appropriate.

MATLAB is a very powerful control system design and analysis tool which is
intended for application to systems configured in state space format. As a result all
computation is handled in matrix format. Its screen graphics are good. All of the
examples and problems in this book can be solved with the aid of MATLAB.

Simulink is a continuous simulation supplementary addition to MATLAB, on which
it depends for its mathematical modelling. It is also a powerful tool and is easy to
apply using a block diagram format for model building. It is not strictly necessary
for application to the material in this book although it can be used with advantage
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for some examples. Its main disadvantage is its limited functional visibility since
models are built using interconnecting blocks, the functions of which are not always
immediately obvious to the user. Nevertheless Simulink enjoys very widespread use
throughout industry and academia.

MATLAB and Simulink, student version release 14 is a combined package available
to registered students at low cost.

Program CC version 5 is also a very powerful control system design and anal-
ysis tool. It is capable of handling classical control problems in transfer function
format as well as modern state space control problems in matrix format. The current
version is very similar in use to MATLAB to the extent that many procedures are
the same. This is not entirely surprising since the source of the underlying mathe-
matical routines is the same for both the languages. An advantage of Program CC
is that it was written by flight dynamicists for flight dynamicists and as a result its
use becomes intuitive once the commands have been learned. Its screen graphics
are good and have some flexibility of presentation. A downloadable low cost stu-
dent version is available which is suitable for solving all examples and problems in
this book.

Mathcad version 13 is a very powerful general purpose mathematical problem
solving tool. It is useful for repetitive calculations but it comes into its own for solving
difficult non-linear equations. It is also capable of undertaking complex algebraic
computations. Its screen graphics are generally very good and are very flexible.
In particular, it is a valuable tool for aircraft trim and performance computations
where the requirement is to solve simultaneous non-linear algebraic equations. Its
use in this role is illustrated in Chapter 3. A low cost student version of this software
is also available.

20-sim is a modern version of the traditional simulation language and it has been
written to capitalise on the functionality of the modern personal computer. Models
can be built up from the equations of motion, or from the equivalent matrix equa-
tions, or both. Common modules can be assigned icons of the users design and the
simulation can then be constructed in a similar way to the block diagram format of
Simulink. Its versatility is enhanced by its direct compatibility with MATLAB. Signifi-
cant advantages are the excellent functional visibility of the problem, model building
flexibility and the infinitely variable control of the model structure. Its screen graphics
are excellent and it has the additional facility for direct visualisation of the modelled
system running in real time. At the time of writing, the main disadvantage is the
lack of a library of aerospace simulation components, however this will no doubt be
addressed as the language matures.

1.7 SUMMARY

An attempt has been made in Chapter 1 to give a broad appreciation of what flight
dynamics is all about. Clearly, to produce a comprehensive text on the subject would
require many volumes, assuming that it were even possible. To reiterate, the present
intention is to set out the fundamental principles of the subject only. However, where
appropriate, pointers are included in the text to indicate the direction in which the
material in question might be developed for more advanced studies.
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Chapter 2

Systems of Axes and Notation

Before commencing the main task of developing mathematical models of the aircraft
it is first necessary to put in place an appropriate and secure foundation on which to
build the models. The foundation comprises a mathematical framework in which the
equations of motion can be developed in an orderly and consistent way. Since aircraft
have six degrees of freedom the description of their motion can be relatively complex.
Therefore, motion is usually described by a number of variables which are related to a
suitably chosen system of axes. In the UK the scheme of notation and nomenclature in
common use is based on that developed by Hopkin (1970) and a simplified summary
may be found in the appropriate ESDU (1987) data item. As far as is reasonably
possible, the notation and nomenclature used throughout this book correspond with
that of Hopkin (1970). By making the appropriate choice of axis systems order and
consistency may be introduced to the process of model building. The importance
of order and consistency in the definition of the mathematical framework cannot be
over-emphasised since, without either misunderstanding and chaos will surely follow.
Only the most basic commonly used axes systems appropriate to aircraft are discussed
in the following sections. In addition to the above named references a more expansive
treatment may be found in Etkin (1972) or in McRuer et al. (1973) for example.

2.1 EARTH AXES

Since normal atmospheric flight only is considered it is usual to measure aircraft
motion with reference to an earth fixed framework. The accepted convention for
defining earth axes determines that a reference point o0 on the surface of the earth is
the origin of a right handed orthogonal system of axes (o0x0y0z0) where, o0x0 points
to the north, o0y0 points to the east and o0z0 points vertically “down’’along the gravity
vector. Conventional earth axes are illustrated in Fig. 2.1.

Clearly, the plane (o0x0y0) defines the local horizontal plane which is tangential to
the surface of the earth. Thus the flight path of an aircraft flying in the atmosphere in
the vicinity of the reference point o0 may be completely described by its coordinates
in the axis system. This therefore assumes a flat earth where the vertical is “tied’’ to
the gravity vector. This model is quite adequate for localised flight although it is best
suited to navigation and performance applications where flight path trajectories are
of primary interest.

For investigations involving trans-global navigation the axis system described is
inappropriate, a spherical coordinate system being preferred. Similarly, for trans-
atmospheric flight involving the launch and re-entry of space vehicles a spherical
coordinate system would be more appropriate. However, since in such an application

12
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Figure 2.1 Conventional earth axes.

the angular velocity of the earth becomes important it is necessary to define a fixed
spatial axis system to which the spherical earth axis system may be referenced.

For flight dynamics applications a simpler definition of earth axes is preferred.
Since short term motion only is of interest it is perfectly adequate to assume flight
above a flat earth. The most common consideration is that of motion about straight and
level flight. Straight and level flight assumes flight in a horizontal plane at a constant
altitude and, whatever the subsequent motion of the aircraft might be, the attitude is
determined with respect to the horizontal. Referring again to Fig. 2.1 the horizontal
plane is defined by (oExEyE) and is parallel to the plane (o0x0y0) at the surface of
the earth. The only difference is that the oExE axis points in the arbitrary direction of
flight of the aircraft rather than to the north. The oEzE axis points vertically down as
before. Therefore, it is only necessary to place the origin oE in the atmosphere at the
most convenient point, which is frequently coincident with the origin of the aircraft
body fixed axes. Earth axes (oExEyEzE) defined in this way are called datum-path
earth axes, are “tied’’ to the earth by means of the gravity vector and provide the
inertial reference frame for short term aircraft motion.

2.2 AIRCRAFT BODY FIXED AXES

2.2.1 Generalised body axes

It is usual practice to define a right handed orthogonal axis system fixed in the aircraft
and constrained to move with it. Thus when the aircraft is disturbed from its initial
flight condition the axes move with the airframe and the motion is quantified in
terms of perturbation variables referred to the moving axes. The way in which the
axes may be fixed in the airframe is arbitrary although it is preferable to use an
accepted standard orientation. The most general axis system is known as a body axis
system (oxbybzb) which is fixed in the aircraft as shown in Fig. 2.2. The (oxbzb)
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Figure 2.2 Moving axes systems.

plane defines the plane of symmetry of the aircraft and it is convenient to arrange
the oxb axis such that it is parallel to the geometrical horizontal fuselage datum.
Thus in normal flight attitudes the oyb axis is directed to starboard and the ozb axis
is directed “downwards’’. The origin o of the axes is fixed at a convenient reference
point in the airframe which is usually, but not necessarily, coincident with the centre of
gravity (cg).

2.2.2 Aerodynamic, wind or stability axes

It is often convenient to define a set of aircraft fixed axes such that the ox axis is
parallel to the total velocity vector V0 as shown in Fig. 2.2. Such axes are called
aerodynamic, wind or stability axes. In steady symmetric flight wind axes (oxwywzw)
are just a particular version of body axes which are rotated about the oyb axis through
the steady body incidence angle αe until the oxw axis aligns with the velocity vector.
Thus the plane (oxwzw) remains the plane of symmetry of the aircraft and the oyw

and the oyb axes are coincident. Now there is a unique value of body incidence αe for
every flight condition, therefore the wind axes orientation in the airframe is different
for every flight condition. However, for any given flight condition the wind axes
orientation is defined and fixed in the aircraft at the outset and is constrained to move
with it in subsequent disturbed flight. Typically the body incidence might vary in the
range −10◦ ≤ αe ≤ 20◦ over a normal flight envelope.

2.2.3 Perturbation variables

The motion of the aircraft is described in terms of force, moment, linear and angular
velocities and attitude resolved into components with respect to the chosen aircraft
fixed axis system. For convenience it is preferable to assume a generalised body axis
system in the first instance. Thus initially, the aircraft is assumed to be in steady
rectilinear, but not necessarily level, flight when the body incidence is αe and the
steady velocity V0 resolves into components Ue, Ve and We as indicated in Fig. 2.3.
In steady non-accelerating flight the aircraft is in equilibrium and the forces and
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L, p, f
N, r,y

M, q, q

o

Z, We, W, w

X, Ue, U, u

Pitch

Yaw

Roll 

Y, Ve, V, v

z

x

y

Figure 2.3 Motion variables notation.

Table 2.1 Summary of motion variables

Trimmed equilibrium Perturbed

Aircraft axis ox oy oz ox oy oz
Force 0 0 0 X Y Z
Moment 0 0 0 L M N
Linear velocity Ue Ve We U V W
Angular velocity 0 0 0 p q r
Attitude 0 θe 0 φ θ ψ

moments acting on the airframe are in balance and sum to zero. This initial condition
is usually referred to as trimmed equilibrium.

Whenever the aircraft is disturbed from equilibrium the force and moment balance
is upset and the resulting transient motion is quantified in terms of the perturbation
variables. The perturbation variables are shown in Fig. 2.3 and summarised in
Table 2.1.

The positive sense of the variables is determined by the choice of a right handed
axis system. Components of linear quantities, force, velocity, etc., are positive when
their direction of action is the same as the direction of the axis to which they relate.
The positive sense of the components of rotary quantities, moment, velocity, attitude,
etc. is a right handed rotation and may be determined as follows. Positive roll about
the ox axis is such that the oy axis moves towards the oz axis, positive pitch about
the oy axis is such that the oz axis moves towards the ox axis and positive yaw
about the oz axis is such that the ox axis moves towards the oy axis. Therefore,
positive roll is right wing down, positive pitch is nose up and positive yaw is nose to
the right as seen by the pilot.

A simple description of the perturbation variables is given in Table 2.2. The inten-
tion is to provide some insight into the physical meaning of the many variables used
in the model. Note that the components of the total linear velocity perturbations
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Table 2.2 The perturbation variables

X Axial “drag’’ force Sum of the components of
Y Side force aerodynamic, thrust and
Z Normal “lift’’ force weight forces

L Rolling moment Sum of the components of
M Pitching moment aerodynamic, thrust and
N Yawing moment weight moments

p Roll rate Components of angular
q Pitch rate velocity
r Yaw rate

U Axial velocity Total linear velocity
V Lateral velocity components of the cg
W Normal velocity

V0aeqe

q

xb
U

Ue

We W
zb

o

Horizon

Perturbed
body axes

Equilibrium
body axes

ge

Figure 2.4 Generalised body axes in symmetric flight.

(U , V , W ) are given by the sum of the steady equilibrium components and the
transient perturbation components (u, v, w) thus,

U = Ue + u

V = Ve + v

W = We + w (2.1)

2.2.4 Angular relationships in symmetric flight

Since it is assumed that the aircraft is in steady rectilinear, but not necessarily level
flight, and that the axes fixed in the aircraft are body axes then it is useful to relate
the steady and perturbed angles as shown in Fig. 2.4.

With reference to Fig. 2.4, the steady velocity vector V0 defines the flight path and
γe is the steady flight path angle. As before, αe is the steady body incidence and θe is
the steady pitch attitude of the aircraft. The relative angular change in a perturbation
is also shown in Fig. 2.4 where it is implied that the axes have moved with the airframe
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and the motion is viewed at some instant during the disturbance. Thus the steady flight
path angle is given by

γe = θe − αe (2.2)

In the case when the aircraft fixed axes are wind axes rather than body axes then,

ae = 0 (2.3)

and in the special case when the axes are wind axes and when the initial condition is
level flight,

αe = θe = 0 (2.4)

It is also useful to note that the perturbation in pitch attitude θ and the perturbation
in body incidence α are the same thus, it is convenient to write,

tan (αe + θ) ≡ tan (αe + α) = W

U
≡ We + w

Ue + u
(2.5)

2.2.5 Choice of axes

Having reviewed the definition of aircraft fixed axis systems an obvious question
must be: when is it appropriate to use wind axes and when is it appropriate to use
body axes? The answer to this question depends on the use to which the equations
of motion are to be put. The best choice of axes simply facilitates the analysis of
the equations of motion. When starting from first principles it is preferable to use
generalised body axes since the resulting equations can cater for most applications.
It is then reasonably straightforward to simplify the equations to a wind axis form if
the application warrants it. On the other hand, to extend wind axis based equations
to cater for the more general case is not as easy.

When dealing with numerical data for an existing aircraft it is not always obvious
which axis system has been used in the derivation of the model. However, by reference
to equation (2.3) or (2.4) and the quoted values of αe and θe it should become obvious
which axis system has been used.

When it is necessary to make experimental measurements in an actual aircraft, or in
a model, which are to be used subsequently in the equations of motion it is preferable to
use a generalised body axis system. Since the measuring equipment is installed in the
aircraft its location is precisely known in terms of body axis coordinates which, there-
fore, determines the best choice of axis system. In a similar way, most aerodynamic
measurements and computations are referenced to the free stream velocity vector.
For example, in wind tunnel work the obvious reference is the tunnel axis which is
coincident with the velocity vector. Thus, for aerodynamic investigations involving
the equations of motion a wind axis reference is to be preferred. Traditionally all
aerodynamic data for use in the equations of motion are referenced to wind axes.

Thus, to summarise, it is not particularly important which axis system is chosen
provided it models the flight condition to be investigated, the end result does not
depend on the choice of axis system. However, when compiling data for use in the
equations of motion of an aircraft it is quite common for some data to be referred
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Figure 2.5 The Euler angles.

to wind axes and for some data to be referred to body axes. It therefore becomes
necessary to have available the mathematical tools for transforming data between
different reference axes.

2.3 EULER ANGLES AND AIRCRAFT ATTITUDE

The angles defined by the right handed rotation about the three axes of a right handed
system of axes are called Euler angles. The sense of the rotations and the order in
which the rotations are considered about the three axes in turn are very important
since angles do not obey the commutative law. The attitude of an aircraft is defined as
the angular orientation of the airframe fixed axes with respect to earth axes. Attitude
angles, therefore, are a particular application of Euler angles. With reference to
Fig. 2.5 (ox0y0z0) are datum or reference axes and (ox3y3z3) are aircraft fixed axes,
either generalised body axes or wind axes. The attitude of the aircraft, with respect
to the datum axes, may be established by considering the rotation about each axis
in turn required to bring (ox3y3z3) into coincidence with (ox0y0z0). Thus, first rotate
about ox3ox3 through the roll angle φ to (ox2y2z2). Second, rotate about oy2 through
the pitch angle θ to (ox1y1z1) and third, rotate about oz1 through the yaw angle ψ to
(ox0y0z0). Clearly, when the attitude of the aircraft is considered with respect to earth
axes then (ox0y0z0) and (oxEyEzE) are coincident.

2.4 AXES TRANSFORMATIONS

It is frequently necessary to transform motion variables and other parameters from one
system of axes to another. Clearly, the angular relationships used to describe attitude
may be generalised to describe the angular orientation of one set of axes with respect
to another. A typical example might be to transform components of linear velocity
from aircraft wind axes to body axes. Thus, with reference to Fig. 2.5, (ox0y0z0) may
be used to describe the velocity components in wind axes, (ox3y3z3) may be used
to describe the components of velocity in body axes and the angles (φ, θ, ψ) then
describe the generalised angular orientation of one set of axes with respect to the
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other. It is usual to retain the angular description of roll, pitch and yaw although the
angles do not necessarily describe attitude strictly in accordance with the definition
given in Section 2.3.

2.4.1 Linear quantities transformation

Let, for example, (ox3, oy3, oz3) represent components of a linear quantity in the
axis system (ox3y3z3) and let (ox0, oy0, oz0) represent components of the same linear
quantity transformed into the axis system (ox0y0z0). The linear quantities of interest
would be, for example, acceleration, velocity, displacement, etc. Resolving through
each rotation in turn and in the correct order then, with reference to Fig. 2.5, it may
be shown that:

(i) after rolling about ox3 through the angle φ,

ox3 = ox2

oy3 = oy2 cos φ + oz2 sin φ

oz3 = −oy2 sin φ + oz2 cos φ (2.6)

Alternatively, writing equation (2.6) in the more convenient matrix form,

⎡
⎣

ox3

oy3

oz3

⎤
⎦ =

⎡
⎣

1 0 0
0 cos φ sin φ

0 −sin φ cos φ

⎤
⎦
⎡
⎣

ox2

oy2

oz2

⎤
⎦ (2.7)

(ii) similarly, after pitching about oy2 through the angle θ,

⎡
⎣

ox2

oy2

oz2

⎤
⎦ =

⎡
⎣

cos θ 0 −sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦
⎡
⎣

ox1

oy1

oz1

⎤
⎦ (2.8)

(iii) and after yawing about oz1 through the angle ψ,

⎡
⎣

ox1

oy1

oz1

⎤
⎦ =

⎡
⎣

cos ψ sin ψ 0
−sin ψ cos ψ 0

0 0 1

⎤
⎦
⎡
⎣

ox0

oy0

oz0

⎤
⎦ (2.9)

By repeated substitution equations (2.7), (2.8) and (2.9) may be combined to give the
required transformation relationship

⎡
⎣

ox3

oy3

oz3

⎤
⎦ =

⎡
⎣

1 0 0
0 cos φ sin φ

0 −sin φ cos φ

⎤
⎦
⎡
⎣

cos θ 0 −sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦
⎡
⎣

cos ψ sin ψ 0
−sin ψ cos ψ 0

0 0 1

⎤
⎦
⎡
⎣

ox0

oy0

oz0

⎤
⎦

(2.10)
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or

⎡
⎣

ox3

oy3

oz3

⎤
⎦ = D

⎡
⎣

ox0

oy0

oz0

⎤
⎦ (2.11)

where the direction cosine matrix D is given by,

D =

⎡
⎢⎢⎢⎢⎢⎣

cos θ cos ψ cos θ sin ψ −sin θ

sin φ sin θ cos ψ sin φ sin θ sin ψ sin φ cos θ

−cos φ sin ψ + cos φ cos ψ

cos φ sin θ cos ψ cos φ sin θ sin ψ cos φ cos θ

+sin φ sin ψ − sin φ cos ψ

⎤
⎥⎥⎥⎥⎥⎦

(2.12)

As shown, equation (2.11) transforms linear quantities from (ox0y0z0) to (ox3y3z3).
By inverting the direction cosine matrix D the transformation from (ox3y3z3) to
(ox0y0z0) is obtained as given by equation (2.13):

⎡
⎣

ox0

oy0

oz0

⎤
⎦ = D−1

⎡
⎣

ox3

oy3

oz3

⎤
⎦ (2.13)

Example 2.1

To illustrate the use of equation (2.11) consider the very simple example in which it
is required to resolve the velocity of the aircraft through both the incidence angle and
the sideslip angle into aircraft axes. The situation prevailing is assumed to be steady
and is shown in Fig. 2.6.

The axes (oxyz) are generalised aircraft body axes with velocity components Ue,
Ve and We respectively. The free stream velocity vector is V0 and the angles of
incidence and sideslip are αe and βe respectively. With reference to equation (2.11),

y

z

x

o

We

Ve

V0

Ueae

be

Figure 2.6 Resolution of velocity through incidence and sideslip angles.
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axes (oxyz) correspond with axes (ox3y3z3) and V0 corresponds with ox0 of axes
(ox0y0z0), therefore the following vector substitutions may be made:

(ox0, oy0, oz0) = (V0, 0, 0) and (ox3, oy3, oz3) = (Ue, Ve, We)

and the angular correspondence means that the following substitution may be made:

(φ, θ, ψ) = (0, αe, −βe)

Note that a positive sideslip angle is equivalent to a negative yaw angle. Thus making
the substitutions in equation (2.9),

⎡
⎣

Ue

Ve

We

⎤
⎦ =

⎡
⎣

cos αe cos βe −cos αe sin βe −sin αe

sin βe cos βe 0
sin αe cos βe −sin αe sin βe cos αe

⎤
⎦
⎡
⎣

V0

0
0

⎤
⎦ (2.14)

Or, equivalently,

Ue = V0 cos αe cos βe

Ve = V0 sin βe

We = V0 sin αe cos βe (2.15)

Example 2.2

Another very useful application of the direction cosine matrix is to calculate height
perturbations in terms of aircraft motion. Equation (2.13) may be used to relate the
velocity components in aircraft axes to the corresponding components in earth axes
as follows:

⎡
⎣

UE

VE

WE

⎤
⎦ = D−1

⎡
⎣

U
V
W

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎣

cos ψ sin θ sin φ cos ψ sin θ cos φ
cos ψ cos θ −sin ψ cos φ +sin ψ sin φ

sin ψ sin θ sin φ sin ψ sin θ cos φ
sin ψ cos θ +cos ψ cos φ −cos ψ sin φ

−sin θ cos θ sin φ cos θ cos φ

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎣

U
V
W

⎤
⎦ (2.16)

where UE , VE and WE are the perturbed total velocity components referred to earth
axes. Now, since height is measured positive in the “upwards’’ direction, the rate of
change of height due to the perturbation in aircraft motion is given by

ḣ = −WE

Whence, from equation (2.16),

ḣ = U sin θ − V cos θ sin φ − W cos θ cos φ (2.17)
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2.4.2 Angular velocities transformation

Probably the most useful angular quantities transformation relates the angular veloc-
ities p, q, r of the aircraft fixed axes to the resolved components of angular velocity,
the attitude rates φ̇, θ̇, ψ̇ with respect to datum axes. The easiest way to deal with the
algebra of this transformation whilst retaining a good grasp of the physical implica-
tions is to superimpose the angular rate vectors on to the axes shown in Fig. 2.5, and
the result of this is shown in Fig. 2.7.

The angular body rates p, q, r are shown in the aircraft axes (ox3y3z3) then,
considering each rotation in turn necessary to bring the aircraft axes into coinci-
dence with the datum axes (ox0y0z0). First, roll about ox3ox3 through the angle φ

with angular velocity φ̇. Second, pitch about oy2 through the angle θ with angu-
lar velocity θ̇. And third, yaw about oz1 through the angle ψ with angular velocity
ψ̇. Again, it is most useful to refer the attitude rates to earth axes in which case
the datum axes (ox0y0z0) are coincident with earth axes (oExEyEzE). The attitude
rate vectors are clearly shown in Fig. 2.7. The relationship between the aircraft
body rates and the attitude rates, referred to datum axes, is readily established
as follows:

(i) Roll rate p is equal to the sum of the components of φ̇, θ̇, ψ̇ resolved along ox3,

p = φ̇ − ψ̇ sin θ (2.18)

(ii) Pitch rate q is equal to the sum of the components of φ̇, θ̇, ψ̇ resolved along oy3,

q = θ̇ cos φ + ψ̇ sin φ cos θ (2.19)

(iii) Yaw rate r is equal to the sum of the components of φ̇, θ̇, ψ̇ resolved along oz3,

r = ψ̇ cos φ cos θ − θ̇ sin φ (2.20)
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Figure 2.7 Angular rates transformation.
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Equations (2.18), (2.19) and (2.20) may be combined into the convenient matrix
notation

⎡
⎢⎣

p

q

r

⎤
⎥⎦ =

⎡
⎢⎣

1 0 −sin θ

0 cos φ sin φ cos θ

0 −sin φ cos φ cos θ

⎤
⎥⎦

⎡
⎢⎣

φ̇

θ̇

ψ̇

⎤
⎥⎦ (2.21)

and the inverse of equation (2.21) is
⎡
⎢⎣

φ̇

θ̇

ψ̇

⎤
⎥⎦ =

⎡
⎢⎣

1 sin φ tan θ cos φ tan θ

0 cos φ −sin φ

0 sin φ sec θ cos φ sec θ

⎤
⎥⎦

⎡
⎢⎣

p

q

r

⎤
⎥⎦ (2.22)

When the aircraft perturbations are small, such that (φ, θ, ψ) may be treated as small
angles, equations (2.21) and (2.22) may be approximated by

p = φ̇

q = θ̇

r = ψ̇ (2.23)

Example 2.3

To illustrate the use of the angular velocities transformation, consider the situation
when an aircraft is flying in a steady level coordinated turn at a speed of 250 m/s at
a bank angle of 60◦. It is required to calculate the turn rate ψ̇, the yaw rate r and the
pitch rate q. The forces acting on the aircraft are shown in Fig. 2.8.

By resolving the forces acting on the aircraft vertically and horizontally and elimi-
nating the lift L between the two resulting equations it is easily shown that the radius
of turn is given by

R = V 2
0

g tan φ
(2.24)

�
Radius of turn R

Lift L

mg

mV0
2

R

f

Figure 2.8 Aircraft in a steady banked turn.
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The time to complete one turn is given by

t = 2πR

V0
= 2πV0

g tan φ
(2.25)

therefore the rate of turn is given by

ψ̇ = 2π

t
= g tan φ

V0
(2.26)

Thus, ψ̇ = 0.068 rad/s. For the conditions applying to the turn, φ̇ = θ̇ = θ = 0 and thus
equation (2.21) may now be used to find the values of r and q:

⎡
⎢⎣

p

q

r

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 cos 60◦ sin 60◦

0 −sin 60◦ cos 60◦

⎤
⎥⎦

⎡
⎢⎣

0

0

ψ̇

⎤
⎥⎦

Therefore, p = 0, q = 0.059 rad/s and r = 0.034 rad/s. Note that p, q and r are the
angular velocities that would be measured by rate gyros fixed in the aircraft with their
sensitive axes aligned with the ox, oy and oz aircraft axes respectively.

2.5 AIRCRAFT REFERENCE GEOMETRY

The description of the geometric layout of an aircraft is an essential part of the
mathematical modelling process. For the purposes of flight dynamics analysis it is con-
venient that the geometry of the aircraft can be adequately described by a small number
of dimensional reference parameters which are defined and illustrated in Fig. 2.9.

2.5.1 Wing area

The reference area is usually the gross plan area of the wing, including that part within
the fuselage, and is denoted S:

S = bc (2.27)

where b is the wing span and c is the standard mean chord of the wing.

cg
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s � b/2
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�
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Figure 2.9 Longitudinal reference geometry.
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2.5.2 Mean aerodynamic chord

The mean aerodynamic chord of the wing (mac) is denoted c and is defined:

c =
∫ s
−s c2

y dy∫ s
−s cy dy

(2.28)

The reference mac is located on the centre line of the aircraft by projecting c from
its spanwise location as shown in Fig. 2.9. Thus for a swept wing the leading edge of
the mac lies aft of the leading edge of the root chord of the wing. The mac represents
the location of the root chord of a rectangular wing which has the same aerodynamic
influence on the aircraft as the actual wing. Traditionally mac is used in stability
and control studies since a number of important aerodynamic reference centres are
located on it.

2.5.3 Standard mean chord

The standard mean chord of the wing (smc) is effectively the same as the geometric
mean chord and is denoted c. For a wing of symmetric planform it is defined:

c =
∫ s
−s cy dy∫ s
−s dy

(2.29)

where s = b/2 is the semi-span and cy is the local chord at spanwise coordinate y. For
a straight tapered wing equation (2.29) simplifies to

c = S

b
(2.30)

The reference smc is located on the centre line of the aircraft by projecting c from
its spanwise location in the same way that the mac is located. Thus for a swept wing
the leading edge of the smc also lies aft of the leading edge of the root chord of
the wing. The smc is the mean chord preferred by aircraft designers since it relates
very simply to the geometry of the aircraft. For most aircraft the smc and mac are
sufficiently similar in length and location that they are practically interchangeable. It
is quite common to find references that quote a mean chord without specifying which.
This is not good practice although the error incurred by assuming the wrong chord
is rarely serious. However, the reference chord used in any application should always
be clearly defined at the outset.

2.5.4 Aspect ratio

The aspect ratio of the aircraft wing is a measure of its spanwise slenderness and is
denoted A and is defined as follows:

A = b2

S
= b

c
(2.31)
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2.5.5 Centre of gravity location

The centre of gravity, cg, of an aircraft is usually located on the reference chord as
indicated in Fig. 2.9. Its position is quoted as a fraction of c (or c), denoted h, and
is measured from the leading edge of the reference chord as shown. The cg position
varies as a function of aircraft loading, the typical variation being in the range 10–40%
of c. Or, equivalently, 0.1 ≤ h ≤ 0.4.

2.5.6 Tail moment arm and tail volume ratio

The mac of the horizontal tailplane, or foreplane, is defined and located in the airframe
in the same way as the mac of the wing as indicated in Fig. 2.9. The wing and tailplane
aerodynamic forces and moments are assumed to act at their respective aerodynamic
centres which, to a good approximation, lie at the quarter chord points of the mac
of the wing and tailplane respectively. The tail moment arm lT is defined as the
longitudinal distance between the centre of gravity and the aerodynamic centre of the
tailplane as shown in Fig. 2.9. The tail volume ratio VT is an important geometric
parameter and is defined:

V T = ST lT

Sc
(2.32)

where ST is the gross area of the tailplane and mac c is the longitudinal reference
length. Typically, the tail volume ratio has a value in the range 0.5 ≤ VT ≤ 1.3 and is
a measure of the aerodynamic effectiveness of the tailplane as a stabilising device.

Sometimes, especially in stability and control studies, it is convenient to measure
the longitudinal tail moment about the aerodynamic centre of the mac of the wing.
In this case the tail moment arm is denoted lt , as shown in Fig. 2.9, and a slightly
modified tail volume ratio is defined.

2.5.7 Fin moment arm and fin volume ratio

The mac of the fin is defined and located in the airframe in the same way as the mac
of the wing as indicated in Fig. 2.10. As for the tailplane, the fin moment arm lF is
defined as the longitudinal distance between the centre of gravity and the aerodynamic
centre of the fin as shown in Fig. 2.10. The fin volume ratio VF is also an important
geometric parameter and is defined:

V F = SF lF
Sb

(2.33)

where SF is the gross area of the fin and the wing span b is the lateral–directional refer-
ence length. Again, the fin volume ratio is a measure of the aerodynamic effectiveness
of the fin as a directional stabilising device.

As stated above it is sometimes convenient to measure the longitudinal moment of
the aerodynamic forces acting at the fin about the aerodynamic centre of the mac of
the wing. In this case the fin moment arm is denoted lf as shown in Fig. 2.10.
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2.6 CONTROLS NOTATION

2.6.1 Aerodynamic controls

Sometimes it appears that some confusion exists with respect to the correct notation
applying to aerodynamic controls, especially when unconventional control surfaces
are used. Hopkin (1970) defines a notation which is intended to be generally applicable
but, since a very large number of combinations of control motivators is possible the
notation relating to control inceptors may become ill defined and hence application
dependent. However, for the conventional aircraft there is a universally accepted
notation, which accords with Hopkin (1970), and it is simple to apply. Generally, a
positive control action by the pilot gives rise to a positive aircraft response, whereas a
positive control surface displacement gives rise to a negative aircraft response. Thus:

(i) In roll: positive right push force on the stick ⇒ positive stick displacement ⇒
right aileron up and left aileron down (negative mean) ⇒ right wing down roll
response (positive).

(ii) In pitch: positive pull force on the stick ⇒ positive aft stick displacement ⇒
elevator trailing edge up (negative) ⇒ nose up pitch response (positive).

(iii) In yaw: positive push force on the right rudder pedal ⇒ positive rudder bar
displacement ⇒ rudder trailing edge displaced to the right (negative) ⇒ nose
to the right yaw response (positive).

Roll and pitch control stick displacements are denoted δξ and δη respectively and
rudder pedal displacement is denoted δζ . Aileron, elevator and rudder surface dis-
placements are denoted ξ, η and ζ respectively as indicated in Fig. 2.11. It should be
noted that since ailerons act differentially the displacement ξ is usually taken as the
mean value of the separate displacements of each aileron.

2.6.2 Engine control

Engine thrust τ is controlled by throttle lever displacement ε. Positive throttle lever
displacement is usually in the forward push sense and results in a positive increase in
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thrust. For a turbojet engine the relationship between thrust and throttle lever angle
is approximated by a simple first order lag transfer function:

τ(s)

ε(s)
= kτ

(1 + sTτ)
(2.34)

where kτ is a suitable gain constant and Tτ is the lag time constant which is typically
of the order of 2–3 s.

2.7 AERODYNAMIC REFERENCE CENTRES

With reference to Fig. 2.12, the centre of pressure, cp, of an aerofoil, wing or complete
aircraft is the point at which the resultant aerodynamic force F acts. It is usual to
resolve the force into the lift component perpendicular to the velocity vector and
the drag component parallel to the velocity vector, denoted L and D respectively in
the usual way. The cp is located on the mac and thereby determines an important
aerodynamic reference centre.

Now simple theory establishes that the resultant aerodynamic force F generated
by an aerofoil comprises two components, that due to camber Fc and that due to
angle of attack Fα, both of which resolve into lift and drag forces as indicated. The
aerodynamic force due to camber is constant and acts at the midpoint of the aerofoil
chord and for a symmetric aerofoil section this force is zero. The aerodynamic force
due to angle of attack acts at the quarter chord point and varies directly with angle of
attack at angles below the stall. This also explains why the zero lift angle of attack of a
cambered aerofoil is usually a small negative value since, at this condition, the lift due
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to camber is equal and opposite to the lift due to angle of attack. Thus at low speeds,
when the angle of attack is generally large, most of the aerodynamic force is due to the
angle of attack dependent contribution and the cp is nearer to the quarter chord point.
On the other hand, at high speeds, when the angle of attack is generally small, a larger
contribution to the aerodynamic force is due to the camber dependent component and
the cp is nearer to the midpoint of the chord. Thus, in the limit the cp of an aerofoil
generally lies between the quarter chord and mid-chord points. More generally, the
interpretation for an aircraft recognises that the cp moves as a function of angle of
attack, Mach number and configuration. For example, at low angles of attack and
high Mach numbers the cp tends to move aft and vice versa. Consequently the cp
is of limited use as an aerodynamic reference point in stability and control studies.
It should be noted that the cp of the complete aircraft in trimmed equilibrium flight
corresponds with the controls fixed neutral point hnc which is discussed in Chapter 3.

If, instead of the cp, another fixed point on the mac is chosen as an aerodynamic
reference point then, at this point, the total aerodynamic force remains the same but
is accompanied by a pitching moment about the point. Clearly, the most convenient
reference point on the mac is the quarter chord point since the pitching moment is the
moment of the aerodynamic force due to camber and remains constant with variation
in angle of attack. This point is called the aerodynamic centre, denoted ac, and at
low Mach numbers lies at, or very close to, the quarter chord point, c/4. It is for this
reason that the ac, or equivalently, the quarter chord point of the reference chord is
preferred as a reference point. The corresponding equivalent aerofoil model is shown
in Fig. 2.12. Since the ac remains essentially fixed in position during small pertur-
bations about a given flight condition, and since the pitching moment is nominally
constant about the ac, it is used as a reference point in stability and control studies.
It is important to appreciate that as the flight condition Mach number is increased so
the ac moves aft and in supersonic flow conditions it is located at, or very near to, c/2.

The definition of aerodynamic centre given above applies most strictly to the loca-
tion of the ac on the chord of an aerofoil. However, it also applies reasonably well to
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its location on the mac of a wing and is also used extensively for locating the ac on
the mac of a wing–body combination without too much loss of validity. It should be
appreciated that the complex aerodynamics of a wing and body combination might
result in an ac location which is not at the quarter chord point although, typically, it
would not be too far removed from that point.
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PROBLEMS

1. A tailless aircraft of 9072 kg mass has a delta wing with aspect ratio 1 and area
37 m2. Show that the aerodynamic mean chord

c =
∫ b

2
0 c2 dy
∫ b

2
0 c dy

of a delta wing is two-thirds of its root chord and that for this wing it is 8.11 m.
(CU 1983)

2. With the aid of a diagram describe the axes systems used in aircraft stability and
control analysis. State the conditions when the use of each axis system might
be preferred. (CU 1982)

3. Show that in a longitudinal symmetric small perturbation the components of
aircraft weight resolved into the ox and oz axes are given by

Xg = −mgθ cos θe − mg sin θe

Zg = mg cos θe − mgθ sin θe

where θ is the perturbation in pitch attitude and θe is the equilibrium pitch
attitude. (CU 1982)

4. With the aid of a diagram showing a generalised set of aircraft body axes,
define the parameter notation used in the mathematical modelling of aircraft
motion. (CU 1982)

5. In the context of aircraft motion, what are the Euler angles? If the standard right
handed aircraft axis set is rotated through pitch θ and yaw ψ angles only, show
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that the initial vector quantity (x0, y0, z0) is related to the transformed vector
quantity (x, y, z) as follows:

⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

cos θ cos ψ cos θ sin ψ −sin θ

−sin ψ cos ψ 0
sin θ cos ψ sin θ sin ψ cos θ

⎤
⎦
⎡
⎣

x0

y0

z0

⎤
⎦

(CU 1982)
6. Define the span, gross area, aspect ratio and mean aerodynamic chord of an

aircraft wing. (CU 2001)
7. Distinguish between the centre of pressure and the aerodynamic centre of an

aerofoil. Explain why the pitching moment about the quarter chord point of an
aerofoil is nominally constant in subsonic flight. (CU 2001)



Ch03-H6927.tex 30/6/2007 12: 19 Page 32

Chapter 3

Static Equilibrium and Trim

3.1 TRIM EQUILIBRIUM

3.1.1 Preliminary considerations

In normal flight it is usual for the pilot to adjust the controls of an aircraft such that on
releasing the controls it continues to fly at the chosen flight condition. By this means
the pilot is relieved of the tedium of constantly maintaining the control inputs and the
associated control forces which may be tiring. The aircraft is then said to be trimmed,
and the trim state defines the initial condition about which the dynamics of interest may
be studied. Thus all aircraft are equipped with the means for pre-setting or adjusting the
datum or trim setting of the primary control surfaces. The ailerons, elevator and rudder
are all fitted with trim tabs which, in all except the smallest aircraft, may be adjusted
from the cockpit in flight. However, all aircraft are fitted with a continuously adjustable
elevator trim tab. It is an essential requirement that an aircraft must be stable if it is to
remain in equilibrium following trimming. In particular, the static stability character-
istics about all three axes largely determine the trimmability of an aircraft. Thus static
stability is concerned with the control actions required to establish equilibrium and
with the characteristics required to ensure that the aircraft remains in equilibrium.
Dynamic stability is also important of course, and largely determines the characteris-
tics of the transient motion, following a disturbance, about a trimmed flight condition.

The object of trimming is to bring the forces and moments acting on the aircraft
into a state of equilibrium. That is the condition when the axial, normal and side
forces, and the roll, pitch and yaw moments are all zero. The force balance is often
expressed approximately as the requirement for the lift to equal the weight and the
thrust to equal the drag. Provided that the aircraft is stable it will then stay in equi-
librium until it is disturbed by pilot control inputs or by external influences such as
turbulence. The transient motion following such a disturbance is characterised by
the dynamic stability characteristics and the stable aircraft will eventually settle into
its equilibrium state once more. The maintenance of trimmed equilibrium requires
the correct simultaneous adjustment of the main flight variables in all six degrees of
freedom and is dependent on airspeed or Mach number, flight path angle, airframe
configuration, weight and centre of gravity (cg) position. As these parameters change
during the course of a typical flight so trim adjustments are made as necessary. Fortu-
nately, the task of trimming an aircraft is not as challenging as it might at first seem.
The symmetry of a typical airframe confers symmetric aerodynamic properties on
the airframe that usually reduces the task to that of longitudinal trim only. Lateral–
directional trim adjustments are only likely to be required when the aerodynamic
symmetry is lost, due to loss of an engine in a multi-engined aircraft, for example.

32
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Lateral–directional stability is designed-in to most aircraft and ensures that in roll
the aircraft remains at wings level and that in yaw it tends to weathercock into the
wind when the ailerons and rudder are at their zero or datum positions. Thus, under
normal circumstances the aircraft will naturally seek lateral–directional equilibrium
without interference by the pilot. This applies even when significant changes are made
to airspeed, configuration, weight and cg position, for example, since the symmetry
of the airframe is retained throughout. However, such variations in flight condition
can lead to dramatic changes in longitudinal trim.

Longitudinal trim involves the simultaneous adjustment of elevator angle and thrust
to give the required airspeed and flight path angle for a given airframe configuration.
Equilibrium is achievable only if the aircraft is longitudinally stable and the control
actions to trim depend on the degree of longitudinal static stability. Since the lon-
gitudinal flight condition is continuously variable it is very important that trimmed
equilibrium is possible at all conditions. For this reason considerable emphasis is
given to ensuring adequate longitudinal static stability and trim control. Because of
their importance static stability and trim are often interpreted to mean longitudinal
static stability and trim.

The commonly used theory of longitudinal static stability was developed by Gates
and Lyon (1944), and derives from a full, static and dynamic, stability analysis of the
equations of motion of an aircraft. An excellent and accessible summary of the find-
ings of Gates and Lyon is given in Duncan (1959) and also in Babister (1961). In the
interests of understanding and physical interpretation the theory is often reduced
to a linearised form retaining only the principal aerodynamic and configuration
parameters. It is in this simplest form that the theory is reviewed here since it is
only required as the basis on which to build the small perturbation dynamics model.
It is important to appreciate that although the longitudinal static stability model is
described only in terms of the aerodynamic properties of the airframe, the control and
trim properties as seen by the pilot must conform to the same physical interpretation
even when they are augmented by a flight control system. It is also important to note
that static and dynamic stability are, in reality, inseparable. However, the separate
treatment of static stability is a useful means for introducing the concept of stability
insofar as it determines the control and trim characteristics of the aircraft.

3.1.2 Conditions for stability

The static stability of an aircraft is commonly interpreted to describe its tendency
to converge on the initial equilibrium condition following a small disturbance from
trim. Dynamic stability, on the other hand, describes the transient motion involved
in the process of recovering equilibrium following the disturbance. Fig. 3.1 includes
two illustrations showing the effects of static stability and static instability in an
otherwise dynamically stable aircraft. Following an initial disturbance displacement,
for example in pitch, at time t = 0 the subsequent response time history is shown and
is clearly dependent on the stability of the aircraft. It should be noted that the damping
of the dynamic oscillatory component of the responses shown was deliberately chosen
to be low in order to best illustrate the static and dynamic stability characteristics.

In establishing trim equilibrium the pilot adjusts the elevator angle and thrust to
obtain a lift force sufficient to support the weight and thrust sufficient to balance
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Figure 3.1 Stability.

the drag at the desired speed and flight path angle. Since the airframe is symmetric
the equilibrium side force is of course zero. Provided that the speed is above the
minimum drag speed then the force balance will remain stable with speed. Therefore,
the static stability of the aircraft reduces to a consideration of the effects of angular
disturbances about the three axes. Following such a disturbance the aerodynamic
forces and moments will no longer be in equilibrium, and in a statically stable aircraft
the resultant moments will cause the aircraft to converge on its initial condition. The
condition for an aircraft to be statically stable is therefore easily deduced.

Consider a positive pitch, or incidence, disturbance from equilibrium. This is in
the nose up sense and results in an increase in incidence α and hence in lift coefficient
CL. In a stable aircraft the resulting pitching moment must be restoring, that is, in
the negative or nose down sense. And of course the converse must be true following
a nose down disturbance. Thus the condition for longitudinal static stability may be
determined by plotting pitching moment M , or pitching moment coefficient Cm, for
variation in incidence α about the trim value αe as shown in Fig. 3.2. The nose up
disturbance increases α and takes the aircraft to the out-of-trim point p where the
pitching moment coefficient becomes negative and is therefore restoring. Clearly,
a nose down disturbance leads to the same conclusion. As indicated, the aircraft is
stable when the slope of this plot is negative. Thus, the condition for stable trim at
incidence αe may be expressed:

Cm = 0 (3.1)

and

dCm

dα
< 0 (3.2)

The above observation is only strictly valid when it is assumed that the aerody-
namic force and moment coefficients are functions of incidence only. This is usually
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Figure 3.2 Pitching moment variation with incidence for a stable aircraft.

an acceptable approximation for subsonic aircraft and, indeed, the plot of pitching
moment coefficient against incidence may well be very nearly linear as shown in
Fig. 3.2. However, this argument becomes increasingly inappropriate with increasing
Mach number. As compressibility effects become significant so the aerodynamic force
and moment coefficients become functions of both incidence and Mach number. When
this occurs equation (3.2) may not always guarantee that stable trim can be obtained.
The rather more complex analysis by Gates and Lyon (1944) takes speed effects into
account and defines a general requirement for longitudinal static stability as

dCm

dCL
< 0 (3.3)

For subsonic aircraft equations (3.2) and (3.3) are completely interchangeable since
α and CL are linearly, or very nearly linearly, related by the lift curve slope a.

In a similar way the conditions for lateral–directional static stability may be
deduced as

dCl

dφ
< 0 (3.4)

and

dCn

dβ
> 0 (3.5)

where Cl and Cn are rolling moment and yawing moment coefficients respectively
and φ and β are roll angle and sideslip angle respectively.

3.1.3 Degree of stability

It was shown above that the condition for an aircraft to possess static stability about
all three axes at a given trim condition is that the gradients of the Cm–α and Cl–φ

plots must be negative, whilst the gradient of the Cn–β plot must be positive. Now,
obviously, a very large range of values of the gradients is possible and the magnitude
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Figure 3.3 The degree of longitudinal static stability.

of the gradient determines the degree of stability possessed by the aircraft. Variation
in the degree of longitudinal static stability is illustrated in Fig. 3.3. The degree
of stability is described in terms of stability margin which quantifies how much
stability the aircraft has over and above zero or neutral stability. Thus, for example, the
longitudinal static stability margin is directly related to the gradient of the Cm–α plot.

With reference to Fig. 3.3 and for a given disturbance in α it is clear that the
corresponding restoring pitching moment Cm is greatest for a very stable aircraft. The
magnitude of the restoring moment decreases as the degree of stability, or stability
margin, is reduced and becomes zero at neutral stability. Clearly, when the aircraft is
unstable the moment is of the opposite sign and is therefore divergent. Thus the higher
the degree of stability the greater is the restoring moment following a disturbance. This
means that a very stable aircraft will be very resistant to upset. This in turn means that
greater control actions will be needed to encourage the aircraft to change its trim state
or to manoeuvre. It follows then, that the stability margins determine the magnitude
of the control actions required to trim the aircraft. It is easy to appreciate that a
consequence of this is that too much stability can be as hazardous as too little stability
since the available control power is limited.

As mentioned before, the lateral–directional static stability of the aircraft is usually
fixed by design and usually remains more or less constant throughout the flight envel-
ope. The lateral–directional stability margins therefore remain substantially constant
for all flight conditions. This situation may well break down when large amplitude
manoeuvring is considered. Under such circumstances normally linear aerodynamic
behaviour may well become very non-linear and cause dramatic changes to observed
lateral–directional stability and control characteristics. Although of considerable
interest to the flight dynamicist, non-linear behaviour is beyond the scope of this
book and constant lateral–directional static stability is assumed throughout.

3.1.4 Variation in stability

Changes in the aerodynamic operating conditions of an aircraft which result in pitch-
ing moment changes inevitably lead to variation in longitudinal static stability. Such
variation in stability is normally manifest as a non-linear version of the Cm–CL charac-
teristic shown in Fig. 3.2. For the subsonic classical aircraft such changes are usually
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small and may result in some non-linearity of the pitching moment characteristic
with change in trim. In general the variation in the degree of stability is acceptably
small. For the modern supersonic high performance aircraft the situation is not so
well defined. Large flight envelopes and significant variation in flight condition can
lead to dramatic changes in static stability. For example, it is possible for such an
aircraft to be stable at some conditions and unstable at others. It is easy to see how
such variations might arise in a physical sense, but it is much more difficult to describe
the variations in mathematical terms. A brief review of some of the more obvious
sources of variation in stability follows.

3.1.4.1 Power effects
Probably the most significant variation in longitudinal static stability arises from
the effects of power. Direct effects result from the point of application and line of
action of the thrust forces with respect to the cg. Clearly, as illustrated in Fig. 3.4,
a high thrust line results in a nose down pitching moment and vice versa. In normal
trimmed flight the thrust moment is additive to the aerodynamic moment and the total
pitching moment would be trimmed to zero by adjustment of the elevator. However,
any aerodynamic perturbation about trim which results in a thrust perturbation is
potentially capable of giving rise to a non-linear stability characteristic. The precise
nature of the variation in stability is dependent on the operating characteristics of the
installed power unit which may not be easy to identify.

Indirect power effects are caused by the induced flow associated with a propeller and
its wake or the intake and exhaust of a gas turbine engine. Some of the more obvious
induced flow effects are illustrated in Fig. 3.5. The process of turning the incident
flow through the body incidence angle into the propeller disc or into the engine intake
creates a normal force at the propeller or engine intake as shown. In general this
effect gives rise to a nose up pitching moment. The magnitude of the normal force
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is dependent on the body incidence angle and on the increase in flow energy at the
propeller disc or engine intake. The force will therefore vary considerably with trim
condition. The force is also sensitive to aerodynamic perturbations about trim; it is
therefore easy to appreciate its contribution to pitching moment non-linearity.

The wake behind a propeller is a region of high energy flow which modifies the
aerodynamic operating conditions over parts of the wing and tailplane. The greatest
effect on pitching moment arises from the tailplane. The effectiveness of the tailplane
is enhanced simply because of the increased flow velocity and the reduction in down-
wash angle. These two effects together increase the nose down pitching moment
available and hence increase the degree of stability of the aircraft. The induced flow
effects associated with the propeller-driven aircraft can have a significant influence
on its longitudinal static stability. These effects also change with aerodynamic con-
ditions especially at high angles of attack. It is therefore quite common to see some
non-linearity in the pitching moment trim plot for such an aircraft at high values
of lift coefficient. It should also be noted that the propeller wake rotates about the
longitudinal axis. Although less significant, the rotating flow has some influence on
the lateral–directional static stability of the aircraft.

The exhaust from a jet engine, being a region of very high velocity and reduced
pressure, creates an inflow field as indicated in Fig. 3.5. Clearly the influence on
pitching moment will depend on the relative location of the aerodynamic surfaces of
the aircraft and the engine exhausts. When the tailplane is immersed in this induced
flow field then there is a change in the downwash angle. Thus the effect is to increase
the static stability when the downwash angle is reduced and vice versa. In general this
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Figure 3.5 Typical induced flow effects on pitching moment.
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effect is not very significant, except perhaps for the aircraft with engines mounted in
pods on the rear fuselage and in which the tailplane is very close to the exhaust wake.

3.1.4.2 Other effects
Although power effects generally make the most significant contribution to variation
in longitudinal static stability other potentially important contributory sources also
exist. For example, wing sweep back and aircraft geometry which result in significant
variation in downwash at the tailplane generally tend to reduce the available stability,
an effect which is clearly dependent on the aerodynamic trim condition. The fuselage
alone is usually unstable and the condition worsens with increasing Mach number. On
the other hand, at high subsonic and supersonic Mach numbers the aerodynamic cen-
tres of the wing and tailplane move aft. This has the effect of increasing the available
nose down pitching moment which is a stabilising characteristic. And finally, since
all airframes have some degree of flexibility the structure distorts under the influence
of aerodynamic loads. Today aeroelastic distortion of the structure is carefully con-
trolled by design and is not usually significant in influencing static stability. However,
in the very large civil transport aircraft the relative geometric disposition of the wing
and tailplane changes with loading conditions; some contribution to the variation in
pitching moment is therefore inevitable but the contribution is usually small.

Taking all of these effects together, the prospect of ever being able to quantitatively
define the longitudinal static stability of an aircraft may seem daunting. Fortunately
these effects are well understood and can be minimised by design. The result for
most aircraft is a pitching moment trim characteristic with some non-linear tendency
at higher values of trim lift coefficient. In extreme cases the stability of the aircraft
can actually reverse at high values of lift coefficient to result in an unstable pitch
up characteristic. A typical pitching moment trim plot for an aircraft with a pitch
up characteristic is shown in Fig. 3.6.

Example 3.1

To illustrate the variation in the pitching moment characteristic for a typical subsonic
aircraft, the relevant data obtained from wind tunnel experiments on a 1/6th scale
model of the Handley Page HP-137 are shown plotted in Fig. 3.7. The data were
extracted from a report by Storey (1966). They were obtained at a tunnel speed of
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Figure 3.6 Stability reversal at high lift coefficient.
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Figure 3.7 Cm–α plots for a 1/6th scale model of the Handley Page Jetstream.

200 ft/s and the Reynolds number was Re = 1.2 × 106 based on mean aerodynamic
chord c. The HP-137 is in fact the well known Jetstream aircraft; however, it is not
known if the data shown are representative of the actual aircraft flying today.

The plots show the characteristic for the aircraft without tail and for the aircraft
with tail at various combinations of setting angle ηT and elevator angle η. Clearly, all
of the plots are reasonably linear at all values of lift coefficient up to the stall. Without
a tailplane the aircraft is unstable since the slope of the plot is positive. With tailplane
the slope, and hence the degree of stability, is more or less constant. Assuming that
the trim (Cm = 0) range of lift coefficient is approximately −0.2 ≤ CL ≤ 1.0 then, by
interpolation, it can be seen that this can be obtained with an elevator angle range
of approximately −0.6◦ ≤ η ≤ 0◦. Clearly this is well within the control capability of
the tailplane and elevator configuration shown in this example.

This kind of experimental analysis would be used to confirm the geometric design
of the tailplane and elevator. In particular, it is essential to establish that the aircraft
has an adequate stability margin across the trim envelope, that the elevator angle
required to trim the aircraft is within its aerodynamic capability and that a sufficient
margin of elevator control range remains for manoeuvring.

3.2 THE PITCHING MOMENT EQUATION

Having established the importance of pitching moment in the determination of lon-
gitudinal static stability, further analysis of stability requires the development of the
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Figure 3.8 Simple pitching moment model.

pitching moment equation. A fully representative general pitching moment equation
is difficult to develop since it is very dependent on the geometry of the aircraft.
However, it is possible to develop a simple approximation to the pitching moment
equation, which is sufficiently representative for most preliminary studies and which
provides considerable insight into the basic requirements for static stability and trim.

3.2.1 Simple development of the pitching moment equation

For the development of the simplest possible pitching moment equation it is usual
to define a model showing only the normal forces and pitching moments acting
on the aircraft. It is assumed that at steady level flight the thrust and drag are in
equilibrium and act at the cg and further, for small disturbances in incidence, changes
in this equilibrium are insignificant. This assumption therefore implies that small
disturbances in incidence cause significant changes in lift forces and pitching moments
only. The model defined in these terms is shown in Fig. 3.8.

For the purposes of modelling pitching behaviour the model comprises two parts,
the wing and fuselage combination and the tailplane. It is then assumed that the wing
and fuselage behave aerodynamically like a wing alone. Clearly, this is not true since
the fuselage may make significant aerodynamic contributions and, in any event, its
presence will interfere with the aerodynamic properties of the wing to a greater or
lesser extent. However, for conventional subsonic aircraft with a reasonably high
aspect ratio wing this is a very satisfactory approximation. The tailplane is treated
as a separate component since it provides the principal aerodynamic mechanism for
controlling longitudinal static stability and trim. The following analysis establishes the
fundamental importance of the tailplane parameters in the provision of longitudinal
static stability.

Referring to Fig. 3.8 it is seen that the wing–fuselage lift Lw and residual pitching
moment M0 act at the aerodynamic centre ac of the combination which is assumed to
be coincident with the aerodynamic centre of the wing alone. In a similar way the lift
LT and pitching moment MT of the tailplane are assumed to act at its aerodynamic
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centre. The longitudinal geometry of the model is entirely related to the mean aero-
dynamic chord mac as shown in Fig. 3.8. An expression for the total pitching moment
M about the cg may therefore be written:

M = M0 + Lw(h − h0)c − LT lT + MT (3.6)

If, as is usual, it is assumed that the tailplane aerofoil section is symmetric then MT

becomes zero. Thus, in the more convenient coefficient form equation (3.6) may be
written:

Cm = Cm0 + CLw (h − h0) − CLT V T (3.7)

To facilitate further analysis of pitching moment it is necessary to express the tailplane
lift coefficient CLT in terms of more accessible tailplane parameters. Tailplane lift
coefficient may be expressed:

CLT = a0 + a1αT + a2η + a3βη (3.8)

where a0, a1, a2 and a3 are constant aerodynamic coefficients, αT is the local inci-
dence, η is the elevator angle and βη is the elevator trim tab angle. Note that since
a symmetric tailplane aerofoil section is assumed a0 is also zero. The local tailplane
incidence is influenced by the tailplane setting angle ηT and the local flow distortion
due to the effect of the downwash field behind the wing. The flow geometry is shown
in Fig. 3.9.

Clearly the angle of attack of the tailplane is given by

αT = α − ε + ηT (3.9)

where ε is the downwash angle at the tailplane. Since, to a good approximation, for
small disturbances the downwash angle is a function of wing–body incidence α only:

α − ε = α

(
1 − dε

dα

)
= CLw

a

(
1 − dε

dα

)
(3.10)

whence

αT = CLw

a

(
1 − dε

dα

)
+ ηT (3.11)
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Figure 3.9 Wing–tailplane flow geometry.
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Now substituting the expression for αT given by equation (3.11) into equation (3.8),
substituting the resulting expression for CLT into equation (3.7) and noting that a0

is zero then, the pitching moment equation in its simplest and most general form is
obtained:

Cm = Cm0 +CLw (h−h0)−V T

(
CLw

a1

a

(
1 − dε

dα

)
+ a2η + a3βη + a1ηT

)
(3.12)

A simple computational algorithm for estimating the rate of change of downwash
with angle of attack dε/dα is given in Stribling (1984) and its use is illustrated in the
Mathcad trim program listed in Appendix 1.

3.2.2 Elevator angle to trim

It has already been shown, in equation (3.1), that the condition for trim is that the total
pitching moment can be adjusted to zero, that is, Cm = 0. Applying this condition to
equation (3.12) the elevator angle required to trim the aircraft is given by

η = 1

V T a2
(Cm0 +CLw (h−h0))− CLw

a

(
a1

a2

)(
1 − dε

dα

)
− a3

a2
βη − a1

a2
ηT (3.13)

When the elevator tab is set at its neutral position, βη = 0 and for a given cg position
h the elevator angle to trim varies only with lift coefficient. For any other tab setting
a different elevator angle is required to trim. Therefore, to an extent, elevator and
elevator tab provide interchangeable means for achieving longitudinal trim.

3.2.3 Test for longitudinal static stability

The basic requirement for an aircraft to be statically stable at a given trim condition
is stated in equation (3.2). By differentiating equation (3.12) with respect to CL, or
equivalently CLw , and noting that ηT and, by definition, Cm0 are constants then the
condition for the aircraft to be stable is given by

dCm

dCLw

< 0

where

dCm

dCLw

= (h − h0) − V T

(
a1

a

(
1 − dε

dα

)
+ a2

dη

dCLw

+ a3
dβη

dCLw

)
(3.14)

Thus at a given cg position h, the longitudinal static stability of the aircraft and the
aerodynamic control characteristics, that is, elevator angle to trim, dη/dCLw , and
elevator tab angle to trim, dβη/dCLw , are interdependent. Further analysis is usually
carried out by separating the effects of elevator angle and tab angle in equation (3.14).
Controls fixed stability is concerned with the interdependence of elevator angle to trim
and stability whereas, controls free stability is concerned with the interdependence
of elevator tab angle to trim and stability.
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3.3 LONGITUDINAL STATIC STABILITY

3.3.1 Controls fixed stability

The condition described as controls fixed is taken to mean the condition when the
elevator and elevator tab are held at constant settings corresponding to the prevailing
trim condition. In practice this means that the pilot is flying the aircraft with his hands
on the controls and is holding the controls at the fixed setting required to trim. This,
of course, assumes that the aircraft is stable and remains in trim.

Since the controls are fixed:

dη

dCLw

= dβη

dCLw

= 0 (3.15)

and equation (3.14) may be written:

dCm

dCLw

= (h − h0) − V T
a1

a

(
1 − dε

dα

)
(3.16)

Or, writing,

Kn = − dCm

dCLw

= hn − h (3.17)

where Kn is the controls fixed stability margin, the slope of the Cm–CL plot. The
location of the controls fixed neutral point hn on the mean aerodynamic chord c is
therefore given by

hn = h0 + V T
a1

a

(
1 − dε

dα

)
(3.18)

For a statically stable aircraft the stability margin Kn is positive, and the greater its
value the greater the degree of stability possessed by the aircraft. With reference
to equation (3.17) it is clear that the aircraft will be stable when the cg position h
is ahead of the controls fixed neutral point hn. The acceptable margins of stability
therefore determine the permitted range of cg position in a given aircraft. The aft limit
often corresponds with the controls fixed neutral point, whereas the forward limit is
determined by the maximum permissible stability margin. Remember, Section 3.1.3,
that too much stability can be as hazardous as too little stability.

The meaning of controls fixed stability is easily interpreted by considering the pilot
actions required to trim an aircraft in a controls fixed sense. It is assumed at the outset
that the aircraft is in fact stable and hence can be trimmed to an equilibrium flight
condition. When the aircraft is in a trimmed initial equilibrium state the pitching
moment is zero and equation (3.12) may be written:

0 = Cm0 +CLw (h − h0)−V T

(
CLw

a1

a

(
1 − dε

dα

)
+ a2η + a3βη + a1ηT

)
(3.19)
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It is assumed that the pilot is holding the controls at the required elevator angle, the
power is set to give steady level flight and the elevator tab is set at its datum, βη = 0.
Now, to retrim the aircraft at a new flight condition in a controls fixed sense it is
necessary for the pilot to move the controls to the new elevator setting and then to
hold the controls at that setting. For example, to retrim at a higher speed in a more
nose down attitude, the pilot would move the control column forward until his new
condition was established and would then simply hold the column at that position.
This would of course leave the aircraft in a descending condition unless the power
were increased sufficient to maintain level flight at the higher speed. However, power
variations are not allowed for in the simple model reviewed here.

Thus to trim a stable aircraft at any condition in its speed envelope simply requires
the selection of the correct elevator angle, all other parameters remaining constant.
Therefore, the variable in controls fixed stability analysis is elevator angle to trim. Dif-
ferentiating equation (3.19) with respect to CLw and making the same assumptions as
before but allowing elevator angle η to vary with trim, then after some rearrangement
it may be shown that

dη

dCLw

= −1

V T a2
(hn − h) = −1

V T a2
Kn (3.20)

Thus, since V T and a2 are constants, the elevator angle to trim characteristic dη/dCLw

is proportional to the controls fixed stability margin Kn. Measurements of elevator
angle to trim for a range of flight conditions, subject to the assumptions described,
provide a practical means for determining controls fixed stability characteristics from
flight experiments. However, in such experiments it is not generally possible to
completely eliminate the effects of power on the results.

Example 3.2

The practical evaluation of controls fixed static stability centres on the application of
equations (3.13), (3.19) and (3.20) to a stable aircraft. It is relatively straightforward
to obtain measurements of the elevator angle η required to trim an aircraft at a chosen
value of lift coefficient CL. Provided that the power and elevator trim tab angle βη are
maintained at a constant setting throughout the measurement process then the above
mentioned equations apply directly. A flight test exercise conducted in a Handley
Page Jetstream by the author, under these conditions, provided the trim data plotted
in Fig. 3.10 for three different cg positions. At any given value of lift coefficient
CL the corresponding value of elevator angle to trim η is given by the solution of
equation (3.13), or alternatively equation (3.19). The plots are clearly non-linear and
the non-linearity in this aircraft is almost entirely due to the effects of power.

Since the gradients of the plots shown in Fig. 3.10 are all negative the aircraft
is statically stable in accordance with equation (3.20). However, for any given cg
position the gradient varies with lift coefficient indicating a small variation in stability
margin. In a detailed analysis the stability margin would be evaluated at each value of
trimmed lift coefficient to quantify the variation in stability. In the present example the
quality of the data was not good enough to allow such a complete analysis. To establish
the location of the controls fixed neutral point hn equation (3.20) must be solved at each
value of trim lift coefficient. This is most easily done graphically as shown in Fig. 3.11.
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Figure 3.10 Plot of elevator angle to trim.
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Equation (3.20) is solved by plotting dη/dCL against cg position h as shown. In this
example, the mean gradient for each cg position is plotted rather than the value at each
trim point. Since equation (3.20) represents a linear plot a straight line may be fitted
to the three data points as shown. Extrapolation to the neutral stability point at which
dη/dCL = 0 corresponds with a cg position of approximately h = 0.37. Clearly, three
data points through which to draw a line is barely adequate for this kind of evaluation.
A controls fixed neutral point hn at 37% of mac correlates well with the known proper-
ties of the aircraft. The most aft cg position permitted is in fact at 37% of mac. Having
established the location of the controls fixed neutral point the controls fixed stability
margin Kn for each cg position follows from the application of equation (3.20).

In a more searching stability evaluation rather more data points would be
required and data of much better quality would be essential. Although limited, the
present example does illustrate the typical controls fixed longitudinal static stability
characteristics of a well behaved classical aircraft.

3.3.2 Controls free stability

The condition described as controls free is taken to mean the condition when the
elevator is free to float at an angle corresponding to the prevailing trim condition. In
practice this means that the pilot can fly the aircraft with his hands off the controls
whilst the aircraft remains in its trimmed flight condition. Again, it is assumed that
the aircraft is stable, otherwise it will diverge when the controls are released. Now this
situation can only be obtained if the controls can be adjusted such that the elevator will
float at the correct angle for the desired hands-off trim condition. This is arranged by
adjusting the elevator trim tab until the required trim is obtained. Thus controls free
stability is concerned with the trim tab and its control characteristics.

When the controls are free, the elevator hinge moment H is zero and the eleva-
tor floats at an indeterminate angle η. It is therefore necessary to eliminate elevator
angle from the pitching moment equation (3.12) in order to facilitate the analysis of
controls free stability. Elevator hinge moment coefficient is given by the expression

CH = b1αT + b2η + b3βη (3.21)

where b1, b2 and b3 are constants determined by the design of the elevator and trim
tab control circuitry. Substituting for local tailplane incidence αT as given by equation
(3.11), then equation (3.21) may be rearranged to determine the angle at which the
elevator floats. Thus,

η = 1

b2
CH − CLw

a

b1

b2

(
1 − dε

dα

)
− b3

b2
βη − b1

b2
ηT (3.22)

To eliminate elevator angle from the pitching moment equation, substitute equation
(3.22) into equation (3.12) to obtain

Cm = Cm0 + CLw (h − h0) − V T

⎛
⎜⎜⎝

CLw

a1

a

(
1 − dε

dα

)(
1 − a2b1

a1b2

)
+ a3βη

(
1 − a2b3

a3b2

)

+ a1ηT

(
1 − a2b1

a1b2

)
+ a2

b2
CH

⎞
⎟⎟⎠

(3.23)
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Now in the controls free condition CH = 0 and noting that ηT , Cm0 and, since the
tab is set at the trim value, βη are constants then, differentiating equation (3.23) with
respect to CLw :

dCm

dCLw

= (h − h0) − V T
a1

a

(
1 − dε

dα

)(
1 − a2b1

a1b2

)
(3.24)

Or, writing,

K ′
n = − dCm

dCLw

= h′
n − h (3.25)

where K ′
n is the controls free stability margin, the slope of the Cm–CL plot with

the controls free. The location of the controls free neutral point h′
n on the mean

aerodynamic chord c is given by

h′
n = h0 + V T

a1

a

(
1 − dε

dα

)(
1 − a2b1

a1b2

)

(3.26)= hn − V T
a2b1

ab2

(
1 − dε

dα

)

Thus, as before, for a statically stable aircraft the controls free stability margin K ′
n is

positive and the greater its value the greater the degree of stability possessed by the
aircraft. With reference to equation (3.25) it is clear that for controls free stability
the cg position h must be ahead of the controls free neutral point h′

n. Equation (3.26)
shows the relationship between the controls fixed and the controls free neutral points.
The numerical values of the elevator and tab constants are such that usually h′

n > hn,
which means that it is common for the controls free neutral point to lie aft of the
controls fixed neutral point. Thus an aircraft that is stable controls fixed will also
usually be stable controls free and it follows that the controls free stability margin K ′

n
will be greater than the controls fixed stability margin Kn.

The meaning of controls free stability is readily interpreted by considering the pilot
actions required to trim the aircraft in a controls free sense. It is assumed that the
aircraft is stable and is initially in a hands-off trim condition. In this condition the
pitching moment is zero and hence equation (3.23) may be written:

0 = Cm0 + CLw (h − h0) − V T

⎛
⎜⎜⎜⎝

CLw

a1

a

(
1 − dε

dα

)(
1 − a2b1

a1b2

)

+ a3βη

(
1 − a2b3

a3b2

)
+ a1ηT

(
1 − a2b1

a1b2

)

⎞
⎟⎟⎟⎠

(3.27)

Now, to retrim the aircraft, it is necessary for the pilot to grasp the control column
and move it to the position corresponding with the elevator angle required for the new
trim condition. However, if he now releases the control it will simply move back to
its original trim position since an out-of-trim elevator hinge moment, and hence stick



Ch03-H6927.tex 30/6/2007 12: 19 Page 49

Static Equilibrium and Trim 49

force, will exist at the new position. To rectify the problem he must use the trim tab.
Having moved the control to the position corresponding with the new trim condition
he will be holding a force on the control. By adjusting the trim tab he can null the
force and following which, he can release the control and it will stay in the new
hands-off position as required. Thus trim tab adjustment is equivalent to control force
adjustment, which in turn is directly related to elevator hinge moment adjustment in
a mechanical flying control system. To reiterate the previous illustration, consider the
situation when the pilot wishes to retrim the aircraft at a higher speed in a more nose
down attitude. As before, he will push the control column forward until he obtains
the desired condition which leaves him holding an out-of-trim force and descending.
Elevator tab adjustment will enable him to reduce the control force to zero whereupon
he can release the control to enjoy his new hands-off trim condition. Since he will be
descending it would normally be necessary to increase power in order to regain level
flight. However, as already stated thrust variations are not allowed for in this model;
if they were, the analysis would be considerably more complex.

Thus to trim a stable aircraft at any hands-off flight condition in its speed envelope
simply requires the correct selection of elevator tab angle. The variable in controls free
stability analysis is therefore elevator tab angle to trim. Differentiating equation (3.27)
with respect to CLw and making the same assumptions as previously but allowing
elevator tab angle βη to vary with trim, then after some rearrangement it may be
shown that

dβη

dCLw

= −(h′
n − h)

a3V T

(
1 − a2b3

a3b2

) = −K ′
n

a3V T

(
1 − a2b3

a3b2

) (3.28)

Since it is usual for

−a3V T

(
1 − a2b3

a3b2

)
> 0 (3.29)

then the elevator tab angle to trim characteristic dβη/dCLw is positive and is propor-
tional to the controls free stability margin K ′

n. Measurement of the tab angle to trim a
range of flight conditions, subject to the assumptions described, provides a practical
means for determining controls free stability characteristics from flight experiments.
However, since tab angle, elevator hinge moment and control force are all equivalent,
it is often more meaningful to investigate control force to trim directly since this is
the parameter of direct concern to the pilot.

To determine the equivalence between elevator tab angle to trim and control force to
trim, consider the aircraft in a stable hands-off trim state with the tab set at its correct
trim value. If the pilot moves the controls in this condition the elevator hinge moment,
and hence control force, will vary. Equation (3.23) is applicable and may be written:

0 = Cm0 + CLw (h − h0) − V T

⎛
⎜⎜⎝

CLw

a1

a

(
1 − dε

dα

)(
1 − a2b1

a1b2

)
+ a3βη

(
1 − a2b3

a3b2

)

+ a1ηT

(
1 − a2b1

a1b2

)
+ a2

b2
CH

⎞
⎟⎟⎠

(3.30)
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where βη is set at to its datum trim position and is assumed constant and hinge moment
coefficient CH is allowed to vary with trim condition. Differentiate equation (3.30)
with respect to CLw subject to these constraints and rearrange to obtain

dCH

dCLw

= −1

V T
a2

b2

(h′
n − h) = −1

V T
a2

b2

K ′
n (3.31)

Comparison of equation (3.31) with equation (3.28) demonstrates the equivalence of
tab angle to trim and hinge moment to trim. Further, if the elevator control force is
denoted Fη and gη denotes the mechanical gearing between the control column and
elevator then,

Fη = gηH = 1

2
ρV 2SηcηgηCH (3.32)

where Sη is the elevator area aft of the hinge line and cη is the mean aerodynamic
chord of the elevator aft of the hinge line. This therefore demonstrates the relation-
ship between control force and hinge moment although equation (3.32) shows the
relationship also depends on the square of the speed.

Example 3.3

The practical evaluation of controls free static stability is undertaken in much the
same way as the evaluation of controls fixed stability discussed in Example 3.2. In
this case the evaluation of controls free static stability centres on the application of
equations (3.30)–(3.32) to a stable aircraft. It is relatively straightforward to obtain
measurements of the elevator stick force Fη, and hence hinge moment coefficient CH ,
required to trim an aircraft at a chosen value of lift coefficient CL. Provided that the
power and elevator trim tab angleβη are maintained at a constant setting throughout the
measurement process then the above mentioned equations apply directly. As before, a
flight test exercise conducted in a Handley Page Jetstream under these conditions
provided the trim data plotted in Fig. 3.12 for three different cg positions. At any
given value of lift coefficient CL the corresponding value of elevator hinge moment
to trim CH is given by the solution of equation (3.30). Again, the plots are non-linear
due primarily to the effects of power. However, since force measurements are involved
the influence of friction in the mechanical control runs is significant and inconsistent.
The result of this is data with rather too many spurious points. In order to provide
a meaningful example the obviously spurious data points have been “adjusted’’ to
correlate with the known characteristics of the aircraft.

Since the gradients of the plots shown in Fig. 3.12 are all positive the aircraft is
statically stable in accordance with equation (3.31). However, for any given cg posi-
tion the gradient varies with lift coefficient indicating rather inconsistent variations
in stability margin. However, in this case, the variations are more likely to be the
result of poor quality data rather than orderly changes in the aerodynamic properties
of the aircraft. Again, in a detailed analysis the stability margin would be evaluated
at each value of trimmed lift coefficient in order to quantify the variation in stability.
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Figure 3.12 Plot of hinge moment coefficient to trim.

In the present example the quality of the data was clearly not good enough to allow
such a complete analysis. To establish the location of the controls free neutral point
h′

n equation (3.31) must be solved at each value of trim lift coefficient. This is most
easily done graphically as shown in Fig. 3.13.

Equation (3.31) is solved by plotting dCH /dCL against cg position h as shown. In
this example, the mean gradient for each cg position is plotted rather than the value
at each trim point. Since equation (3.31) represents a linear plot a straight line may
be fitted to the three data points as shown. Extrapolation to the neutral stability point
at which dCH /dCL = 0 corresponds with a cg position of approximately h = 0.44.
A controls free neutral point h′

n at 44% of mac correlates reasonably well with the
known properties of the aircraft. Having established the location of the controls free
neutral point the controls free stability margin K ′

n for each cg position follows from
the application of equation (3.25).

3.3.3 Summary of longitudinal static stability

A physical interpretation of the meaning of longitudinal static stability may be brought
together in the summary shown in Fig. 3.14.

The important parameters are neutral point positions and their relationship to the cg
position which, in turn, determines the stability margins of the aircraft. The stability
margins determine literally how much stability the aircraft has in hand, in the controls
fixed and free senses, over and above neutral stability. The margins therefore indicate



Ch03-H6927.tex 30/6/2007 12: 19 Page 52

52 Flight Dynamics Principles

Centre of gravity position h

0.0 0.1 0.2 0.3 0.4 0.5

dC
H

/d
C

L

0.000

0.001

0.002

0.003

0.004

0.005

Figure 3.13 Determination of controls free neutral point.
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Figure 3.14 Longitudinal stability margins.

how safe the aircraft is. However, equally importantly, the stability margins provide a
measure of the control actions required to trim the aircraft. In particular, the controls
fixed stability margin is a measure of the control displacement required to trim and the
controls free stability margin is a measure of the control force required to trim. From a
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flying and handling qualities point of view it is the interpretation of stability in terms
of control characteristics which is by far the most important consideration. In practice,
the assessment of longitudinal static stability is frequently concerned only with the
measurement of control characteristics as illustrated by Examples 3.2 and 3.3.
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Figure 3.15 Dihedral effect.

3.4 LATERAL STATIC STABILITY

Lateral static stability is concerned with the ability of the aircraft to maintain wings
level equilibrium in the roll sense. Wing dihedral is the most visible parameter which
confers lateral static stability on an aircraft although there are many other contri-
butions, some of which are destabilising. Since all aircraft are required to fly with
their wings level in the steady trim state lateral static stability is designed in from the
outset. Dihedral is the easiest parameter to adjust in the design process in order to
“tune’’ the degree of stability to an acceptable level. Remember that too much lateral
static stability will result in an aircraft that is reluctant to manoeuvre laterally, so it is
important to obtain the correct degree of stability.

The effect of dihedral as a means for providing lateral static stability is easily
appreciated by considering the situation depicted in Fig. 3.15. Following a small
lateral disturbance in roll φ the aircraft will commence to slide “downhill’’ sideways
with a sideslip velocity v. Consider the resulting change in the aerodynamic conditions
on the leading wing which has dihedral angle Γ. Since the wing has dihedral the
sideslip velocity has a small component v′ resolved perpendicular to the plane of the
wing panel where

v′ = v sin Γ (3.33)

The velocity component v′ combines with the axial velocity component Ue to increase
the angle of attack of the leading wing by α′. Since v′ << Ue the change in angle of
attack α′ is small and the total disturbed axial velocity component U ∼= Ue. The
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Figure 3.16 Cl–φ plot for a stable aircraft.

increase in angle of attack on the leading wing gives rise to an increase in lift which
in turn gives rise to a restoring rolling moment −L. The corresponding aerodynamic
change on the wing trailing into the sideslip results in a small decrease in lift which
also produces a restoring rolling moment. The net effect therefore is to create a
negative rolling moment which causes the aircraft to recover its zero sideslip wings
level equilibrium. Thus, the condition for an aircraft to be laterally stable is that the
rolling moment resulting from a positive disturbance in roll attitude must be negative,
or in mathematical terms:

dCl

dφ
< 0 (3.34)

where Cl is the rolling moment coefficient. This is shown graphically in Fig. 3.16 and
may be interpreted in a similar way to the pitching moment plot shown in Fig. 3.2.

The sequence of events following a sideslip disturbance are shown for a laterally
stable, neutrally stable and unstable aircraft on Fig. 3.17. However, it must be remem-
bered that once disturbed the subsequent motion will be determined by the lateral
dynamic stability characteristics as well.

3.5 DIRECTIONAL STATIC STABILITY

Directional static stability is concerned with the ability of the aircraft to yaw or
weathercock into wind in order to maintain directional equilibrium. Since all aircraft
are required to fly with zero sideslip in the yaw sense, positive directional stability
is designed in from the outset. The fin is the most visible contributor to directional
static stability although, as in the case of lateral stability, there are many other con-
tributions, some of which are destabilising. Again, it is useful to remember that too
much directional static stability will result in an aircraft that is reluctant to manoeuvre
directionally, so it is important to obtain the correct degree of stability.
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Figure 3.17 The effect of dihedral on lateral stability.

Consider an aircraft that is subject to a positive sideslip disturbance as shown in
Fig. 3.18. The combination of sideslip velocity v and axial velocity component U
results in a positive sideslip angle β. Note that a positive sideslip angle equates to a
negative yaw angle since the nose of the aircraft has swung to the left of the resultant
total velocity vector V . Now, as shown in Fig. 3.18, in the disturbance the fin is
at a non-zero angle of attack equivalent to the sideslip angle β. The fin therefore
generates lift LF which acts in the sense shown thereby creating a positive yawing
moment N . The yawing moment is stabilising since it causes the aircraft to yaw to
the right until the sideslip angle is reduced to zero. Thus, the condition for an aircraft
to be directionally stable is readily established and is

dCn

dψ
< 0 or, equivalently,

dCn

dβ
> 0 (3.35)

where Cn is the yawing moment coefficient.
A typical plot of yawing moment against sideslip angle for a directionally stable

aircraft is shown in Fig. 3.19. The plots show the results of a wind tunnel test on a
simple conventional aircraft model. For small disturbances in yaw the plot is reason-
ably linear since it is dominated by the lifting properties of the fin. However, as the
fin approaches the stall its lifting properties deteriorate and other influences begin
to dominate resulting ultimately in loss of directional stability. The main destabilis-
ing contribution comes from the fuselage which at small yaw angles is masked by
the powerful fin effect. The addition of a dorsal fin significantly delays the onset of
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fin stall thereby enabling directional static stability to be maintained at higher yaw
disturbance angles as indicated in Fig. 3.19.

Fin effectiveness also deteriorates with increasing body incidence angle since the
base of the fin becomes increasingly immersed in the fuselage wake thereby reducing
the effective working area of the fin. This problem has become particularly evident
in a number of modern combat aircraft. Typically, such aircraft have two engines
mounted side by side in the rear fuselage. This results in a broad flat fuselage ahead
of the fin which creates a substantial wake to dramatically reduce fin effectiveness at
moderate to high angles of incidence. For this reason many aircraft of this type have
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Figure 3.18 Directional weathercock effect.
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Figure 3.19 Plot of yawing moment against sideslip for a stable aircraft.
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noticeably large fins and in some cases the aircraft have two fins attached to the outer
edges of the upper fuselage.

3.6 CALCULATION OF AIRCRAFT TRIM CONDITION

As described in Section 3.1, the condition for an aircraft to remain in steady trimmed
flight requires that the forces and moments acting on the aircraft sum to zero and that
it is stable. Thus, in order to calculate the trim condition of an aircraft it is convenient
to assume straight or symmetric flight and to apply the principles described earlier
in Chapter 3. For a given aircraft mass, cg position, altitude and airspeed, symmetric
trim is described by the aerodynamic operating condition, namely angle of attack,
thrust, pitch attitude, elevator angle and flight path angle. Other operating condition
parameters can then be derived as required.

The forces and moments acting on an aeroplane in the general case of steady
symmetric climbing flight are shown in Fig. 3.20 where the symbols have their usual
meanings. Since the aircraft is symmetric, the lateral–directional forces and moments
are assumed to remain in equilibrium throughout, and the problem reduces to the
establishment of longitudinal equilibrium only. Thus, the reference axes are aircraft
body axes which define the plane of symmetry oxz, with the origin o located at the
aircraft cg as shown.

3.6.1 Defining the trim condition

The total axial force X is given by resolving the total lift L, total drag D, weight mg
and thrust τe into the ox axis and these components must sum to zero in trim. Whence

X = L sin αe + τe cos κ − D cos αe − mg sin (αe + γe) = 0 (3.36)

where αe is the equilibrium body incidence, γe is the steady flight path angle and κ is
the inclination of the thrust line to the ox body axis (positive nose up). Similarly, the
total normal force Z is given by resolving the forces into the oz axis and these also
must sum to zero in trim. Whence

Z = mg cos (αe + γe) − L cos αe − D sin αe − τe sin κ = 0 (3.37)
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Figure 3.20 Symmetric forces and moments acting on a trimmed aircraft.
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The development of the aerodynamic pitching moment about the cg is described in
Section 3.2 and is given by equation (3.6). However, since the total pitching moment
is required, equation (3.6) must be modified to include the thrust, and any other
significant, moment contributions. As before, the total drag moment is assumed
insignificant since the normal displacement between the cg and aerodynamic centre
is typically small for most aircraft configurations. Also, the tailplane zero lift pitching
moment MT is assumed small since the aerofoil section is usually symmetrical and
the tailplane drag moment is very small since the tailplane setting would be designed
to trim at small local incidence angle. Thus, the total pitching moment about the cg is
given by the sum of the wing–body, tailplane and thrust moments, and these moments
must sum to zero in trim. Whence

M = M0 + Lw(h − h0)c − LT lT + τezτ = 0 (3.38)

where Lw is the wing–body lift and LT is the tailplane lift. The other symbols are
evident from Fig. 3.20. It is convenient to write equations (3.36)–(3.38) in coefficient
form

mg
1
2ρV 2

0 S
sin (αe + γe) = Cτ cos κ + CL sin αe − CD cos αe (3.39)

mg
1
2ρV 2

0 S
cos (αe + γe) = CL cos αe + CD sin αe + Cτ sin κ (3.40)

0 = Cm0 + (h − h0)CLw − V T CLT + zτ

c
Cτ = 0 (3.41)

where the thrust coefficient is given by

Cτ = τe
1
2ρV 2

0 S
(3.42)

the total lift coefficient is given by

CL = CLw + ST

S
CLT (3.43)

and the total drag coefficient is given by

CD = CD0 + 1

πAe
C2

L ≡ CD0 + KC2
L (3.44)

The wing–body lift coefficient, which is assumed to comprise wing aerodynamic
properties only, is given by

CLw = a(αw − αw0 ) ≡ a(αe + αwr − αw0 ) (3.45)

where αwr is the wing rigging angle as shown in Fig. 3.21 and αw0 is the zero lift
angle of attack of the wing.
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Figure 3.22 Practical aircraft longitudinal geometry.

Simultaneous solution of equations (3.39)–(3.45) for a given flight condition deter-
mines the values of the aerodynamic coefficients and the body incidence defining the
aircraft trim state.

3.6.2 Elevator angle to trim

Once the trim condition is determined, the important elevator angle to trim can be
derived along with other useful trim variables. However, the basic aerodynamic rela-
tionships described earlier represent the simplest possible definitions in the interests
of functional visibility. For a practical aircraft application it is necessary to take
additional contributions into account when assembling the defining equations. For
example, the wing–tail aerodynamic relationship will be modified by the constraints
of a practical layout as illustrated in Fig. 3.21. The illustration is of course a modified
version of that shown in Fig. 3.9 to include the wing rigging angle αwr and a zero lift
downwash term ε0.

The aircraft fixed reference for the angle definitions is the horizontal fuselage datum
(HFD) which is usually a convenient base line or centre line for the aircraft geometric
layout. It is convenient to define the aircraft ox body axis parallel to the HFD, with
its origin located at the cg, and this is shown in Fig. 3.22.

With reference to Fig. 3.21 it is seen that wing angle of attack is given by

αw = αe + αwr (3.46)
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and tailplane angle of attack is given by

αT = ηT + αe − ε − ε0 = ηT + αw − αwr − ε − ε0 (3.47)

With reference to equation (3.10):

αw − ε = αw

(
1 − dε

dα

)
(3.48)

and equation (3.47) may be written:

αT = ηT + αw

(
1 − dε

dα

)
− αwr − ε0 (3.49)

It is assumed that the elevator trim tab angle is zero and that aircraft trim is deter-
mined by the elevator angle to trim ηe. As before, it is assumed that a0 = 0 since
the tailplane aerofoil section is typically symmetrical. The tailplane lift coefficient
given by equation (3.8) may therefore be re-stated with the appropriate substitution
of equation (3.49):

CLT = a1αT + a2ηe = a1

(
ηT + αw

(
1 − dε

dα

)
− αwr − ε0

)
+ a2ηe (3.50)

Thus, the elevator angle to trim follows by rearrangement of equation (3.50):

ηe = CLT

a2
− a1

a2

(
ηT + αw

(
1 − dε

dα

)
− αwr − ε0

)
(3.51)

Note that equation (3.51) is equivalent to equation (3.13).

3.6.3 Controls fixed static stability

The location of the controls fixed neutral point on the mean aerodynamic chord and the
controls fixed static margin are very important parameters in any aircraft trim assess-
ment, since they both influence the aerodynamic, thrust and control requirements for
achieving trim. In practice, the achievement of a satisfactory range of elevator angles
to trim over the flight envelope is determined by the static margin, and this in turn
places constraints on the permitted range of cg positions. The neutral point usually
determines the most aft cg limit in a stable aircraft. Fortunately, the simple expres-
sions given by equations (3.17) and (3.18) are sufficient for most practical assessment
and they are repeated here for convenience. The neutral point location hn is given by

hn = h0 + V T
a1

a

(
1 − dε

dα

)
(3.52)

and the static margin Kn is given by

Kn = hn − h (3.53)

Estimation of the wing–body aerodynamic centre location h0 on the mean aerody-
namic chord requires careful consideration. For a subsonic wing, typically h0 = 0.25
and for the purpose of illustrating the simple theory in Section 3.3 this value is often
assumed, incorrectly, to apply to a wing–body combination. However, the presence of
the fuselage usually causes a forward shift of the combined wing–body aerodynamic
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centre to a value more like h0 = 0.1, or less. Clearly, this has an impact on the require-
ments for trim and it is important to obtain the best estimate of its location. This can
be done by wind tunnel tests on a wing–body combination, or more conveniently by
reference to empirical data sources. Estimation of h0 is described in ESDU 92024,
Volume 4b in the ESDU Aerodynamics Series (2006).

Estimation of the rate of change of downwash angle at the tail with wing angle of
attack is another parameter that requires careful estimation for the same reasons. Typ-
ical values are in the region of dε/dα ≈ 0.5, but the geometric location of the tailplane
with respect to the wing strongly influences the actual value. Again, a value can be
estimated by wind tunnel test of a suitable model. Alternatively, dε/dα can be esti-
mated with the aid of ESDU 80020, Volume 9a in the ESDU Aerodynamics Series
(2006). A simple computer program for estimating dε/dα may be found in Stribling
(1984), and the use of the program is illustrated in the next section.

3.6.4 “AeroTrim”: a Mathcad trim program

A computer program called “AeroTrim’’ has been written by the author in the Math-
cad language to implement the trim calculations described above, and a listing is
given in Appendix 1. Since Mathcad permits the development of programs in the
format of a mathematical document, the listing is easy to read and is self-explanatory.
Because of its computational visibility Mathcad is an ideal tool for programs of this
type, although it could be written in a number of alternative languages. AeroTrim
is a simple generic trim calculator and is limited to subsonic flight at altitudes up
to 36,000 ft. However, it is very easy for the user to modify the program to suit
particular requirements and it should be regarded as a foundation for such further
development. Indeed, the author has produced versions of the program to deal with
transonic flight conditions, aircraft performance and versions substantially extended
to include aerodynamic derivative estimation.

As listed in Appendix 1, the program includes numerical data for the Cranfield
University Jetstream 31 flying laboratory aircraft. To use the program for other air-
craft applications it is necessary only to delete and replace the numerical data where
prompted to do so. Although based on simple mathematical models, the program
produces plausible estimates for the known trim characteristics of the Jetstream, but
the small differences from observed practice are thought to be due mainly to propeller
effects which are notoriously difficult to model adequately.

With the program loaded into Mathcad, operation is as simple as clicking on the
calculate button. Thus the impact on trim of changing one or more of the numerical
input values can be evaluated instantaneously. Points to note include:

Section 1 The user inputs flight condition data for which a trim evaluation is
required.

Section 2 Calculates atmospheric temperature, air density and density ratio for
the chosen altitude based on the ISA model. Currently limited to the
troposphere, but easily modified to include the stratosphere.

Section 3 The user defines the velocity range over which the trim conditions are
required, but bearing in mind that the computations are only valid for
subsonic flight conditions. The counter sets the number of velocity steps
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through the range, currently set at 10. The range expression sets the
starting velocity, currently set at 100 kt, and the increment, currently set
at 15 kt.

Section 4 The user inserts values for the aircraft geometry constants taking care
to observe the body axis system used. All of this information would be
readily available in a dimensioned three-view drawing of the aircraft.

Section 5 The user inputs values for the principal wing–body aerodynamic parame-
ters for the aircraft. Unknowns obviously have to be estimated by whatever
means are available.

Section 6 Repeats Section 5 for the tailplane aerodynamic parameters.
Section 7 Calculates some basic wing–body–tail parameters.
Section 8 Estimates dε/dα for the given aircraft geometry using a simple algorithm

described by Stribling (1984). Since the model does not include fuselage
interference effects or thrust effects it may underestimate the parameter
by a small amount. However, results obtained with the algorithm would
seem to be plausible and appropriate.

Section 9 Estimates the induced drag factor K in the drag polar CD = CD0 + KC2
L

using an empirical method described in Shevell (1989), which is based
on industrial flight test experience. The very limited data for the fuselage
drag factor sd and the empirical constant kD were plotted and curves were
fitted to give expressions suitable for inclusion in the computation. Results
obtained for the Jetstream compare very favourably with the known drag
properties of the aircraft.

Section 10 Calculates some useful standard performance and stability parameters.
Section 11 Contains the trim calculation, which solves equations (3.39)–(3.45)

simultaneously for each velocity step defined in Section 3.
Section 12 Calculates the dependent trim variables, including elevator angle, for the

velocity steps defined in Section 3 and using the results of Section 11.
Sections 13 and 14 Contain self-explanatory auxiliary computations.
Section 15 Results. Gives a summary of the flight condition parameters for the chosen

application.
Section 16 Results. Gives a tabulated summary of the trim values of all the variables

at each velocity step in the range chosen.
Section 17 Results. Shows some plotted variables to illustrate the kind of output

Mathcad can provide. It is very easy to edit this section to include plots
of any variables from the table in Section 16.

Example 3.4

To illustrate the use of AeroTrim it is applied to the Cranfield University Jetstream 31
flying laboratory aircraft. Since a comprehensive flight simulation model of the air-
craft has been assembled and matched to observed flight behaviour the numerical data
are believed to be reasonably representative of the actual aircraft. The sources of data
used include manufacturer’s published technical information, flight manual, limited
original wind tunnel test data and data obtained from flight experiments. Aerodynamic
data not provided by any of these sources were estimated using the ESDUAerodynam-
ics Series (2006) and refined by reference to observed flight behaviour. The numerical
data are not listed here since they are illustrated in the Mathcad listing in Appendix 1.
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The chosen operating condition is typical for the aircraft and the speed range was
chosen to vary from the stall, at around 100 kt, to 250 kt in 15 kt increments. Good
quality data for the remaining input parameters were available, with the possible
exception of the values for wing–body aerodynamic centre position h0, and the rate
of change of downwash at the tail with wing angle of attack dε/dα. Both parameters
were estimated for the aircraft, although the actual value for dε/dα is thought to be
larger than the value estimated by the programme. Using the value dε/dα= 0.279 as
calculated, the value of h0 = − 0.08 was estimated since it returned values for the
neutral point position hn and static margin Kn close to their known values. It is likely
that this places the aerodynamic centre too far forward in the aircraft. However, with
a value of dε/dα nearer to its probable value, dε/dα∼= 0.4, a more aft aerodynamic
centre position would return the known stability properties. This illustrates one of
the difficulties of getting reliable aerodynamic data together for an aircraft, and for
unconventional configurations the difficulties are generally greater.

Running the programme returns trim data for the chosen operating flight condition,
of which a reduced selection is shown.

Flight condition

Units Value

Aircraft weight kN 61.8
Altitude ft 6562
Flight path angle deg 0
cg position 0.29
Neutral point 0.412
Static margin 0.122
Minimum drag speed kt 150
Stall speed kt 116

Example trim data

Vtrue αe ηe L D τe

(knots) CL CD Cτ L/D (deg) (deg) (kN) (kN) (kN)

100 1.799 0.174 0.181 9.409 15.105 −1.208 60.23 5.834 6.042
115 1.374 0.114 0.116 11.017 10.885 −0.460 60.83 5.053 5.146
130 1.081 0.082 0.083 12.106 7.970 0.100 61.15 4.643 4.688
145 0.872 0.064 0.064 12.603 5.885 0.521 61.34 4.494 4.518
160 0.717 0.053 0.053 12.573 4.346 0.842 61.46 4.535 4.548
175 0.600 0.046 0.046 12.154 3.181 1.091 61.54 4.722 4.729
190 0.510 0.042 0.042 11.496 2.277 1.287 61.60 5.025 5.029
205 0.438 0.039 0.039 10.720 1.564 1.444 61.65 5.424 5.426
220 0.381 0.036 0.036 9.912 0.990 1.572 61.70 5.907 5.908
235 0.334 0.035 0.035 9.123 0.523 1.677 61.74 6.465 6.465
250 0.295 0.034 0.034 8.383 0.136 1.764 61.79 7.089 7.089
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For the purpose of trim analysis the data can be graphed as required and some
examples are given in the Mathcad program listing. It follows that the effect of any
aerodynamic variable on aircraft design performance can be evaluated quickly using
the program. Indeed, this approach was used to identify plausible values for some of
the more uncertain values in the model definition.
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PROBLEMS

1. Explain why the pitching moment coefficient Cmac about the aerodynamic centre
of an aerofoil is constant. What is the special condition for Cmac to be zero?

The NACA 64-412 is a cambered aerofoil with lift coefficient given by

CL = 0.11α + 0.3

when α is in degree units. What is the value of the constant pitching moment
coefficient about the aerodynamic centre? Estimate the position of the centre of
pressure for the aerofoil at an angle of attack of 5◦. State all assumptions made
in answering this question. (CU 1998)

2. What are the conditions for the stable longitudinal trim equilibrium of an air-
craft? The pitching moment coefficient about the cg for a stable aircraft is
given by

Cm = Cm0 + CLw (h − h0) − V T

(
CLw

a1

a

(
1 − dε

dα

)
+ a2η

)

where the symbols have the usual meaning. Derive expressions for the controls
fixed static margin Kn and the elevator angle to trim as a function of static margin.
Explain the physical meaning of the controls fixed neutral point. (CU 1998)
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3. State the conditions required for an aeroplane to remain in longitudinal trimmed
equilibrium in steady level flight. The pitching moment equation, referred to
the centre of gravity (cg), for a canard configured combat aircraft is given by

Cm = Cm0 + (h − h0)CLwb + V f

(
a1f

awb
CLwb + a1f δ

)

where the symbols have the usual meaning and, additionally, V f is the foreplane
volume ratio, a1f is the foreplane lift curve slope and δ is the control angle of
the all moving foreplane. Derive expressions for the controls fixed static margin
and for the controls fixed neutral point. State any assumptions made.

Given that the mean aerodynamic chord (mac) is 4.7 m, the wing–body aero-
dynamic centre is located at 15% of mac, the foreplane volume ratio is 0.12
and the lift curve slope of the wing–body and foreplane are 3.5 and 4.9 1/rad
respectively, calculate the aft cg limit for the aircraft to remain stable with con-
trols fixed. Calculate also the cg location for the aircraft to have a controls fixed
static margin of 15%. (CU 1999)

4. Sketch a typical Cm–α plot and explain the condition for trim, the requirement
for static stability and the concept of stability margin. Why is too much stability
as hazardous as too little stability? (CU 2001)
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Chapter 4

The Equations of Motion

4.1 THE EQUATIONS OF MOTION OF A RIGID SYMMETRIC AIRCRAFT

As stated in Chapter 1, the first formal derivation of the equations of motion for a rigid
symmetric aircraft is usually attributed to Bryan (1911). His treatment, with very few
changes, remains in use today and provides the basis for the following development.
The object is to realise Newton’s second law of motion for each of the six degrees of
freedom which simply states that,

mass × acceleration = disturbing force (4.1)

For the rotary degrees of freedom the mass and acceleration become moment of
inertia and angular acceleration respectively whilst the disturbing force becomes the
disturbing moment or torque. Thus the derivation of the equations of motion requires
that equation (4.1) be expressed in terms of the motion variables defined in Chapter 2.
The derivation is classical in the sense that the equations of motion are differential
equations which are derived from first principles. However, a number of equally
valid alternative means for deriving the equations of motion are frequently used, for
example, vector methods. The classical approach is retained here since, in the author’s
opinion, maximum physical visibility is maintained throughout.

4.1.1 The components of inertial acceleration

The first task in realising equation (4.1) is to define the inertial acceleration compo-
nents resulting from the application of disturbing force components to the aircraft.
Consider the motion referred to an orthogonal axis set (oxyz) with the origin o coin-
cident with the cg of the arbitrary and, in the first instance, not necessarily rigid body
shown in Fig. 4.1. The body, and hence the axes, are assumed to be in motion with
respect to an external reference frame such as earth (or inertial) axes. The components
of velocity and force along the axes ox, oy and oz are denoted (U, V, W ) and (X, Y, Z)
respectively. The components of angular velocity and moment about the same axes are
denoted (p, q, r) and (L, M, N ) respectively. The point p is an arbitrarily chosen point
within the body with coordinates (x, y, z). The local components of velocity and accel-
eration at p relative to the body axes are denoted (u, v, w) and (ax, ay, az) respectively.

The velocity components at p(x, y, z) relative to o are given by

u = ẋ − ry + qz

v = ẏ − pz + rx (4.2)

w = ż − qx + py

66
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Figure 4.1 Motion referred to generalised body axes.
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Figure 4.2 Velocity terms due to rotary motion.

It will be seen that the velocity components each comprise a linear term and two
additional terms due to rotary motion. The origin of the terms due to rotary motion
in the component u, for example, is illustrated in Fig. 4.2. Both −ry and qz represent
tangential velocity components acting along a line through p(x, y, z) parallel to the
ox axis. The rotary terms in the remaining two components of velocity are determined
in a similar way. Now, since the generalised body shown in Fig. 4.1 represents the
aircraft which is assumed to be rigid then

ẋ = ẏ = ż = 0 (4.3)

and equations (4.2) reduce to

u = qz − ry

v = rx − pz (4.4)

w = py − qx
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Figure 4.3 Acceleration terms due to rotary motion

The corresponding components of acceleration at p(x, y, z) relative to o are given by

ax = u̇ − rv + qw

ay = v̇ − pw + ru (4.5)

az = ẇ − qu + pv

Again, it will be seen that the acceleration components each comprise a linear term
and two additional terms due to rotary motion. The origin of the terms due to rotary
motion in the component ax, for example, is illustrated in Fig. 4.3. Both −rv and qw
represent tangential acceleration components acting along a line through p(x, y, z)
parallel to the ox axis. The accelerations arise from the mutual interaction of the linear
components of velocity with the components of angular velocity. The acceleration
terms due to rotary motion in the remaining two components of acceleration are
determined in a similar way.

By superimposing the velocity components of the cg (U, V, W ) on to the local
velocity components (u, v, w) the absolute, or inertial, velocity components (u′, v′, w′)
of the point p(x, y, z) are obtained. Thus

u′ = U + u = U − ry + qz

v′ = V + v = V − pz + rx (4.6)

w′ = W + w = W − qx + py

where the expressions for (u, v, w) are substituted from equations (4.4). Similarly, the
components of inertial acceleration (a′

x, a′
y, a′

z) at the point p(x, y, z) are obtained
simply by substituting the expressions for (u′, v′, w′), equations (4.6), in place of
(u, v, w) in equations (4.5). Whence

a′
x = u̇′ − rv′ + qw′

a′
y = v̇′ − pw′ + ru′ (4.7)

a′
z = ẇ′ − qu′ + pv′
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Differentiate equations (4.6) with respect to time and note that since a rigid body is
assumed equation (4.3) applies then

u̇′ = U̇ − ṙy + q̇z

v̇′ = V̇ − ṗz + ṙx (4.8)

ẇ′ = Ẇ − q̇x + ṗy

Thus, by substituting from equations (4.6) and (4.8) into equations (4.7) the inertial
acceleration components of the point p(x, y, z) in the rigid body are obtained which,
after some rearrangement, may be written,

a′
x = U̇ − rV + qW − x(q2 + r2) + y(pq − ṙ) + z(pr + q̇)

a′
y = V̇ − pW + rU + x(pq + ṙ) − y(p2 + r2) + z(qr − ṗ) (4.9)

a′
z = Ẇ − qU + pV + x(pr − q̇) + y(qr + ṗ) − z(p2 + q2)

Example 4.1

To illustrate the usefulness of equations (4.9) consider the following simple example.
A pilot in an aerobatic aircraft performs a loop in 20 s at a steady velocity of

100 m/s. His seat is located 5 m ahead of, and 1 m above the cg. What total normal
load factor does he experience at the top and at the bottom of the loop?

Assuming the motion is in the plane of symmetry only, then V = ṗ = p = r = 0 and
since the pilot’s seat is also in the plane of symmetry y = 0 and the expression for
normal acceleration is, from equations (4.9):

a′
z = Ẇ − qU + xq̇ − zq2

Since the manoeuvre is steady, the further simplification can be made Ẇ = q̇ = 0 and
the expression for the normal acceleration at the pilots seat reduces to

a′
z = −qU − zq2

Now,

q = 2π

20
= 0.314 rad/s

U = 100 m/s

x = 5 m

z = −1 m (above cg hence negative)

whence a′
z = −31.30 m/s2. Now, by definition, the corresponding incremental normal

load factor due to the manoeuvre is given by

n′ = −a′
z

g
= 31.30

9.81
= 3.19
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The total normal load factor n comprises that due to the manoeuvre n′ plus that due to
gravity ng. At the top of the loop ng = −1, thus the total normal load factor is a given by

n = n′ + ng = 3.19 − 1 = 2.19

and at the bottom of the loop ng = 1 and in this case the total normal load factor is
given by

n = n′ + ng = 3.19 + 1 = 4.19

It is interesting to note that the normal acceleration measured by an accelerome-
ter mounted at the pilots seat corresponds with the total normal load factor. The
accelerometer would therefore give the following readings:

at the top of the loop az = ng = 2.19 × 9.81 = 21.48 m/s2

at the bottom of the loop az = ng = 4.19 × 9.81 = 41.10 m/s2

Equations (4.9) can therefore be used to determine the accelerations that would be
measured by suitably aligned accelerometers located at any point in the airframe and
defined by the coordinates (x, y, z).

4.1.2 The generalised force equations

Consider now an incremental mass δm at point p(x, y, z) in the rigid body. Applying
Newton’s second law, equation (4.1), to the incremental mass the incremental compo-
nents of force acting on the mass are given by (δma′

x, δma′
y, δma′

z). Thus the total force
components (X , Y , Z) acting on the body are given by summing the force increments
over the whole body, whence,

∑
δma′

x = X
∑

δma′
y = Y (4.10)

∑
δma′

z = Z

Substitute the expressions for the components of inertial acceleration (a′
x, a′

y, a′
z) from

equations (4.9) into equations (4.10) and note that since the origin of axes coincides
with the cg:

∑
δmx =

∑
δmy =

∑
δmz = 0 (4.11)

Therefore the resultant components of total force acting on the rigid body are
given by

m(U̇ − rV + qW ) = X

m(V̇ − pW + rU ) = Y (4.12)

m(Ẇ − qU + pV ) = Z

where m is the total mass of the body.
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Equations (4.12) represent the force equations of a generalised rigid body and
describe the motion of its cg since the origin of the axis system is co-located with the
cg in the body. In some applications, for example the airship, it is often convenient
to locate the origin of the axis system at some point other than the cg. In such cases
the condition described by equation (4.11) does not apply and equations (4.12) would
include rather more terms.

4.1.3 The generalised moment equations

Consider now the moments produced by the forces acting on the incremental mass
δm at point p(x, y, z) in the rigid body. The incremental force components create an
incremental moment component about each of the three body axes and by summing
these over the whole body the moment equations are obtained. The moment equations
are, of course, the realisation of the rotational form of Newton’s second law of motion.

For example, the total moment L about the ox axis is given by summing the
incremental moments over the whole body:

∑
δm(ya′

z − za′
y) = L (4.13)

Substituting in equation (4.13) for a′
y and for a′

z obtained from equations (4.9) and
noting that equation (4.11) applies then, after some rearrangement, equation (4.13)
may be written:

(
ṗ
∑

δm(y2 + z2) + qr
∑

δm(y2 − z2)

+ (r2 − q2)
∑

δmyz − (pq + ṙ)
∑

δmxz + (pr − q̇)
∑

δmxy

)
= L (4.14)

Terms under the summation sign
∑

in equation (4.14) have the units of moment
of inertia thus, it is convenient to define the moments and products of inertia as set
out in Table 4.1.

Equation (4.14) may therefore be rewritten:

Ixṗ − (Iy − Iz)qr + Ixy(pr − q̇) − Ixz(pq + ṙ) + Iyz(r2 − q2) = L (4.15)

In a similar way the total moments M and N about the oy and oz axes respectively
are given by summing the incremental moment components over the whole body:

∑
δm(za′

x − xa′
z) = M

∑
δm(xa′

y − ya′
x) = N (4.16)

Table 4.1 Moments and Products of Inertia

Ix = �δm(y2 + z2) Moment of inertia about ox axis
Iy = �δm(x2 + z2) Moment of inertia about oy axis
Iz = �δm(x2 + y2) Moment of inertia about oz axis
Ixy = �δmxy Product of inertia about ox and oy axes
Ixz = �δmxz Product of inertia about ox and oz axes
Iyz = �δmyz Product of inertia about oy and oz axes
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Substituting a′
x, a′

y and a′
z , obtained from equations (4.9), in equations (4.16), noting

again that equation (4.11) applies and making use of the inertia definitions given in
Table 4.1 then, the moment M about the oy axis is given by

Iyq̇ + (Ix − Iz)pr + Iyz(pq − ṙ) + Ixz(p2 − r2) − Ixy(qr + ṗ) = M (4.17)

and the moment N about the oz axis is given by

Iz ṙ − (Ix − Iy)pq − Iyz(pr + q̇) + Ixz(qr − ṗ) + Ixy(q2 − p2) = N (4.18)

Equations (4.15), (4.17) and (4.18) represent the moment equations of a generalised
rigid body and describe the rotational motion about the orthogonal axes through its
cg since the origin of the axis system is co-located with the cg in the body.

When the generalised body represents an aircraft the moment equations may be
simplified since it is assumed that the aircraft is symmetric about the oxz plane and
that the mass is uniformly distributed. As a result the products of inertia Ixy = Iyz = 0.
Thus the moment equations simplify to the following:

Ixṗ − (Iy − Iz)qr − Ixz(pq + ṙ) = L

Iyq̇ + (Ix − Iz)pr + Ixz(p2 − r2) = M

Izṙ − (Ix − Iy)pq + Ixz(qr − ṗ) = N

(4.19)

The equations (4.19), describe rolling motion, pitching motion and yawing motion
respectively. A further simplification can be made if it is assumed that the aircraft
body axes are aligned to be principal inertia axes. In this special case the remaining
product of inertia Ixz is also zero. This simplification is not often used owing to the
difficulty of precisely determining the principal inertia axes. However, the symmetry
of the aircraft determines that Ixz is generally very much smaller than Ix, Iy and Iz

and can often be neglected.

4.1.4 Disturbance forces and moments

Together, equations (4.12) and (4.19) comprise the generalised six degrees of freedom
equations of motion of a rigid symmetric airframe having a uniform mass distribution.
Further development of the equations of motion requires that the terms on the right
hand side of the equations adequately describe the disturbing forces and moments.
The traditional approach, after Bryan (1911), is to assume that the disturbing forces
and moments are due to aerodynamic effects, gravitational effects, movement of
aerodynamic controls, power effects and the effects of atmospheric disturbances.
Thus bringing together equations (4.12) and (4.19) they may be written to include
these contributions as follows:

m(U̇ − rV + qW ) = Xa + Xg + Xc + Xp + Xd

m(V̇ − pW + rU ) = Ya + Yg + Yc + Yp + Yd (4.20)

m(Ẇ − qU + pV ) = Za + Zg + Zc + Zp + Zd
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Ixṗ − (Iy − Iz)qr − Ixz(pq + ṙ) = La + Lg + Lc + Lp + Ld

Iyq̇ + (Ix − Iz)pr + Ixz(p2 − r2) = Ma + Mg + Mc + Mp + Md

Izṙ − (Ix − Iy)pq + Ixz(qr − ṗ) = Na + Ng + Nc + Np + Nd

Now the equations (4.20) describe the generalised motion of the aeroplane without
regard for the magnitude of the motion and subject to the assumptions applying.
The equations are non-linear and their solution by analytical means is not generally
practicable. Further, the terms on the right hand side of the equations must be replaced
with suitable expressions which are particularly difficult to determine for the most
general motion. Typically, the continued development of the non-linear equations of
motion and their solution is most easily accomplished using computer modelling, or
simulation techniques which are beyond the scope of this book.

In order to proceed with the development of the equations of motion for analytical
purposes, they must be linearised. Linearisation is very simply accomplished by con-
straining the motion of the aeroplane to small perturbations about the trim condition.

4.2 THE LINEARISED EQUATIONS OF MOTION

Initially the aeroplane is assumed to be flying in steady trimmed rectilinear flight
with zero roll, sideslip and yaw angles. Thus, the plane of symmetry of the aeroplane
oxz is vertical with respect to the earth reference frame. At this flight condition the
velocity of the aeroplane is V0, the components of linear velocity are (Ue,Ve,We) and
the angular velocity components are all zero. Since there is no sideslip Ve = 0. A
stable undisturbed atmosphere is also assumed such that

Xd = Yd = Zd = Ld = Md = Nd = 0 (4.21)

If now the aeroplane experiences a small perturbation about trim, the components of
the linear disturbance velocities are (u, v, w) and the components of the angular dis-
turbance velocities are (p, q, r) with respect to the undisturbed aeroplane axes (oxyz).
Thus the total velocity components of the cg in the disturbed motion are given by

U = Ue + u

V = Ve + v = v (4.22)

W = We + w

Now, by definition (u, v, w) and (p, q, r) are small quantities such that terms involv-
ing products and squares of these terms are insignificantly small and may be ignored.
Thus, substituting equations (4.21) and (4.22) into equations (4.20), note that (Ue, Ve,
We) are steady and hence constant, and eliminating the insignificantly small terms,
the linearised equations of motion are obtained:

m(u̇ + qWe) = Xa + Xg + Xc + Xp

m(v̇ − pWe + rUe) = Ya + Yg + Yc + Yp

m(ẇ − qUe) = Za + Zg + Zc + Zp (4.23)
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Ixṗ − Ixz ṙ = La + Lg + Lc + Lp

Iyq̇ = Ma + Mg + Mc + Mp

Izṙ − Ixzṗ = Na + Ng + Nc + Np

The development of expressions to replace the terms on the right hand sides of
equations (4.23) is now much simpler since it is only necessary to consider small
disturbances about trim.

4.2.1 Gravitational terms

The weight force mg acting on the aeroplane may be resolved into components acting
in each of the three aeroplane axes. When the aeroplane is disturbed these components
will vary according to the perturbations in attitude thereby making a contribution to the
disturbed motion. Thus the gravitational contribution to equations (4.23) is obtained
by resolving the aeroplane weight into the disturbed body axes. Since the origin of
the aeroplane body axes is coincident with the cg there is no weight moment about
any of the axes, therefore

Lg = Mg = Ng = 0 (4.24)

Since the aeroplane is flying wings level in the initial symmetric flight condition, the
components of weight only appear in the plane of symmetry as shown in Fig. 4.4.
Thus in the steady state the components of weight resolved into aeroplane axes are

⎡
⎣

Xge

Yge

Zge

⎤
⎦ =

⎡
⎣

−mg sin θe

0
mg cos θe

⎤
⎦ (4.25)

During the disturbance the aeroplane attitude perturbation is (φ, θ, ψ) and the
components of weight in the disturbed aeroplane axes may be derived with the aid of

mg

o

z
We

qe

ae

ge

V0
x

Ue

Horizon

Xge

Zge

Figure 4.4 Steady state weight components in the plane of symmetry.
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the transformation equation (2.11). As, by definition, the angular perturbations are
small, small angle approximations may be used in the direction cosine matrix to give
the following relationship:

⎡
⎣

Xg

Yg

Zg

⎤
⎦=

⎡
⎣

1 ψ −θ

−ψ 1 φ

θ −φ 1

⎤
⎦
⎡
⎣

Xge

Yge

Zge

⎤
⎦=

⎡
⎣

1 ψ −θ

−ψ 1 φ

θ −φ 1

⎤
⎦
⎡
⎣

−mg sin θe

0
mg cos θe

⎤
⎦ (4.26)

And, again, the products of small quantities have been neglected on the grounds that
they are insignificantly small. Thus, the gravitational force components in the small
perturbation equations of motion are given by

Xg = −mg sin θe − mgθ cos θe

Yg = mgψ sin θe + mgφ cos θe (4.27)

Zg = mg cos θe − mgθ sin θe

4.2.2 Aerodynamic terms

Whenever the aeroplane is disturbed from its equilibrium the aerodynamic balance
is obviously upset. To describe explicitly the aerodynamic changes occurring during
a disturbance provides a considerable challenge in view of the subtle interactions
present in the motion. However, although limited in scope, the method first described
by Bryan (1911) works extremely well for classical aeroplanes when the motion
of interest is limited to (relatively) small perturbations. Although the approach is
unchanged the rather more modern notation of Hopkin (1970) is adopted.

The usual procedure is to assume that the aerodynamic force and moment terms in
equations (4.20) are dependent on the disturbed motion variables and their derivatives
only. Mathematically this is conveniently expressed as a function comprising the sum
of a number ofTaylor series, each series involving one motion variable or derivative of
a motion variable. Since the motion variables are (u, v, w) and (p, q, r) the aerodynamic
term Xa in the axial force equation, for example, may be expressed:

Xa = Xae +
(

∂X

∂u
u + ∂2X

∂u2

u2

2! + ∂3X

∂u3

u3

3! + ∂4X

∂u4

u4

4! + · · ·
)

+
(

∂X

∂v
v + ∂2X

∂v2

v2

2! + ∂3X

∂v3

v3

3! + ∂4X

∂v4

v4

4! + · · ·
)

+
(

∂X

∂w
w + ∂2X

∂w2

w2

2! + ∂3X

∂w3

w3

3! + ∂4X

∂w4

w4

4! + · · ·
)

+
(

∂X

∂p
p + ∂2X

∂p2

p2

2! + ∂3X

∂p3

p3

3! + ∂4X

∂p4

p4

4! + · · ·
)

+
(

∂X

∂q
q + ∂2X

∂q2

q2

2! + ∂3X

∂q3

q3

3! + ∂4X

∂q4

q4

4! + · · ·
)

+
(

∂X

∂r
r + ∂2X

∂r2

r2

2! + ∂3X

∂r3

r3

3! + ∂4X

∂r4

r4

4! + · · ·
)



Ch04-H6927.tex 20/6/2007 16: 33 Page 76

76 Flight Dynamics Principles

+
(

∂X

∂u̇
u̇ + ∂2X

∂u̇2

u̇2

2! + ∂3X

∂u̇3

u̇3

3! + · · ·
)

+
(

∂X

∂v̇
v̇ + ∂2X

∂v̇2

v̇2

2! + ∂3X

∂v̇3

v̇3

3! + · · ·
)

+ series terms in ẇ, ṗ, q̇ and ṙ

+ series terms in higher order derivatives (4.28)

where Xae is a constant term. Since the motion variables are small, for all practical
aeroplanes only the first term in each of the series functions is significant. Further,
the only significant higher order derivative terms commonly encountered are those
involving ẇ. Thus equation (4.28) is dramatically simplified to

Xa = Xae + ∂X

∂u
u + ∂X

∂v
v + ∂X

∂w
w + ∂X

∂p
p + ∂X

∂q
q + ∂X

∂r
r + ∂X

∂ẇ
ẇ (4.29)

Using an alternative shorthand notation for the derivatives, equation (4.29) may be
written:

Xa = Xae + ◦
Xuu + ◦

Xvv + ◦
Xww + ◦

Xpp + ◦
Xqq + ◦

Xrr + ◦
Xẇẇ (4.30)

The coefficients
◦

Xu,
◦

Xv,
◦

Xw etc. are called aerodynamic stability derivatives and the
dressing (◦) denotes the derivatives to be dimensional. Since equation (4.30) has
the units of force, the units of each of the aerodynamic stability derivatives are self-
evident. In a similar way the force and moment terms in the remaining equations (4.20)
are determined. For example, the aerodynamic term in the rolling moment equation
is given by

La = Lae + ◦
Luu + ◦

Lvv + ◦
Lww + ◦

Lpp + ◦
Lqq + ◦

Lrr + ◦
Lẇẇ (4.31)

4.2.3 Aerodynamic control terms

The primary aerodynamic controls are the elevator, ailerons and rudder. Since the
forces and moments created by control deflections arise from the changes in aerody-
namic conditions, it is usual to quantify their effect in terms of aerodynamic control
derivatives. The assumptions applied to the aerodynamic terms are also applied to the
control terms thus, for example, the pitching moment due to aerodynamic controls
may be expressed:

Mc = ∂M

∂ξ
ξ + ∂M

∂η
η + ∂M

∂ζ
ζ (4.32)

where aileron angle, elevator angle and rudder angle are denoted ξ, η and ζ respec-
tively. Since equation (4.32) describes the effect of the aerodynamic controls with
respect to the prevailing trim condition it is important to realise that the control angles,
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ξ, η and ζ are measured relative to the trim settings ξe, ηe and ζe respectively. Again,
the shorthand notation may be used and equation (4.32) may be written:

Mc = ◦
Mξξ + ◦

Mηη + ◦
Mζζ (4.33)

The aerodynamic control terms in the remaining equations of motion are assembled
in a similar way. If it is required to study the response of an aeroplane to other
aerodynamic controls, for example, flaps, spoilers, leading edge devices, etc. then
additional terms may be appended to equation (4.33) and the remaining equations of
motion as required.

4.2.4 Power terms

Power, and hence thrust τ, is usually controlled by throttle lever angle ε and the
relationship between the two variables is given for a simple turbojet by equation
(2.34) in Chapter 2. Movement of the throttle lever causes a thrust change which
in turn gives rise to a change in the components of force and moment acting on the
aeroplane. It is mathematically convenient to describe these effects in terms of engine
thrust derivatives. For example, normal force due to thrust may be expressed in the
usual shorthand notation:

Zp = ◦
Zττ (4.34)

The contributions to the remaining equations of motion are expressed in a similar
way. As for the aerodynamic controls, power changes are measured with respect to
the prevailing trim setting. Therefore τ quantifies the thrust perturbation relative to
the trim setting τe.

4.2.5 The equations of motion for small perturbations

To complete the development of the linearised equations of motion it only remains
to substitute the appropriate expressions for the aerodynamic, gravitational, aero-
dynamic control and thrust terms into equations (4.23). The aerodynamic terms are
exemplified by expressions like equations (4.30) and (4.31), expressions for the grav-
itational terms are given in equations (4.27), the aerodynamic control terms are
exemplified by expressions like equation (4.33) and the thrust terms are exempli-
fied by expressions like equation (4.34). Bringing all of these together the following
equations are obtained:

m(u̇ + qWe) = Xae + ◦
Xuu + ◦

Xvv + ◦
Xww + ◦

Xpp + ◦
Xqq + ◦

Xrr + ◦
Xẇẇ

− mg sin θe − mgθ cos θe + ◦
Xξξ + ◦

Xηη + ◦
Xζζ + ◦

Xττ

m(v̇ − pWe + rUe) = Yae + ◦
Yuu + ◦

Yvv + ◦
Yww + ◦

Ypp + ◦
Yqq + ◦

Yrr + ◦
Yẇẇ

+ mgψ sin θe + mgφ cos θe + ◦
Yξξ + ◦

Yηη + ◦
Yζζ + ◦

Yττ
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m(ẇ − qUe) = Zae + ◦
Zuu + ◦

Zvv + ◦
Zww + ◦

Zpp + ◦
Zqq + ◦

Zrr + ◦
Zẇẇ

+ mg cos θe − mgθ sin θe + ◦
Zξξ + ◦

Zηη + ◦
Zζζ + ◦

Zττ

Ixṗ − Ixz ṙ = Lae + ◦
Luu + ◦

Lvv + ◦
Lww + ◦

Lpp + ◦
Lqq + ◦

Lrr

+ ◦
Lẇẇ + ◦

Lξξ + ◦
Lηη + ◦

Lζζ + ◦
Lττ

Iyq̇ = Mae + ◦
Muu + ◦

Mvv + ◦
Mww + ◦

Mpp + ◦
Mqq + ◦

Mrr

+ ◦
Mẇẇ + ◦

Mξξ + ◦
Mηη + ◦

Mζζ + ◦
Mττ

Iz ṙ − Ixzṗ = Nae + ◦
Nuu + ◦

Nvv + ◦
Nww + ◦

Npp + ◦
Nqq + ◦

Nrr

+ ◦
Nẇẇ + ◦

Nξξ + ◦
Nηη + ◦

Nζζ + ◦
Nττ (4.35)

Now, in the steady trimmed flight condition all of the perturbation variables and
their derivatives are, by definition, zero. Thus in the steady state equations (4.35)
reduce to

Xae = mg sin θe

Yae = 0

Zae = −mg cos θe (4.36)

Lae = 0

Mae = 0

Nae = 0

Equations (4.36) therefore identify the constant trim terms which may be substituted
into equations (4.35) and, following rearrangement they may be written:

mu̇ − ◦
Xuu − ◦

Xvv − ◦
Xẇẇ − ◦

Xww

− ◦
Xpp −

( ◦
Xq − mWe

)
q − ◦

Xrr + mgθ cos θe = ◦
Xξξ + ◦

Xηη + ◦
Xζζ + ◦

Xττ

− ◦
Yuu + mv̇ − ◦

Yvv − ◦
Yẇẇ − ◦

Yww −
( ◦

Yp + mWe

)
p

− ◦
Yqq −

( ◦
Yr − mUe

)
r − mg φ cos θe − mgψ sin θe = ◦

Yξξ + ◦
Yηη + ◦

Yζζ + ◦
Yττ

− ◦
Zuu − ◦

Zvv +
(

m − ◦
Zẇ

)
ẇ − ◦

Zww

− ◦
Zpp −

( ◦
Zq + mUe

)
q − ◦

Zrr + mgθ sin θe = ◦
Zξξ + ◦

Zηη + ◦
Zζζ + ◦

Zττ

− ◦
Luu − ◦

Lvv − ◦
Lẇẇ − ◦

Lww

+ Ixṗ − ◦
Lpp − ◦

Lqq − Ixz ṙ − ◦
Lrr = ◦

Lξξ + ◦
Lηη + ◦

Lζζ + ◦
Lττ
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− ◦
Muu − ◦

Mvv − ◦
Mẇẇ

− ◦
Mww − ◦

Mpp + Iyq̇ − ◦
Mqq − ◦

Mrr = ◦
Mξξ + ◦

Mηη + ◦
Mζζ + ◦

Mττ

− ◦
Nuu − ◦

Nvv − ◦
Nẇẇ − ◦

Nww

− Ixzṗ − ◦
Npp − ◦

Nqq + Iz ṙ − ◦
Nrr = ◦

Nξξ + ◦
Nηη + ◦

Nζζ + ◦
Nττ (4.37)

Equations (4.37) are the small perturbation equations of motion, referred to body
axes, which describe the transient response of an aeroplane about the trimmed flight
condition following a small input disturbance. The equations comprise a set of six
simultaneous linear differential equations written in the traditional manner with the
forcing, or input, terms on the right hand side. As written, and subject to the assump-
tions made in their derivation, the equations of motion are perfectly general and
describe motion in which longitudinal and lateral dynamics may be fully coupled.
However, for the vast majority of aeroplanes when small perturbation transient motion
only is considered, as is the case here, longitudinal–lateral coupling is usually neg-
ligible. Consequently it is convenient to simplify the equations by assuming that
longitudinal and lateral motion is in fact fully decoupled.

4.3 THE DECOUPLED EQUATIONS OF MOTION

4.3.1 The longitudinal equations of motion

Decoupled longitudinal motion is motion in response to a disturbance which is con-
strained to the longitudinal plane of symmetry, the oxz plane, only. The motion is
therefore described by the axial force X , the normal force Z and the pitching moment
M equations only. Since no lateral motion is involved the lateral motion variables v, p
and r and their derivatives are all zero. Also, decoupled longitudinal–lateral motion
means that the aerodynamic coupling derivatives are negligibly small and may be
taken as zero whence

◦
Xv = ◦

Xp = ◦
Xr = ◦

Zv = ◦
Zp = ◦

Zr = ◦
Mv = ◦

Mp = ◦
Mr = 0 (4.38)

Similarly, since aileron or rudder deflections do not usually cause motion in the
longitudinal plane of symmetry the coupling aerodynamic control derivatives may
also be taken as zero thus

◦
Xξ = ◦

Xζ = ◦
Zξ = ◦

Zζ = ◦
Mξ = ◦

Mζ = 0 (4.39)

The equations of longitudinal symmetric motion are therefore obtained by extracting
the axial force, normal force and pitching moment equations from equations (4.37)
and substituting equations (4.38) and (4.39) as appropriate. Whence

mu̇ − ◦
Xuu − ◦

Xẇẇ − ◦
Xww −

( ◦
Xq − mWe

)
q + mgθ cos θe = ◦

Xηη + ◦
Xττ

− ◦
Zuu +

(
m − ◦

Zẇ

)
ẇ − ◦

Zww −
( ◦

Zq + mUe

)
q + mgθ sin θe = ◦

Zηη + ◦
Zττ

− ◦
Muu − ◦

Mẇẇ − ◦
Mww + Iyq̇ − ◦

Mqq = ◦
Mηη + ◦

Mττ

(4.40)
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Equations (4.40) are the most general form of the dimensional decoupled equations
of longitudinal symmetric motion referred to aeroplane body axes. If it is assumed
that the aeroplane is in level flight and the reference axes are wind or stability
axes then

θe = We = 0 (4.41)

and the equations simplify further to

mu̇ − ◦
Xuu − ◦

Xẇẇ − ◦
Xww − ◦

Xqq + mgθ = ◦
Xηη + ◦

Xττ

− ◦
Zuu +

(
m − ◦

Zẇ

)
ẇ − ◦

Zww −
( ◦

Zq + mUe

)
q = ◦

Zηη + ◦
Zττ

− ◦
Muu − ◦

Mẇẇ − ◦
Mww + Iyq̇ − ◦

Mqq = ◦
Mηη + ◦

Mττ

(4.42)

Equations (4.42) represent the simplest possible form of the decoupled longitudinal
equations of motion. Further simplification is only generally possible when the numer-
ical values of the coefficients in the equations are known since some coefficients are
often negligibly small.

Example 4.2

Longitudinal derivative and other data for the McDonnell F-4C Phantom aeroplane
was obtained from Heffley and Jewell (1972) for a flight condition of Mach 0.6 at an
altitude of 35000 ft. The original data is presented in imperial units and in a format
preferred in the USA. Normally, it is advisable to work with the equations of motion
and the data in the format and units as given. Otherwise, conversion to another format
can be tedious in the extreme and is easily subject to error. However, for the purposes
of illustration, the derivative data has been converted to a form compatible with the
equations developed above and the units have been changed to those of the more
familiar SI system. The data is quite typical, it would normally be supplied in this, or
similar, form by aerodynamicists and as such it represents the starting point in any
flight dynamics analysis:

Flight path angle γe = 0◦ Air density ρ = 0.3809 kg/m3

Body incidence αe = 9.4◦ Wing area S = 49.239 m2

Velocity V0 = 178 m/s Mean aerodynamic
Mass m = 17642 kg chord c = 4.889 m
Pitch moment Acceleration due
of inertia Iy = 165669 kgm2 to gravity g = 9.81 m/s2

Since the flight path angle γe = 0 and the body incidence αe is non-zero it may
be deduced that the following derivatives are referred to a body axes system and
that θe ≡ αe. The dimensionless longitudinal derivatives are given and any missing
aerodynamic derivatives must be assumed insignificant, and hence zero. On the other
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hand, missing control derivatives may not be assumed insignificant although their
absence will prohibit analysis of response to those controls:

Xu = 0.0076 Zu = −0.7273 Mu = 0.0340
Xw = 0.0483 Zw = −3.1245 Mw = −0.2169
Xẇ = 0 Zẇ = −0.3997 Mẇ = −0.5910
Xq = 0 Zq = −1.2109 Mq = −1.2732
Xη = 0.0618 Zη = −0.3741 Mη = −0.5581

Equations (4.40) are compatible with the data although the dimensional derivatives
must first be calculated according to the definitions given in Appendix 2, Tables A2.1
and A2.2. Thus the dimensional longitudinal equations of motion, referred to body
axes, are obtained by substituting the appropriate values into equations (4.40) to give

17642u̇ − 12.67u − 80.62w + 512852.94q + 170744.06θ = 18362.32η

1214.01u + 17660.33ẇ + 5215.44w − 3088229.7q + 28266.507θ = −111154.41η

−277.47u + 132.47ẇ + 1770.07w + 165669q̇ + 50798.03q = −810886.19η

where We = V0 sin θe = 29.07 m/s and Ue = V0 cos θe = 175.61 m/s. Note that angular
variables in the equations of motion have radian units. Clearly, when written like
this the equations of motion are unwieldy. The equations can be simplified a little
by dividing through by the mass or inertia as appropriate. Thus the first equation is
divided by 17642, the second equation by 17660.33 and the third equation by 165669.
After some rearrangement the following rather more convenient version is obtained:

u̇ = 0.0007u + 0.0046w − 29.0700q − 9.6783θ + 1.0408η

ẇ = −0.0687u − 0.2953w + 174.8680q − 1.6000θ − 6.2940η

q̇ + 0.0008ẇ = 0.0017u − 0.0107w − 0.3066q − 4.8946η

It must be remembered that, when written in this latter form, the equations of motion
have the units of acceleration. The most striking feature of these equations, however
written, is the large variation in the values of the coefficients. Terms which may, at first
sight, appear insignificant are frequently important in the solution of the equations.
It is therefore prudent to maintain sensible levels of accuracy when manipulating the
equations by hand. Fortunately, this is an activity which is not often required.

4.3.2 The lateral–directional equations of motion

Decoupled lateral–directional motion involves roll, yaw and sideslip only. The motion
is therefore described by the side force Y , the rolling moment L and the yawing
moment N equations only. As no longitudinal motion is involved the longitudinal
motion variables u, w and q and their derivatives are all zero. Also, decoupled
longitudinal–lateral motion means that the aerodynamic coupling derivatives are
negligibly small and may be taken as zero whence

◦
Yu = ◦

Yẇ = ◦
Yw = ◦

Yq = ◦
Lu = ◦

Lẇ = ◦
Lw = ◦

Lq = ◦
Nu = ◦

Nẇ = ◦
Nw = ◦

Nq = 0 (4.43)



Ch04-H6927.tex 20/6/2007 16: 33 Page 82

82 Flight Dynamics Principles

Similarly, since the airframe is symmetric, elevator deflection and thrust variation do
not usually cause lateral–directional motion and the coupling aerodynamic control
derivatives may also be taken as zero thus

◦
Yη = ◦

Yτ = ◦
Lη = ◦

Lτ = ◦
Nη = ◦

Nτ = 0 (4.44)

The equations of lateral asymmetric motion are therefore obtained by extracting the
side force, rolling moment and yawing moment equations from equations (4.37) and
substituting equations (4.43) and (4.44) as appropriate. Whence

⎛
⎝mv̇ − ◦

Yvv −
( ◦

Yp + mWe

)
p −

( ◦
Yr − mUe

)
r

− mgφ cos θe − mgψ sin θe

⎞
⎠ = ◦

Yξξ + ◦
Yζζ

− ◦
Lvv + Ixṗ − ◦

Lpp − Ixz ṙ − ◦
Lrr = ◦

Lξξ + ◦
Lζζ (4.45)

− ◦
Nvv − Ixzṗ − ◦

Npp + Iz ṙ − ◦
Nrr = ◦

Nξξ + ◦
Nζζ

Equations (4.45) are the most general form of the dimensional decoupled equations of
lateral–directional asymmetric motion referred to aeroplane body axes. If it is assumed
that the aeroplane is in level flight and the reference axes are wind or stability axes
then, as before,

θe = We = 0 (4.46)

and the equations simplify further to

mv̇ − ◦
Yvv − p

◦
Yp −

( ◦
Yr −mUe

)
r − mgφ = ◦

Yξξ + ◦
Yζζ

− ◦
Lvv + Ixṗ − ◦

Lpp − Ixz ṙ − ◦
Lrr = ◦

Lξξ + ◦
Lζζ (4.47)

− ◦
Nvv − Ixzṗ − ◦

Npp + Iz ṙ − ◦
Nrr = ◦

Nξξ + ◦
Nζζ

Equations (4.47) represent the simplest possible form of the decoupled lateral–
directional equations of motion. As for the longitudinal equations of motion, further
simplification is only generally possible when the numerical values of the coefficients
in the equations are known since some coefficients are often negligibly small.

4.4 ALTERNATIVE FORMS OF THE EQUATIONS OF MOTION

4.4.1 The dimensionless equations of motion

Traditionally the development of the equations of motion and investigations of sta-
bility and control involving their use have been securely resident in the domain of the
aerodynamicist. Many aerodynamic phenomena are most conveniently explained in
terms of dimensionless aerodynamic coefficients, for example, lift coefficient, Mach
number, Reynolds number, etc., and often this mechanism provides the only practical
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means for making progress. The advantage of this approach is that the aerodynamic
properties of an aeroplane can be completely described in terms of dimensionless
parameters which are independent of airframe geometry and flight condition. A lift
coefficient of 0.5, for example, has precisely the same meaning whether it applies
to a Boeing 747 or to a Cessna 150. It is not surprising therefore, to discover that
historically the small perturbation equations of motion of an aeroplane were treated in
the same way. This in turn leads to the concept of the dimensionless derivative which
is just another aerodynamic coefficient and may be interpreted in much the same
way. However, the dimensionless equations of motion are of little use to the modern
flight dynamicist other than as a means for explaining the origin of the dimensionless
derivatives. Thus the development of the dimensionless decoupled small perturbation
equations of motion is outlined below solely for this purpose.

As formally described by Hopkin (1970) the equations of motion are rendered
dimensionless by dividing each equation by a generalised force or moment parameter
as appropriate. Sometimes the dimensionless equations of motion are referred to as
the aero-normalised equations and the corresponding derivative coefficients are also
referred to as aero-normalised derivatives. To illustrate the procedure consider the
axial force equation taken from the decoupled longitudinal equations of motion (4.42):

mu̇ − ◦
Xuu − ◦

Xẇ ẇ − ◦
Xww − q

◦
Xq + mgθ = ◦

Xηη + ◦
Xττ (4.48)

Since equation (4.48) has the units of force it may be rendered dimensionless by
dividing, or normalising, each term by the aerodynamic force parameter 1

2ρV 2
0 S

where S is the reference wing area. Defining the following parameters:

(i) Dimensionless time

t̂ = t

σ
where σ = m

1
2ρV0S

(4.49)

(ii) The longitudinal relative density factor

μ1 = m
1
2ρSc

(4.50)

where the longitudinal reference length is c, the mean aerodynamic chord.
(iii) Dimensionless velocities

û = u

V0

ŵ = w

V0
(4.51)

q̂ = qσ = qm
1
2ρV0S

(iv) Since level flight is assumed the lift and weight are equal thus

mg = 1
2ρV 2

0 SCL (4.52)
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Thus, dividing equation (4.48) through by the aerodynamic force parameter
and making use of the parameters defined in equations (4.49)–(4.52) above, the
following is obtained:

⎛
⎜⎜⎜⎜⎜⎜⎝

u̇

V0
σ −

⎛
⎝

◦
Xu

1
2ρV0S

⎞
⎠ u

V0
−
⎛
⎝

◦
Xẇ

1
2ρSc

⎞
⎠ ẇσ

V0μ1

−
⎛
⎝

◦
Xw

1
2ρV0S

⎞
⎠ w

V0
−
⎛
⎝

◦
Xq

1
2ρV0Sc

⎞
⎠ qσ

μ1
+ mg

1
2ρV 2

0 S
θ

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝

◦
Xη

1
2ρV 2

0 S

⎞
⎠ η + ◦

Xτ

(
τ

1
2ρV 2

0 S

)
(4.53)

which is more conveniently written:

ˆ̇u − Xuû − Xẇ

ˆ̇w
μ1

− Xwŵ − Xq
q̂

μ1
+ CLθ = Xηη + Xτ τ̂ (4.54)

The derivatives denoted Xu, Xẇ, Xw, Xq, Xη and Xτ are the dimensionless or aero-
normalised derivatives and their definitions follow from equation (4.53). It is in
this form that the aerodynamic stability and control derivatives would usually
be provided for an aeroplane by the aerodynamicists.

In a similar way the remaining longitudinal equations of motion may be
rendered dimensionless. Note that the aerodynamic moment parameter used to
divide the pitching moment equation is 1

2ρV 2
0 Sc. Whence

−Zuû + ˆ̇w − Zẇ

ˆ̇w
μ1

− Zwŵ − Zq
q̂

μ1
− q̂ = Zηη + Zτ τ̂

(4.55)

−Muû − Mẇ

ˆ̇w
μ1

− Mwŵ + iy
ˆ̇q

μ1
− Mq

q̂

μ1
= Mηη + Mτ τ̂

where iy is the dimensionless pitch inertia and is given by

iy = Iy

mc
2 (4.56)

Similarly the lateral equations of motion (4.47) may be rendered dimension-
less by dividing the side force equation by the aerodynamic force parameter
1
2ρV 2

0 S and the rolling and yawing moment equations by the aerodynamic
moment parameter 1

2ρV 2
0 Sb, where for lateral motion the reference length is the

wing span b. Additional parameter definitions required to deal with the lateral
equations are:

(v) The lateral relative density factor

μ2 = m
1
2ρSb

(4.57)
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(vi) The dimensionless inertias

ix = Ix

mb2
, iz = Iz

mb2
and ixz = Ixz

mb2
(4.58)

Since the equations of motion are referred to wind axes and since level flight is
assumed then equations (4.47) may be written in dimensionless form as follows:

ˆ̇v − Yvv̂ − Yp
p̂

μ2
− Yr

r̂

μ2
− r̂ − CLφ = Yξξ + Yζζ

− Lvv̂ + ix
ˆ̇p

μ2
− Lp

p̂

μ2
− ixz

ˆ̇r
μ2

− Lr
r̂

μ2
= Lξξ + Lζζ (4.59)

− Nvv̂ − ixz

ˆ̇p
μ2

− Np
p̂

μ2
+ iz

ˆ̇r
μ2

− Nr
r̂

μ2
= Nξξ + Nζζ

For convenience, the definitions of all of the dimensionless aerodynamic stability and
control derivatives are given in Appendix 2.

4.4.2 The equations of motion in state space form

Today the solution of the equations of motion poses few problems since very powerful
computational tools are readily available. Since computers are very good at handling
numerical matrix calculations the use of matrix methods for solving linear dynamic
system problems has become an important topic in modern applied mathematics.
In particular, matrix methods together with the digital computer have led to the
development of the relatively new field of modern control system theory. For small
perturbations, the aeroplane is a classical example of a linear dynamic system and
frequently the solution of its equations of motion is a prelude to flight control system
design and analysis. It is therefore convenient and straight forward to utilise multi-
variable system theory tools in the solution of the equations of motion. However, it
is first necessary to arrange the equations of motion in a suitable format.

The motion, or state, of any linear dynamic system may be described by a minimum
set of variables called the state variables. The number of state variables required to
completely describe the motion of the system is dependent on the number of degrees
of freedom the system has. Thus the motion of the system is described in a multi-
dimensional vector space called the state space, the number of state variables being
equal to the number of dimensions. The equation of motion, or state equation, of the
linear time invariant (LTI) multi-variable system is written:

ẋ(t) = Ax(t) + Bu(t) (4.60)

where

x(t) is the column vector of n state variables called the state vector.
u(t) is the column vector of m input variables called the input vector.
A is the (n × n) state matrix.
B is the (n × m) input matrix.
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Since the system is LTI the matrices A and B have constant elements. Equation
(4.60) is the matrix equivalent of a set of n simultaneous linear differential equations
and it is a straightforward matter to configure the small perturbation equations of
motion for an aeroplane in this format.

Now for many systems some of the state variables may be inaccessible or their
values may not be determined directly. Thus a second equation is required to determine
the system output variables. The output equation is written in the general form

y(t) = Cx(t) + Du(t) (4.61)

where

y(t) is the column vector of r output variables called the output vector.
C is the (r × n) output matrix.
D is the (r × m) direct matrix.

and, typically, r ≤ n. Again, for a LTI system the matrices C and D have constant
elements. Together equations (4.60) and (4.61) provide a complete description of the
system. A complete description of the formulation of the general state model and the
mathematics required in its analysis may be found in Barnett (1975).

For most aeroplane problems it is convenient to choose the output variables to be
the state variables. Thus

y(t) = x(t) and r = n

and consequently

C = I, the (n × n) identity matrix

D = 0, the (n × m) zero matrix

As a result the output equation simplifies to

y(t) = Ix(t) ≡ x(t) (4.62)

and it is only necessary to derive the state equation from the aeroplane equations of
motion.

Consider, for example, the longitudinal equations of motion (4.40) referred to
aeroplane body axes. These may be rewritten with the acceleration terms on the left
hand side as follows:

mu̇ − ◦
Xẇẇ = ◦

Xuu + ◦
Xww +

( ◦
Xq − mWe

)
q − mgθ cos θe + ◦

Xηη + ◦
Xττ

mẇ − ◦
Zẇẇ = ◦

Zuu + ◦
Zww +

( ◦
Zq + mUe

)
q − mgθ sin θe + ◦

Zηη + ◦
Zττ (4.63)

Iyq̇ − ◦
Mẇẇ = ◦

Muu + ◦
Mww + ◦

Mqq + ◦
Mηη + ◦

Mττ

Since the longitudinal motion of the aeroplane is described by four state variables
u, w, q and θ four differential equations are required. Thus the additional equation is the
auxiliary equation relating pitch rate to attitude rate, which for small perturbations is

θ̇ = q (4.64)
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Equations (4.63) and (4.64) may be combined and written in matrix form:

Mẋ(t) = A′x(t) + B′u(t) (4.65)

where

xT (t) = [u w q θ] uT (t) = [η τ]

M =

⎡
⎢⎢⎢⎢⎢⎣

m − ◦
Xẇ 0 0

0 (m − ◦
Zẇ) 0 0

0 − ◦
Mẇ Iy 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

A′ =

⎡
⎢⎢⎢⎢⎢⎣

◦
Xu

◦
Xw (

◦
Xq − mWe) −mg cos θe

◦
Zu

◦
Zw (

◦
Zq + mUe) −mg sin θe

◦
Mu

◦
Mw

◦
Mq 0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

B′ =

⎡
⎢⎢⎢⎢⎢⎣

◦
Xη

◦
Xτ

◦
Zη

◦
Zτ

◦
Mη

◦
Mτ

0 0

⎤
⎥⎥⎥⎥⎥⎦

The longitudinal state equation is derived by pre-multiplying equation (4.65) by the
inverse of the mass matrix M whence

ẋ(t) = Ax(t) + Bu(t) (4.66)

where

A = M−1A′ =

⎡
⎢⎢⎣

xu xw xq xθ

zu zw zq zθ

mu mw mq mθ

0 0 1 0

⎤
⎥⎥⎦ B = M−1B′ =

⎡
⎢⎢⎣

xη xτ

zη zτ

mη mτ

0 0

⎤
⎥⎥⎦

The coefficients of the state matrix A are the aerodynamic stability derivatives,
referred to aeroplane body axes, in concise form and the coefficients of the input
matrix B are the control derivatives also in concise form. The definitions of the con-
cise derivatives follow directly from the above relationships and are given in full in
Appendix 2. Thus the longitudinal state equation may be written out in full:

⎡
⎢⎢⎣

u̇
ẇ
q̇

θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xu xw xq xθ

zu zw zq zθ

mu mw mq mθ

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

xη xτ

zη zτ

mη mτ

0 0

⎤
⎥⎥⎦
[
η

τ

]
(4.67)

and the output equation is, very simply,

y(t) = Ix(t) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦ (4.68)
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Clearly the longitudinal small perturbation motion of the aeroplane is completely
described by the four state variables u, w, q and θ. Equation (4.68) determines that, in
this instance, the output variables are chosen to be the same as the four state variables.

Example 4.3

Consider the requirement to write the longitudinal equations of motion for the McDon-
nell F-4C Phantom of Example 4.2 in state space form. As the derivatives are given in
dimensionless form it is convenient to express the matrices M,A′ and B′ in terms of the
dimensionless derivatives. Substituting appropriately for the dimensional derivatives
and after some rearrangement the matrices may be written:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m′ −Xẇc

V0
0 0

0

(
m′ − Zẇc

V0

)
0 0

0 −Mẇc

V0
I ′
y 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A′ =

⎡
⎢⎢⎢⎢⎣

Xu Xw (Xqc − m′We) −m′g cos θe

Zu Zw (Zqc + m′Ue) −m′g sin θe

Mu Mw Mqc 0

0 0 1 0

⎤
⎥⎥⎥⎥⎦

B′ =

⎡
⎢⎢⎢⎣

V0Xη V0Xτ

V0Zη V0Zτ

V0Mη V0Mτ

0 0

⎤
⎥⎥⎥⎦

where

m′ = m
1
2ρV0S

and I ′
y = Iy

1
2ρV0Sc

and in steady symmetric flight, Ue = V0 cos θe and We = V0 sin θe.
Substituting the derivative values given in Example 4.2 the longitudinal state

equation (4.65) may be written:

⎡
⎢⎢⎣

10.569 0 0 0
0 10.580 0 0
0 0.0162 20.3 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

u̇

ẇ

q̇

θ̇

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0.0076 0.0483 −307.26 −102.29
−0.7273 −3.1245 1850.10 −16.934

0.034 −0.2169 −6.2247 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

11.00
−66.5898
−99.341

0

⎤
⎥⎥⎦ η

This equation may be reduced to the preferred form by pre-multiplying each term
by the inverse of M, as indicated above, to obtain the longitudinal state equation,
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referred to body axes, in concise form,

⎡
⎢⎢⎢⎣

u̇

ẇ

q̇

θ̇

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

7.181 × 10−4 4.570 × 10−3 −29.072 −9.678

−0.0687 −0.2953 174.868 −1.601

1.73 × 10−3 −0.0105 −0.4462 1.277 × 10−3

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u

w

q

θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1.041

−6.294

−4.888

0

⎤
⎥⎥⎦ η

This computation was carried out with the aid of Program CC and it should be noted
that the resulting equation compares with the final equations given in Example 4.2.
The coefficients of the matrices could equally well have been calculated using the
concise derivative definitions given in Appendix 2, Tables A2.5 and A2.6. For the
purpose of illustration some of the coefficients in the matrices have been rounded
to a more manageable number of decimal places. In general this is not good prac-
tice since the rounding errors may lead to accumulated computational errors in any
subsequent computer analysis involving the use of these equations. However, once
the basic matrices have been entered into a computer program at the level of accu-
racy given, all subsequent computations can be carried out using computer-generated
data files. In this way computational errors will be minimised although it is prudent
to be aware that not all computer algorithms for handling matrices can cope with
poorly conditioned matrices. Occasionally, aeroplane computer models fall into this
category.

The lateral small perturbation equations (4.45), referred to body axes, may be
treated in exactly the same way to obtain the lateral–directional state equation:

⎡
⎢⎢⎢⎢⎣

v̇
ṗ
ṙ
φ̇

ψ̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

yv yp yr yφ yψ

lv lp lr lφ lψ
nv np nr nφ nψ

0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v
p
r
φ

ψ

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

yξ yζ

lξ lζ
nξ nζ

0 0
0 0

⎤
⎥⎥⎥⎥⎦

[
ξ

ζ

]
(4.69)

Note that when the lateral–directional equations of motion are referred to wind axes,
equations (4.47), the lateral–directional state equation (4.69) is reduced from fifth
order to fourth order to become

⎡
⎢⎢⎣

v̇
ṗ
ṙ
φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

yv yp yr yφ

lv lp lr lφ
nv np nr nφ

0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v
p
r
φ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

yξ yζ

lξ lζ
nξ nζ

0 0

⎤
⎥⎥⎦
[
ξ

ζ

]
(4.70)

However, in this case the derivatives are referred to aeroplane wind axes rather than
to body axes and will generally have slightly different values. The definitions of the
concise lateral stability and control derivatives referred to aeroplane body axes are
also given in Appendix 2.

Examples of the more general procedures used to create the state descriptions
of various dynamic systems may be found in many books on control systems; for
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example, Shinners (1980) and Friedland (1987) both contain useful aeronautical
examples.

Example 4.4

Lateral derivative data for the McDonnell F-4C Phantom, referred to body axes, were
also obtained from Heffley and Jewell (1972) and are used to illustrate the formulation
of the lateral state equation. The data relate to the same flight condition, namely Mach
0.6 and an altitude of 35000 ft. As before the leading aerodynamic variables have the
following values:

Flight path angle γe = 0◦
Body incidence αe = 9.4◦
Velocity V0 = 178 m/s
Mass m = 17642 kg
Roll moment of inertia Ix = 33898 kg m2

Yaw moment of inertia Iz = 189496 kg m2

Inertia product Ixz = 2952 kgm2

Air density ρ = 0.3809 kg/m3

Wing area S = 49.239 m2

Wing span b = 11.787 m
Acceleration due
to gravity g = 9.81 m/s2

The dimensionless lateral derivatives, referred to body axes, are given and, as before,
any missing aerodynamic derivatives must be assumed insignificant, and hence zero.
Note that, in accordance with American notation the roll control derivative Lξ is
positive:

Yv = −0.5974
Yp = 0
Yr = 0
Yξ = −0.0159
Yζ = 0.1193

Lv = −0.1048
Lp = −0.1164
Lr = 0.0455
Lξ = 0.0454
Lζ = 0.0086

Nv = 0.0987
Np = −0.0045
Nr = −0.1132
Nξ = 0.00084
Nζ = −0.0741

As for the longitudinal equations of motion, the lateral state equation (4.65) may be
written in terms of the more convenient lateral dimensionless derivatives:

Mẋ(t) = A′x(t) + B′u(t)

where

xT(t) = [v p r φ ψ] uT(t) = [ξ ζ]

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

m′ 0 0 0 0

0 I ′
x −I ′

xz 0 0

0 −I ′
xz I ′

z 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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A′ =

⎡
⎢⎢⎢⎢⎣

Yv (Ypb + m′We) (Yrb − m′Ue) m′g cos θe m′g sin θe

Lv Lpb Lrb 0 0
Nv Npb Nrb 0 0
0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

B′ =

⎡
⎢⎢⎢⎢⎣

V0Yξ V0Yζ

V0Lξ V0Lζ

V0Nξ V0Nζ

0 0
0 0

⎤
⎥⎥⎥⎥⎦

where

m′ = m
1
2ρV0S

, I ′
x = Ix

1
2ρV0Sb

, I ′
z = Iz

1
2ρV0Sb

and I ′
xz = Ixz

1
2ρV0Sb

and, as before, in steady symmetric flight, Ue = V0 cos θe and We = V0 sin θe.
Substituting the appropriate values into the above matrices and pre-multiplying

the matrices A′ and B′ by the inverse of the mass matrix M the concise lateral state
equation (4.69), referred to body axes, is obtained:

⎡
⎢⎢⎢⎢⎣

v̇
ṗ
ṙ
φ̇

ψ̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

−0.0565 29.072 −175.610 9.6783 1.6022
−0.0601 −0.7979 −0.2996 0 0

9.218 × 10−3 −0.0179 −0.1339 0 0
0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v
p
r
φ

ψ

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

−0.2678 2.0092
4.6982 0.7703
0.0887 −1.3575

0 0
0 0

⎤
⎥⎥⎥⎥⎦

[
ξ

ζ

]

Again, the matrix computation was undertaken with the aid of Program CC. However,
the coefficients of the matrices could equally well have been calculated using the
expressions for the concise derivatives given in Appendix 2, Tables A2.7 and A2.8.

4.4.3 The equations of motion in American normalised form

The preferred North American form of the equations of motion expresses the axial
equations of motion in units of linear acceleration, rather than force, and the angular
equations of motion in terms of angular acceleration, rather than moment. This is
easily achieved by normalising the force and moment equations, by dividing by mass
or moment of inertia as appropriate. Re-stating the linear equations of motion (4.23):

m(u̇ + qWe) = X

m(v̇ − pWe + rUe) = Y (4.71)

m(ẇ − qUe) = Z
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Ixṗ − Ixz ṙ = L

Iyq̇ = M

Izṙ − Ixzṗ = N

the normalised form of the decoupled longitudinal equations of motion from
equations (4.71) are written:

u̇ + qWe = X

m

ẇ − qUe = Z

m
(4.72)

q̇ = M

Iy

and the normalised form of the decoupled lateral–directional equations of motion
may also be extracted from equations (4.71):

v̇ − pWe + rUe = Y

m

ṗ − Ixz

Ix
ṙ = L

Ix
(4.73)

ṙ − Ixz

Iz
ṗ = N

Iz

Further, both the rolling and yawing moment equations in (4.73) include roll and
yaw acceleration terms, ṗ and ṙ respectively, and it is usual to eliminate ṙ from
the rolling moment equation and ṗ from the yawing moment equation. This reduces
equations (4.73) to the alternative form:

v̇ − pWe + rUe = Y

m

ṗ =
(

L

Ix
+ N

Iz

Ixz

Ix

)(
1

1 − I 2
xz/IxIz

)
(4.74)

ṙ =
(

N

Iz
+ L

Ix

Ixz

Iz

)(
1

1 − I 2
xz/IxIz

)

Now the decoupled longitudinal force and moment expressions as derived in
Section 4.2, may be obtained from equations (4.40):

X = ◦
X uu + ◦

X ẇẇ + ◦
X ww + ◦

X qq + ◦
X ηη + ◦

X ττ − mgθ cos θe

Z = ◦
Zuu + ◦

Zẇẇ + ◦
Zww + ◦

Zqq + ◦
Zηη + ◦

Zττ − mgθ sin θe (4.75)

M = ◦
M uu + ◦

M ẇẇ + ◦
M ww + ◦

M qq + ◦
M ηη + ◦

M ττ
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Substituting equations (4.75) into equations (4.72), and after some rearrangement the
longitudinal equations of motion may be written:

u̇ =
◦

X u

m
u +

◦
X ẇ

m
ẇ +

◦
X w

m
w +

⎛
⎝

◦
X q

m
− We

⎞
⎠ q − gθ cos θe +

◦
X η

m
η +

◦
X τ

m
τ

ẇ =
◦
Zu

m
u +

◦
Zẇ

m
ẇ +

◦
Zw

m
w +

⎛
⎝

◦
Zq

m
− Ue

⎞
⎠ q − gθ sin θe +

◦
Zη

m
η +

◦
Zτ

m
τ (4.76)

q̇ =
◦

M u

Iy
u +

◦
M ẇ

Iy
ẇ +

◦
M w

Iy
w +

◦
M q

Iy
q +

◦
M η

Iy
η +

◦
M τ

Iy
τ

Alternatively, equations (4.76) may be expressed in terms of American normalised
derivatives as follows:

u̇ = Xuu + Xẇẇ + Xww + (Xq − We)q − gθ cos θe + Xδeδe + Xδthδth

ẇ = Zuu + Zẇẇ + Zww + (Zq + Ue)q − gθ sin θe + Zδeδe + Zδthδth (4.77)

q̇ = Muu + Mẇẇ + Mww + Mqq + Mδeδe + Mδthδth

and the control inputs are stated inAmerican notation, elevator angle δe ≡ η and thrust
δth ≡ τ.

In a similar way, the decoupled lateral–directional force and moment expressions
may be obtained from equations (4.45):

Y = ◦
Yvv + ◦

Ypp + ◦
Yrr + ◦

Yξξ + ◦
Yζζ + mgφ cos θe + mgψ sin θe

L = ◦
Lvv + ◦

Lpp + ◦
Lrr + ◦

Lξξ + ◦
Lζζ (4.78)

N = ◦
Nvv + ◦

Npp + ◦
Nrr + ◦

Nξξ + ◦
Nζζ

Substituting equations (4.78) into equations (4.74), and after some rearrangement
the lateral–directional equations of motion may be written:

v̇ =
◦

Yv

m
v +

⎛
⎝

◦
Yp

m
+ We

⎞
⎠ p +

⎛
⎝

◦
Yr

m
− Ue

⎞
⎠ r +

◦
Yξ

m
ξ +

◦
Yζ

m
ζ + gφ cos θe + gψ sin θe

ṗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝

◦
Lv

Ix
+

◦
Nv

Iz

Ixz

Ix

⎞
⎠ v +

⎛
⎝

◦
Lp

Ix
+

◦
Np

Iz

Ixz

Ix

⎞
⎠ p +

⎛
⎝

◦
Lr

Ix
+

◦
Nr

Iz

Ixz

Ix

⎞
⎠ r

+
⎛
⎝

◦
Lξ

Ix
+

◦
Nξ

Iz

Ixz

Ix

⎞
⎠ ξ +

⎛
⎝

◦
Lζ

Ix
+

◦
Nζ

Iz

Ixz

Ix

⎞
⎠ ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
1

1 − I 2
xz/IxIz

)
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ṙ =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎝

◦
Nv

Iz
+

◦
Lv

Ix

Ixz

Iz

⎞
⎠ v +

⎛
⎝

◦
Np

Iz
+

◦
Lp

Ix

Ixz

Iz

⎞
⎠ p +

⎛
⎝

◦
Nr

Iz
+

◦
Lr

Ix

Ixz

Iz

⎞
⎠ r

+
⎛
⎝

◦
Nξ

Iz
+

◦
Lξ

Ix

Ixz

Iz

⎞
⎠ ξ +

⎛
⎝

◦
Nζ

Iz
+

◦
Lζ

Ix

Ixz

Iz

⎞
⎠ ζ

⎞
⎟⎟⎟⎟⎟⎟⎠

(
1

1 − I 2
xz/IxIz

)

(4.79)

As before, equations (4.79) may be expressed in terms of American normalised
derivatives as follows:

v̇ = Yvv + (Yp + We)p + (Yr − Ue)r + Yδaδa + Yδr δr + gφ cos θe + gψ sin θe

ṗ =

⎛
⎜⎜⎝

(
Lv + Nv

Ixz

Ix

)
v +

(
Lp + Np

Ixz

Ix

)
p +

(
Lr + Nr

Ixz

Ix

)
r

+
(

Lδa + Nδa

Ixz

Ix

)
δa +

(
Lδr + Nδr

Ixz

Ix

)
δr

⎞
⎟⎟⎠
(

1

1 − I 2
xz/IxIz

)

ṙ =

⎛
⎜⎜⎝

(
Nv + Lv

Ixz

Iz

)
v +

(
Np + Lp

Ixz

Iz

)
p +

(
Nr + Lr

Ixz

Iz

)
r

+
(

Nδa + Lδa

Ixz

Iz

)
δa +

(
Nδr + Lδr

Ixz

Iz

)
δr

⎞
⎟⎟⎠
(

1

1 − I 2
xz/IxIz

)

(4.80)

and the control inputs are stated in American notation, aileron angle δa ≡ ξ and rudder
angle δr ≡ ζ.

Clearly, the formulation of the rolling and yawing moment equations in (4.80) is
very cumbersome, so it is usual to modify the definitions of the rolling and yawing
moment derivatives to reduce equations (4.80) to the more manageable format:

v̇ = Yvv + (Yp + We)p + (Yr − Ue)r + Yδaδa + Yδr δr + gφ cos θe + gψ sin θe

ṗ = L′
vv + L′

pp + L′
rr + L′

δa
δa + L′

δr
δr (4.81)

ṙ = N′
vv + N′

pp + N′
rr + N′

δa
δa + N′

δr
δr

where, for example, the modified normalised derivatives are given by expressions like

L′
v =

(
Lv + Nv

Ixz

Ix

)(
1

1 − I 2
xz/IxIz

)
≡
⎛
⎝

◦
Lv

Ix
+

◦
Nv

Iz

Ixz

Ix

⎞
⎠
(

1

1 − I 2
xz/IxIz

)

(4.82)

N′
r =

(
Nr + Lr

Ixz

Iz

)(
1

1 − I 2
xz/IxIz

)
≡
⎛
⎝

◦
Nr

Iz
+

◦
Lr

Ix

Ixz

Iz

⎞
⎠
(

1

1 − I 2
xz/IxIz

)

and the remaining modified derivatives are defined in a similar way with reference
to equations (4.79), (4.80) and (4.81). Thus the small perturbation equations of
motion in American normalised notation, referred to aircraft body axes, are given
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by equations (4.77) and (4.81). A full list of the American normalised derivatives and
their British equivalents is given in Appendix 7.

A common alternative formulation of the longitudinal equations of motion (4.77)
is frequently used when the thrust is assumed to have a velocity or Mach number
dependency. The normalised derivatives Xu, Zu and Mu, as stated in equations (4.77),
denote the aerodynamic derivatives only and the thrust is assumed to remain constant
for small perturbations in velocity or Mach number. However, the notation X∗

u, Z∗
u

and M∗
u, as shown in equations (4.83), denotes that the normalised derivatives include

both the aerodynamic and thrust dependencies on small perturbations in velocity or
Mach number.

u̇ = X∗
uu + Xẇẇ + Xww + (Xq − We)q − gθ cos θe + Xδeδe + Xδthδth

ẇ = Z∗
uu + Zẇẇ + Zww + (Zq + Ue)q − gθ sin θe + Zδeδe + Zδthδth (4.83)

q̇ = M∗
uu + Mẇẇ + Mww + Mqq + Mδeδe + Mδthδth

It is also common to express the lateral velocity perturbation v in equations (4.81) in
terms of sideslip angle β, since for small disturbances v = βV0:

β̇ = Yvβ + 1

V0
(Yp + We)p + 1

V0
(Yr − Ue)r + Y∗

δa
δa + Y∗

δr
δr

+ g

V0
(φ cos θe + ψ sin θe)

ṗ = L′
ββ + L′

pp + L′
rr + L′

δa
δa + L′

δr
δr

ṙ = N′
ββ + N′

pp + N′
rr + N′

δa
δa + N′

δr
δr (4.84)

where

Y∗
δa

= Yδa

V0
Y∗

δr
= Yδr

V0

L′
β = L′

vV0 N′
β = N′

vV0

Equations (4.83) and (4.84) probably represent the most commonly encountered form
of the American normalised equations of motion.
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PROBLEMS

1. Given the dimensional longitudinal equations of motion of an aircraft in the
following format

mu̇ − ◦
Xuu − ◦

Xww − (
◦

Xq − mWe)q + mgθ cos θe = ◦
Xηη

− ◦
Zuu + mẇ − ◦

Zww − (
◦

Zq + mUe)q + mgθ sin θe = ◦
Zηη

− ◦
Muu − ◦

Mẇẇ − ◦
Mww + Iyq̇ − ◦

Mqq = ◦
Mηη

rearrange them in dimensionless form referred to wind axes. Discuss the relative
merits of using the equations of motion in dimensional, dimensionless and
concise forms. (CU 1982)

2. The right handed orthogonal axis system (oxyz) shown in the figure below is
fixed in a rigid airframe such that o is coincident with the centre of gravity.

z

x

y

W, Z

V, Y

U,  X

u, ax

w, az

v, ay

p(x,  y,  z)

p,  L

q, Mr, N

o

x

yz

cg

The components of velocity and force along ox, oy, and oz are U, V, W,
and X, Y, Z respectively. The components of angular velocity about ox, oy,
and oz are p, q, r respectively. The point p(x, y, z) in the airframe has local
velocity and acceleration components u, v, w, and ax, ay, az respectively.
Show that by superimposing the motion of the axes (oxyz) on to the motion
of the point p(x, y, z), the absolute acceleration components of p(x, y, z) are
given by

a′
x = U̇ − rV + qW − x(q2 + r2) + y(pq − ṙ) + z(pr + q̇)

a′
y = V̇ − pW + rU + x(pq + ṙ) − y(p2 + r2) + z(qr − ṗ)

a′
z = Ẇ − qU + pV + x(pr − q̇) + y(qr + ṗ) − z(p2 + q2)
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Further, assuming the mass of the aircraft to be uniformly distributed show that
the total body force components are given by

X = m(U̇ − rV + qW )

Y = m(V̇ − pW + rU )

Z = m(Ẇ − qU + pV )

where m is the mass of the aircraft. (CU 1986)
3. The linearised longitudinal equations of motion of an aircraft describing small

perturbations about a steady trimmed rectilinear flight condition are given by

m(u̇(t) + q(t)We) = X (t)

m(ẇ(t) − q(t)Ue) = Z(t)

Iyq̇(t) = M (t)

Develop expressions for X (t), Z(t) and M (t) and hence complete the equations
of motion referred to generalised aircraft body axes. What simplifications may
be made if a wind axes reference and level flight are assumed? (CU 1987)

4. State the assumptions made in deriving the small perturbation longitudinal
equations of motion for an aircraft. For each assumption give a realistic example
of an aircraft type, or configuration, which may make the assumption invalid.

(LU 2002)
5. Show that when the product of inertia Ixz is much smaller than the moments of

inertia in roll and yaw, Ix and Iz respectively, the lateral–directional derivatives
in modified American normalised form may be approximated by the American
normalised form.
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Chapter 5

The Solution of the Equations of Motion

5.1 METHODS OF SOLUTION

The primary reason for solving the equations of motion is to obtain a mathematical,
and hence graphical, description of the time histories of all the motion variables in
response to a control input, or atmospheric disturbance, and to enable an assessment
of stability to be made. It is also important that the chosen method of solution provides
good insight into the way in which the physical properties of the airframe influence
the nature of the responses. Since the evolution of the development of the equa-
tions of motion and their solution followed in the wake of observation of aeroplane
behaviour, it was no accident that practical constraints were applied which resulted
in the decoupled small perturbation equations. The longitudinal and lateral decou-
pled equations of motion are each represented by a set of three simultaneous linear
differential equations which have traditionally been solved using classical mathemat-
ical analysis methods. Although laborious to apply, the advantage of the traditional
approach is that it is capable of providing excellent insight into the nature of aircraft
stability and response. However, since the traditional methods of solution invariably
involve the use of the dimensionless equations of motion considerable care in the
interpretation of the numerical results is required if confusion is to be avoided. A full
discussion of these methods can be found in many of the earlier books on the subject,
for example, in Duncan (1959).

Operational methods have also enjoyed some popularity as a means for solving the
equations of motion. In particular, the Laplace transform method has been, and con-
tinues to be used extensively. By transforming the differential equations, they become
algebraic equations expressed in terms of the Laplace operator s. Their manipulation
to obtain a solution then becomes a relatively straightforward exercise in algebra. Thus
the problem is transformed into one of solving a set of simultaneous linear algebraic
equations, a process that is readily accomplished by computational methods. Further,
the input–output response relationship or transfer characteristic is described by a sim-
ple algebraic transfer function in terms of the Laplace operator. The time response
then follows by finding the inverse Laplace transform of the transfer function for the
input of interest.

Now the transfer function as a means for describing the characteristics of a lin-
ear dynamic system is the principal tool of the control systems engineer and a vast
array of mathematical tools is available for analysing transfer functions. With relative
ease, analysis of the transfer function of a system enables a complete picture of its
dynamic behaviour to be drawn. In particular, stability, time response and frequency

98
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response information is readily obtained. Furthermore, obtaining the system trans-
fer function is usually the prelude to the design of a feedback control system and an
additional array of mathematical tools is also available to support this task. Since most
modern aeroplanes are dependent, to a greater or lesser extent, on feedback control
for their continued proper operation, it would seem particularly advantageous to be
able to describe the aeroplane in terms of transfer functions. Fortunately this is easily
accomplished. The Laplace transform of the linearised small perturbation equations
of motion is readily obtained and by the subsequent application of the appropriate
mathematical tools the response transfer functions may be derived. An analysis of
the dynamic properties of the aeroplane may then be made using control engineer-
ing tools as an alternative to the traditional methods of the aerodynamicist. Indeed,
as already described in Chapter 1, many computer software packages are available
which facilitate the rapid and accurate analysis of linear dynamic systems and the
design of automatic control systems. Today, access to computer software of this type
is essential for the flight dynamicist.

Thus the process of solution requires that the equations of motion are assembled
in the appropriate format, numerical values for the derivatives and other parameters
are substituted and then the whole model is input to a suitable computer program.
The output, which is usually obtained instantaneously, is most conveniently arranged
in terms of response transfer functions. Thus the objective can usually be achieved
relatively easily, with great rapidity and with good accuracy. A significant shortcom-
ing of such computational methods is the lack of visibility; the functional steps in the
solution process are hidden from the investigator. Consequently, considerable care,
and some skill, is required to analyse the solution correctly and this can be greatly
facilitated if the investigator has a good understanding of the computational solu-
tion process. Indeed, it is considered essential to have an understanding of the steps
involved in the solution of the equations of motion using the operational methods
common to most computer software packages.

The remainder of this chapter is therefore concerned with a discussion of the
use of the Laplace transform for solving the small perturbation equations of motion
to obtain the response transfer functions. This is followed by a description of the
computational process involving matrix methods which is normally undertaken with
the aid of a suitable computer software package.

5.2 CRAMER’S RULE

Cramer’s rule describes a mathematical process for solving sets of simultaneous lin-
ear algebraic equations and may usefully be used to solve the equations of motion
algebraically. It may be found in many degree-level mathematical texts, and in books
devoted to the application of computational methods to linear algebra, for example in
Goult et al. (1974). Since Cramer’s rule involves the use of matrix algebra it is easily
implemented in a digital computer.

To solve the system of n simultaneous linear algebraic equations described in matrix
form as

y = Ax (5.1)
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where x and y are column vectors and A is a matrix of constant coefficients, then
Cramer’s rule states that

x = A−1y ≡
(

Adjoint A

Det A

)
y (5.2)

where the solution for xi, the ith row of equation (5.2) is given by

xi = 1

|A| (A1iy1 + A2iy2 + A3iy3 + · · · + Aniyn) (5.3)

The significant observation is that the numerator of equation (5.3) is equivalent to
the determinant of A with the ith column replaced by the vector y. Thus the solution
of equation (5.1) to find all of the xi reduces to the relatively simple problem of
evaluating n + 1 determinants.

Example 5.1

To illustrate the use of Cramer’s rule consider the trivial example in which it is required
to solve the simultaneous linear algebraic equations:

y1 = x1 + 2x2 + 3x3

y2 = 2x2 + 4x2 + 5x3

y3 = 3x1 + 5x2 + 6x3

or, in matrix notation,

⎡
⎣

y1

y2

y3

⎤
⎦ =

⎡
⎣

1 2 3
2 4 5
3 5 6

⎤
⎦
⎡
⎣

x1

x2

x3

⎤
⎦

Applying Cramer’s rule to solve for xi:

x1 =

∣∣∣∣∣∣
y1 2 3
y2 4 5
y3 5 6

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 3
2 4 5
3 5 6

∣∣∣∣∣∣

=
y1

∣∣∣∣
4 5
5 6

∣∣∣∣− y2

∣∣∣∣
2 3
5 6

∣∣∣∣+ y3

∣∣∣∣
2 3
4 5

∣∣∣∣
−1

= y1 − 3y2 + 2y3

x2 =

∣∣∣∣∣∣
1 y1 3
2 y2 5
3 y3 6

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 3
2 4 5
3 5 6

∣∣∣∣∣∣

=
−y1

∣∣∣∣
2 5
3 6

∣∣∣∣+ y2

∣∣∣∣
1 3
3 6

∣∣∣∣− y3

∣∣∣∣
1 3
2 5

∣∣∣∣
−1

= −3y1 + 3y2 − y3
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and

x3 =

∣∣∣∣∣∣
1 2 y1

2 4 y2

3 5 y3

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 3
2 4 5
3 5 6

∣∣∣∣∣∣

=
y1

∣∣∣∣
2 4
3 5

∣∣∣∣− y2

∣∣∣∣
1 2
3 5

∣∣∣∣+ y3

∣∣∣∣
1 2
2 4

∣∣∣∣
−1

= 2y1 − y2

Clearly, in this example, the numerator determinants are found by expanding about
the column containing y. The denominator determinant may be found by expanding
about the first row thus

∣∣∣∣∣∣
1 2 3
2 4 5
3 5 6

∣∣∣∣∣∣
= 1

∣∣∣∣
4 5
5 6

∣∣∣∣− 2

∣∣∣∣
2 5
3 6

∣∣∣∣+ 3

∣∣∣∣
2 4
3 5

∣∣∣∣ = −1 + 6 − 6 = −1

5.3 AIRCRAFT RESPONSE TRANSFER FUNCTIONS

Aircraft response transfer functions describe the dynamic relationships between the
input and output variables. The relationships are indicated diagrammatically in Fig. 5.1
and clearly, a number of possible input–output relationships exist. When the mathe-
matical model of the aircraft comprises the decoupled small perturbation equations
of motion, transfer functions relating longitudinal input variables to lateral output
variables do not exist and vice versa. This may not necessarily be the case when the
aircraft is described by a fully coupled set of small perturbation equations of motion.
For example, such a description is quite usual when modelling the helicopter.

All transfer functions are written as a ratio of two polynomials in the Laplace oper-
ator s. All proper transfer functions have a numerator polynomial which is at least
one order less than the denominator polynomial although, occasionally, improper
transfer functions crop up in aircraft applications. For example, the transfer function
describing acceleration response to an input variable is improper, the numerator and
denominator polynomials are of the same order. Care is needed when working with
improper transfer functions as sometimes the computational tools are unable to deal
with them correctly. Clearly, this is a situation where some understanding of the phys-
ical meaning of the transfer function can be of considerable advantage. A shorthand

Mathematical model
of

Aircraft dynamics

u
w
q, q

v
p, f
r, y

Input variables Output variables

Longitudinal

Lateral

h

e

x

z

Figure 5.1 Aircraft input–output relationships.
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notation is used to represent aircraft response transfer functions in this book. For
example, pitch attitude θ(s) response to elevator η(s) is denoted:

θ(s)

η(s)
≡ N θ

η (s)

Δ(s)
(5.4)

where N θ
η (s) is the unique numerator polynomial in s relating pitch attitude response

to elevator input and Δ(s) is the denominator polynomial in s which is common to all
longitudinal response transfer functions. Similarly, for example, roll rate response to
aileron is denoted:

p(s)

ξ(s)
≡ N p

ξ (s)

Δ(s)
(5.5)

where, in this instance, Δ(s) is the denominator polynomial which is common to all
of the lateral response transfer functions. Since Δ(s) is context dependent its correct
identification does not usually present problems.

The denominator polynomial Δ(s) is called the characteristic polynomial and when
equated to zero defines the characteristic equation. Thus Δ(s) completely describes
the longitudinal or lateral stability characteristics of the aeroplane as appropriate and
the roots, or poles, of Δ(s) describe the stability modes of the aeroplane. Thus the
stability characteristics of an aeroplane can be determined simply on inspection of
the response transfer functions.

5.3.1 The longitudinal response transfer functions

The Laplace transforms of the differential quantities ẋ(t) and ẍ(t), for example, are
given by

L{ẋ(t)} = sx(s) − x(0)
(5.6)

L{ẍ(t)} = s2x(s) − sx(0) − ẋ(0)

where x(0) and ẋ(0) are the initial values of x(t) and ẋ(t) respectively at t = 0. Now,
taking the Laplace transform of the longitudinal equations of motion (4.40), referred
to body axes, assuming zero initial conditions and since small perturbation motion
only is considered write:

θ̇(t) = q(t) (5.7)

then
(

ms − ◦
Xu

)
u(s) −

( ◦
Xẇs + ◦

Xw

)
w(s) −

(( ◦
Xq − mWe

)
s − mg cos θe

)
θ(s)

= ◦
Xηη(s) + ◦

Xττ(s)
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− ◦
Zuu(s) −

(( ◦
Zẇ − m

)
s + ◦

Zw

)
w(s) −

(( ◦
Zq + mUe

)
s − mg sin θe

)
θ(s)

= ◦
Zηη(s) + ◦

Zττ(s)

− ◦
Muu(s) −

( ◦
Mẇs + ◦

Mw

)
w(s) +

(
Iys2 − ◦

Mqs

)
θ(s)

= ◦
Mηη(s) + ◦

Mττ(s) (5.8)

Writing equations (5.8) in matrix format:

⎡
⎢⎢⎢⎢⎢⎢⎣

(
ms − ◦

Xu

)
−
( ◦

Xẇs + ◦
Xw

)
−
(( ◦

Xq − mWe

)
s − mg cos θe

)

− ◦
Zu −

(( ◦
Zẇ − m

)
s + ◦

Zw

)
−
(( ◦

Zq + mUe

)
s − mg sin θe

)

− ◦
Mu −

( ◦
Mẇs + ◦

Mw

) (
Iys2 − ◦

Mqs

)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

u(s)
w(s)
θ(s)

⎤
⎦

=

⎡
⎢⎢⎣

◦
Xη

◦
Xτ◦

Zη

◦
Zτ◦

Mη

◦
Mτ

⎤
⎥⎥⎦
[

η(s)
τ(s)

]
(5.9)

Cramer’s rule can now be applied to obtain the longitudinal response transfer func-
tions, for example, to obtain the transfer functions describing response to elevator.
Assume, therefore, that the thrust remains constant. This means that the throttle is
fixed at its trim setting τe and τ(s) = 0. Therefore, after dividing through by η(s)
equation (5.9) may be simplified to

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
ms − ◦

Xu

)
−
( ◦

Xẇs + ◦
Xw

)
−
(( ◦

Xq − mWe

)
s − mg cos θe

)

− ◦
Zu −

(( ◦
Zẇ − m

)
s + ◦

Zw

)
−
(( ◦

Zq + mUe

)
s − mg sin θe

)

− ◦
Mu −

( ◦
Mẇs + ◦

Mw

) (
Iys2 − ◦

Mqs

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(s)

η(s)

w(s)

η(s)

θ(s)

η(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

◦
Xη

◦
Zη

◦
Mη

⎤
⎥⎥⎥⎦

(5.10)

Equation (5.10) is of the same form as equation (5.1); Cramer’s rule may be applied
directly and the elevator response transfer functions are given by

u(s)

η(s)
≡ N u

η (s)

Δ(s)

w(s)

η(s)
≡ N w

η (s)

Δ(s)

θ(s)

η(s)
≡ N θ

η (s)

Δ(s)
(5.11)
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Since the Laplace transform of equation (5.7) is sθ(s) = q(s) the pitch rate response
transfer function follows directly:

q(s)

η(s)
≡ N q

η (s)

Δ(s)
= sN θ

η (s)

Δ(s)
(5.12)

The numerator polynomials are given by the following determinants:

N u
η (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

◦
Xη −

( ◦
Xẇs + ◦

Xw

)
−
(( ◦

Xq − mWe

)
s − mg cos θe

)

◦
Zη −

(( ◦
Zẇ − m

)
s + ◦

Zw

)
−
(( ◦

Zq + mUe

)
s − mg sin θe

)

◦
Mη −

( ◦
Mẇs + ◦

Mw

) (
Iys2 − ◦

Mqs

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.13)

N w
η (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
ms − ◦

Xu

) ◦
Xη −

(( ◦
Xq − mWe

)
s − mg cos θe

)

− ◦
Zu

◦
Zη −

(( ◦
Zq + mUe

)
s − mg sin θe

)

− ◦
Mu

◦
Mη

(
Iys2 − ◦

Mqs

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.14)

N θ
η (s) =

∣∣∣∣∣∣∣∣∣∣∣∣

(
ms − ◦

Xu

)
−
( ◦

Xẇs + ◦
Xw

) ◦
Xη

− ◦
Zu −

(
(

◦
Zẇ − m)s + ◦

Zw

) ◦
Zη

− ◦
Mu −

( ◦
Mẇs + ◦

Mw

) ◦
Mη

∣∣∣∣∣∣∣∣∣∣∣∣

(5.15)

and the common denominator polynomial is given by the determinant:

Δ(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
ms − ◦

Xu

)
−
( ◦

Xẇs + ◦
Xw

)
−
(( ◦

Xq − mWe

)
s − mg cos θe

)

− ◦
Zu −

(( ◦
Zẇ − m

)
s + ◦

Zw

)
−
(( ◦

Zq + mUe

)
s − mg sin θe

)

− ◦
Mu −

( ◦
Mẇs + ◦

Mw

) (
Iys2 − ◦

Mqs

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.16)
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The thrust response transfer functions may be derived by assuming the elevator to
be fixed at its trim value, thus η(s) = 0, and τ(s) is written in place of η(s). Then

the derivatives
◦

Xη,
◦

Zη and
◦

Mη in equations (5.13)–(5.15) are replaced by
◦

Xτ ,
◦

Zτ and
◦

Mτ respectively. Since the polynomial expressions given by the determinants are
substantial they are set out in full in Appendix 3.

5.3.2 The lateral–directional response transfer functions

The lateral–directional response transfer functions may be obtained by exactly the
same means as the longitudinal transfer functions. The Laplace transform, assuming
zero initial conditions, of the lateral–directional equations of motion referred to body
axes, equations (4.45), may be written in matrix form as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
ms − ◦

Yv

)
−
⎛
⎝
( ◦

Yp + mWe

)
s

+ mg cos θe

⎞
⎠ −

⎛
⎝
( ◦

Yr − mUe

)
s

+ mg sin θe

⎞
⎠

− ◦
Lv

(
Ixs2 − ◦

Lps

)
−
(

Ixzs2 + ◦
Lrs

)

− ◦
Nv −

(
Ixzs2 + ◦

Nps

) (
Izs2 − ◦

Nrs

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

v(s)

φ(s)

ψ(s)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

◦
Yξ

◦
Yζ

◦
Lξ

◦
Lζ

◦
Nξ

◦
Nζ

⎤
⎥⎥⎥⎦

[
ξ(s)

ζ(s)

]

(5.17)

where sφ(s) = p(s) and sψ(s) = r(s). By holding the rudder at its trim setting, ζ(s) = 0,
the aileron response transfer functions may be obtained by applying Cramer’s rule to
equation (5.17). Similarly, by holding the ailerons at the trim setting, ξ(s) = 0, the
rudder response transfer functions may be obtained. For example roll rate response
to aileron is given by

N p
ξ (s)

Δ(s)
≡ p(s)

ξ(s)
= sφ(s)

ξ(s)
≡ sNφ

ξ (s)

Δ(s)
(5.18)

where the numerator polynomial is given by

N p
ξ (s) = s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ms − ◦
Yv)

◦
Yξ −

⎛
⎝
( ◦

Yr − mUe

)
s

+ mg sin θe

⎞
⎠

− ◦
Lv

◦
Lξ −

(
Ixzs2 + ◦

Lrs

)

− ◦
Nv

◦
Nξ

(
Izs2 − ◦

Nrs

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.19)
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and the denominator polynomial is given by

Δ(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
ms − ◦

Yv

)
−
⎛
⎝
( ◦

Yp + mWe

)
s

+ mg cos θe

⎞
⎠ −

⎛
⎝
( ◦

Yr − mUe

)
s

+ mg sin θe

⎞
⎠

− ◦
Lv

(
Ixs2 − ◦

Lps

)
−
(

Ixzs2 + ◦
Lrs

)

− ◦
Nv −

(
Ixzs2 + ◦

Nps

) (
Izs2 − ◦

Nrs

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.20)

Again, since the polynomial expressions given by the determinants are substantial
they are also set out in full in Appendix 3.

Example 5.2

To obtain the transfer function describing pitch attitude response to elevator for the
Lockheed F-104 Starfighter. The data were obtained from Teper (1969) and describe
a sea level flight condition. Inspection of the data revealed that θe = 0; thus it was
concluded that the equations of motion to which the data relate are referred to wind
axes.

Air density ρ = 0.00238 slug/ft3

Axial velocity component Ue = 305 ft/s

Aircraft mass m = 746 slugs

Moment of inertia in pitch Iy = 65,000 slug/ft2

Gravitational constant g = 32.2 ft/s2

The dimensional aerodynamic stability and control derivatives follow. Derivatives
that are not quoted are assumed to be insignificant and are given a zero value,
whence

◦
X u = −26.26 slug/s
◦

X w = 79.82 slug/s
◦

X ẇ = 0
◦

X q = 0
◦

X η = 0

◦
Zu = −159.64 slug/s
◦
Zw = −328.24 slug/s
◦
Zẇ = 0
◦
Zq = 0
◦
Zη = −16,502 slug ft/s2/rad

◦
M u = 0
◦

M w = −1014.0 slug ft/s
◦

M ẇ = −36.4 slug ft
◦

M q = −18,135 slug ft2/s
◦

M η = −303,575 slug ft/s2/rad

The American Imperial units are retained in this example since it is preferable to work
with the equations of motion and in the dimensional units appropriate to the source
material. Conversion from one system of units to another often leads to confusion
and error and is not therefore recommended. However, for information, factors for
conversion from American Imperial units to SI units are given in Appendix 4.
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These numerical values are substituted into equation (5.10) to obtain

⎡
⎢⎣

746 s + 26.26 −79.82 24021.2

159.64 746 s + 328.24 −227530s

0 36.4 s + 1014 65000s2 + 18135s

⎤
⎥⎦

⎡
⎢⎣

u(s)

w(s)

θ(s)

⎤
⎥⎦ =

⎡
⎢⎣

0

−16502

−303575

⎤
⎥⎦η(s) (5.21)

Cramer’s rule may be applied directly to equation (5.21) to obtain the transfer function
of interest:

N θ
η (s)

Δ(s)
=

∣∣∣∣∣∣∣

746 s + 26.26 −79.82 0

159.64 746 s + 328.24 −16502

0 36.4 s + 1014 −303575

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

746 s + 26.26 −79.82 24021.2

159.64 746 s + 328.24 −227530s

0 36.4s + 1014 65000s2 + 18135s

∣∣∣∣∣∣∣

rad/rad (5.22)

whence

N θ
η (s)

Δ(s)
= −16.850 × 1010(s2 + 0.402s + 0.036)

3.613 × 1010(s4 + 0.925s3 + 4.935s2 + 0.182s + 0.108)
rad/rad (5.23)

Or, in the preferable factorised form,

N θ
η (s)

Δ(s)
= −4.664(s + 0.135)(s + 0.267)

(s2 + 0.033 s + 0.022)(s2 + 0.893 s + 4.884)
rad/rad (5.24)

The denominator of equation (5.24) factorises into two pairs of complex roots (poles)
each pair of which describes a longitudinal stability mode. The factors describing the
modes may be written alternatively (s2 + 2ζωs + ω2), which is clearly the character-
istic polynomial describing damped harmonic motion. The stability of each mode is
determined by the damping ratio ζ and the undamped natural frequency by ω. The
lower frequency mode is called the phugoid and the higher frequency mode is called
the short period pitching oscillation. For the aeroplane to be completely longitudinally
stable the damping ratio of both modes must be positive.

The units of the transfer function given in equation (5.24) are rad/rad, or equivalently
deg/deg. Angular measure is usually, and correctly, quantified in radians and care
must be applied when interpreting transfer functions since the radian is a very large
angular quantity in the context of small perturbation motion of aircraft. This becomes
especially important when dealing with transfer functions in which the input and
output variables have different units. For example, the transfer function describing
speed response to elevator for the F-104 has units ft/s/rad and one radian of elevator
input is impossibly large! It is therefore very important to remember that one radian
is equivalent to 57.3◦. It is also important to remember that all transfer functions have
units and they should always be indicated if confusion is to be avoided.
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The transfer function given by equation (5.24) provides a complete description of
the longitudinal stability characteristics and the dynamic pitch response to elevator of
the F-104 at the flight condition in question. It is interesting to note that the transfer
function has a negative sign. This means that a positive elevator deflection results in
a negative pitch response that is completely in accordance with the notation defined
in Chapter 2. Clearly, the remaining longitudinal response transfer functions can
be obtained by applying Cramer’s rule to equation (5.21) for each of the remaining
motion variables. A comprehensive review of aeroplane dynamics based on transfer
function analysis is contained in Chapters 6 and 7.

The complexity of this example is such that, although tedious, the entire com-
putation is easily undertaken manually to produce a result of acceptable accuracy.
Alternatively, transfer function (5.23) can be calculated merely by substituting the
values of the derivative and other data into the appropriate polynomial expressions
given in Appendix 3.

5.4 RESPONSE TO CONTROLS

Time histories for the aircraft response to controls are readily obtained by finding
the inverse Laplace transform of the appropriate transfer function expression. For
example, the roll rate response to aileron is given by equation (5.5) as

p(s) = N p
ξ (s)

Δ(s)
ξ(s) (5.25)

assuming that the aeroplane is initially in trimmed flight. The numerator polynomial
N p

ξ (s) and denominator polynomial Δ(s) are given in Appendix 3. The aileron input
ξ(s) is simply the Laplace transform of the required input function. For example, two
commonly used inputs are the impulse and step functions where

Impulse of magnitude k is given by ξ(s) = k

Step of magnitude k is given by ξ(s) = k/s

Other useful input functions include the ramp, pulse (or step) of finite length, doublet
and sinusoid. However, the Laplace transform of these functions is not quite so
straightforward to obtain. Fortunately, most computer programs for handling transfer
function problems have the most commonly used functions “built-in’’.

To continue with the example, the roll rate response to an aileron step input of
magnitude k is therefore given by

p(t) = L−1

{
k

s

N p
ξ (s)

Δ(s)

}
(5.26)

Solution of equation (5.26) to obtain the time response involves finding the inverse
Laplace transform of the expression on the right hand side which may be accomplished



Ch05-H6927.tex 20/6/2007 16: 34 Page 109

The Solution of the Equations of Motion 109

manually with the aid of a table of standard transforms. However, this calculation is
painlessly achieved with the aid of an appropriate computer software package such
as MATLAB or Program CC for example. However, it is instructive to review the
mathematical procedure since this provides valuable insight to aid the correct inter-
pretation of a computer solution and this is most easily achieved by the following
example.

Example 5.3

To obtain the pitch response of the F-104 aircraft to a unit step elevator input at the
flight condition evaluated in Example 5.2. Assuming the unit step input to be in degree
units, then from equation (5.24):

θ(t) = L−1
{ −4.664(s + 0.135)(s + 0.267)

s(s2 + 0.033s + 0.022)(s2 + 0.893s + 4.884)

}
deg (5.27)

Before the inverse Laplace transform of the expression in parentheses can be found,
it is first necessary to reduce it to partial fractions. Thus writing,

−4.664(s2 + 0.402s + 0.036)

s(s2 + 0.033s + 0.022)(s2 + 0.893s + 4.884)
= −4.664

⎛
⎜⎜⎝

A

s
+ Bs + C

(s2 + 0.033s + 0.022)

+ Ds + E

(s2 + 0.893s + 4.884)

⎞
⎟⎟⎠

(5.28)

To determine the values for A, B, C, D and E multiply out the fractions on the
righthand side and equate the numerator coefficients from both sides of the equation
for like powers of s to obtain

0 = (A + B + D)s4

0 = (0.925A + 0.893B + C + 0.033D + E)s3

s2 = (4.935A + 4.884B + 0.893C + 0.022D + 0.033E)s2

0.402s = (0.182A + 4.884C + 0.022E)s

0.036 = 0.108A

These simultaneous linear algebraic equations are easily solved using Cramer’s rule
if they are first written in matrix form:

⎡
⎢⎢⎢⎢⎣

1 1 0 1 0
0.925 0.893 1 0.033 1
4.935 4.884 0.893 0.022 0.033
0.182 0 4.884 0 0.022
0.108 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

A
B
C
D
E

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
0
1

0.402
0.036

⎤
⎥⎥⎥⎥⎥⎦

(5.29)
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Thus, A = 0.333, B = − 0.143, C = 0.071, D = − 0.191, and E = − 0.246. Thus
equation (5.27) may be written:

θ(t) = L−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4.664

(
0.333

s
− (0.143s − 0.071)

(s2 + 0.033s + 0.022)

− (0.191s + 0.246)

(s2 + 0.893s + 4.884)

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

deg (5.30)

A very short table of Laplace transforms relevant to this problem is given in Appendix
5. Inspection of the table of transforms determines that equation (5.30) needs some
rearrangement before its inverse transform can be found. When solving problems
of this type it is useful to appreciate that the solution will contain terms describing
damped harmonic motion; the required form of the terms in equation (5.30) is then
more easily established. With reference to Appendix 5, transform pairs 1, 5 and 6
would appear to be most applicable. Therefore rearranging equation (5.30) to suit

θ(t) = L−1

⎧⎪⎪⎨
⎪⎪⎩
− 4.664

⎛
⎜⎜⎝

0.333

s
−
(

0.143(s + 0.017)

(s + 0.017)2 + 0.1482
− 0.496(0.148)

(s + 0.017)2 + 0.1482

)

−
(

0.191(s + 0.447)

(s + 0.447)2 + 2.1642
+ 0.074(2.164)

(s + 0.447)2 + 2.1642

)

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

deg

(5.31)

Using transform pairs 1, 5 and 6 equation (5.31) may be evaluated to give the time
response:

θ(t) = −1.553 + 0.667e−0.017t(cos 0.148t − 3.469 sin 0.148t)
(5.32)+ 0.891e−0.447t(cos 2.164t + 0.389 sin 2.164t)deg

The solution given by equation (5.32) comprises three terms that may be interpreted
as follows:

(i) The first term, −1.553◦, is the constant steady state pitch attitude (gain) of the
aeroplane.

(ii) The second term describes the contribution made by the phugoid dynamics, the
undamped natural frequency ωp = 0.148 rad/s and since ζpωp = 0.017 rad/s the
damping ratio is ζp = 0.115.

(iii) The third term describes the contribution made by the short period pitching
oscillation dynamics, the undamped natural frequency ωs = 2.164 rad/s and
since ζsωs = 0.447 rad/s the damping ratio is ζs = 0.207.

The time response described by equation (5.32) is shown in Fig. 5.2 and the two
dynamic modes are clearly visible. It is also clear that the pitch attitude eventually
settles to the steady state value predicted above.

Example 5.3 illustrates that it is not necessary to obtain a complete time response
solution merely to obtain the characteristics of the dynamic modes. The principal
mode characteristics, damping ratio and natural frequency, are directly obtainable on
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Figure 5.2 Pitch attitude response of the F-104 to a 1◦ step of elevator.

inspection of the characteristic polynomial Δ(s) in any aircraft transfer function. The
steady state gain is also readily established by application of the final value theorem
which states that

f (t)t→∞ = Lim
s→0

(sf (s)) (5.33)

The corresponding initial value theorem is also a valuable tool and states that

f (t)t→0 = Lim
s→∞(sf (s)) (5.34)

A complete discussion of these theorems may be found in most books on control
theory, for example in Shinners (1980).

Example 5.4

Applying the initial value and final value theorems to find the initial and steady values
of the pitch attitude response of the F-104 of the previous examples. From equation
(5.27) the Laplace transform of the unit step response is given by

θ(s) = −4.664(s + 0.135)(s + 0.267)

s(s2 + 0.033s + 0.022)(s2 + 0.893s + 4.884)
deg (5.35)

Applying the final value theorem to obtain

θ(t)t→∞ = Lim
s→0

( −4.664(s + 0.135)(s + 0.267)

(s2 + 0.033s + 0.022)(s2 + 0.893s + 4.884)

)
deg = −1.565◦

(5.36)
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and applying the initial value theorem to obtain

θ(t)t→0 = Lim
s→∞

( −4.664(s + 0.135)(s + 0.267)

(s2 + 0.033s + 0.022)(s2 + 0.893s + 4.884)

)
deg = 0◦

(5.37)

Clearly, the values given by equations (5.36) and (5.37) correlate reasonably well with
the known pitch attitude response calculated in Example 5.3. Bear in mind that in all
the calculations numbers have been rounded to three decimal places for convenience.

5.5 ACCELERATION RESPONSE TRANSFER FUNCTIONS

Acceleration response transfer functions are frequently required but are not given
directly by the solution of the equations of motion described above. Expressions
for the components of inertial acceleration are given in equations (4.9) and clearly,
they comprise a number of motion variable contributions. Assuming small perturba-
tion motion such that the usual simplifications can be made, equations (4.9) may be
restated:

ax = u̇ − rVe + qWe − yṙ + zq̇

ay = v̇ − pWe + rUe + xṙ − zṗ (5.38)

az = ẇ − qUe + pVe − xq̇ + yṗ

Now if, for example, the normal acceleration response to elevator referred to the cg
is required (x = y = z = 0) and if fully decoupled motion is assumed (pVe = 0) then,
the equation for normal acceleration simplifies to

az = ẇ − qUe (5.39)

The Laplace transform of equation (5.39), assuming zero initial conditions, may be
written:

az(s) = sw(s) − sθ(s)Ue (5.40)

Or, expressing equation (5.40) in terms of elevator response transfer functions,

az(s) = s
N w

η (s)

Δ(s)
η(s) − sUe

N θ
η (s)

Δ(s)
η(s) = s(N w

η (s) − UeN θ
η (s))η(s)

Δ(s)
(5.41)

whence the required normal acceleration response transfer function may be written:

N az
η (s)

Δ(s)
≡ az(s)

η(s)
= s(N w

η (s) − UeN θ
η (s))

Δ(s)
(5.42)
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Transfer functions for the remaining acceleration response components may be
derived in a similar manner.

Another useful transfer function that is often required in handling qualities studies
gives the normal acceleration response to elevator measured at the pilot’s seat. In this
special case, x in equations (5.38) represents the distance measured from the cg to
the pilot’s seat and the normal acceleration is therefore given by

az = ẇ − qUe − xq̇ (5.43)

As before, the transfer function is easily derived:

N az
η (s)

Δ(s)

∣∣∣∣
pilot

= s(N w
η (s) − (Ue + xs)N θ

η (s))

Δ(s)
(5.44)

Example 5.5

To calculate the normal acceleration response to elevator at the cg for the F-104
Starfighter aeroplane at the flight condition defined in Example 5.2. At the flight
condition in question the steady axial velocity component Ue = 305 ft/s and the pitch
attitude and normal velocity transfer functions describing response to elevator are
given by

N θ
η (s)

Δ(s)
= −4.664(s + 0.135)(s + 0.267)

(s2 + 0.033 s + 0.022)(s2 + 0.893 s + 4.884)
rad/rad (5.45)

and

N w
η (s)

Δ(s)
= −22.147(s2 + 0.035 s + 0.022)(s + 64.675)

(s2 + 0.033 s + 0.022)(s2 + 0.893 s + 4.884)
ft/s/rad (5.46)

Substitute equations (5.45) and (5.46) together with Ue into equation (5.42), pay par-
ticular attention to the units, multiply out the numerator and factorise the result to
obtain the required transfer function:

N az
η (s)

Δ(s)
= −22.147s(s + 0.037)(s − 4.673)(s + 5.081)

(s2 + 0.033s + 0.022)(s2 + 0.893s + 4.884)
ft/s2/rad (5.47)

Note that since the numerator and denominator are of the same order, the acceleration
transfer function (5.47) is an improper transfer function. The positive numerator root,
or zero, implies that the transfer function is non-minimum phase which is typical of
aircraft acceleration transfer functions. The non-minimum phase effect is illustrated
in the unit (1 rad) step response time history shown in Fig. 5.3 and causes the ini-
tial response to be in the wrong sense. The first few seconds of the response only
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Figure 5.3 Normal acceleration response at the cg to an elevator unit step input.

are shown and, as may be determined by application of the final value theorem, the
steady state acceleration is zero.

5.6 THE STATE SPACE METHOD

The use of the state space method greatly facilitates the solution of the small perturba-
tion equations of motion of aircraft. Since the computational mechanism is based on
the use of matrix algebra it is most conveniently handled by a digital computer and, as
already indicated, many suitable software packages are available. Most commercial
software is intended for application to problems in modern control and some care is
needed to ensure that the aircraft equations of motion are correctly assembled before
a solution is computed using these tools. However, the available tools are generally
very powerful and their use for the solution of the equations of motion of aircraft is
a particularly simple application.

5.6.1 The transfer function matrix

The general state equations, (4.60) and (4.61), describing a linear dynamic system
may be written:

ẋ(t) = Ax(t) + Bu(t)
(5.48)

y(t) = Cx(t) + Du(t)

and the assembly of the equations of motion in this form, for the particular applica-
tion to aircraft, is explained in Section 4.4.2. Since A, B, C and D are matrices of
constant coefficients, the Laplace transform of equations (5.48), assuming zero initial
conditions is

sx(s) = Ax(s) + Bu(s)
(5.49)

y(s) = Cx(s) + Du(s)
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The state equation may be rearranged and written:

x(s) = (sI − A)−1Bu(s) (5.50)

where I is the identity matrix and is the same order as A. Thus, eliminating x(s), the
state vector, by combining the output equation and equation (5.50), the output vector
y(s) is given by

y(s) = [C(sI − A)−1B + D
]

u(s) = G(s)u(s) (5.51)

where G(s) is called the transfer function matrix. In general the transfer function
matrix has the form:

G(s) = 1

Δ(s)
N(s) (5.52)

and N(s) is a polynomial matrix whose elements are all of the response transfer
function numerators. The denominator Δ(s) is the characteristic polynomial and is
common to all transfer functions. Thus the application of the state space method to
the solution of the equations of motion of an aeroplane enables all of the response
transfer functions to be obtained in a single computation.

Now as explained in Section 4.4.2, when dealing with the solution of the equations
of motion it is usually required that y(s) = x(s), that is, the output vector and state
vector are the same. In this case equation (5.51) may be simplified since C = I and
D = 0 therefore

G(s) = (sI − A)−1B = Adj(sI − A)B

|sI − A| (5.53)

and equation (5.53) is equivalent to the multi-variable application of Cramer’s rule as
discussed in Section 5.3. Thus, comparing equation (5.53) with equation (5.52) it is
evident that the polynomial numerator matrix is given by

N(s) = Adj(sI − A)B

and the characteristic polynomial is given by

Δ(s) = |sI − A|

5.6.2 The longitudinal transfer function matrix

The concise longitudinal state equations are given by equations (4.67) and (4.68).
Thus substituting for A, B and I into equation (5.53) the longitudinal transfer function
matrix is given by

G(s) =

⎡
⎢⎢⎣

s − xu −xw −xq −xθ

−zu s − zw −zq −zθ

−mu −mw s − mq −mθ

0 0 −1 s

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

xη xτ

zη zτ

mη mτ

0 0

⎤
⎥⎥⎦ (5.54)
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Algebraic manipulation of equation (5.54) leads to

G(s) = 1

Δ(s)

⎡
⎢⎢⎣

N u
η (s) N u

τ (s)
N w

η (s) N w
τ (s)

N q
η (s) N q

τ (s)
N θ

η (s) N θ
τ (s)

⎤
⎥⎥⎦ (5.55)

In this case the numerator and denominator polynomials are expressed in terms of the
concise derivatives. A complete listing of the longitudinal algebraic transfer functions
in this form is given in Appendix 3.

5.6.3 The lateral-directional transfer function matrix

The lateral-directional state equation is given in terms of normalised derivatives by
equation (4.69). Thus substituting for A, B and I into equation (5.53) the lateral–
directional transfer function matrix is given by

G(s) =

⎡
⎢⎢⎢⎢⎣

s − yv −yp −yr −yφ −yψ

−lv s − lp −lr −lφ −lψ
−nv −np s − nr −nφ −nψ

0 −1 0 s 0
0 0 −1 0 s

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣

yξ yζ

lξ lζ
nξ nζ

0 0
0 0

⎤
⎥⎥⎥⎥⎦

(5.56)

And, as for the longitudinal solution, the lateral–directional transfer function matrix
may be written:

G(s) = 1

Δ(s)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N v
ξ (s) N v

ζ (s)

N p
ξ (s) N p

ζ (s)

N r
ξ (s) N r

ζ (s)

Nφ
ξ (s) Nφ

ζ (s)

Nψ
ξ (s) Nψ

ζ (s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.57)

Again the numerator and denominator polynomials are expressed in terms of the
concise derivatives. A complete listing of the lateral–directional algebraic transfer
functions in this form is given in Appendix 3.

Example 5.6

To illustrate the use of the state space method for obtaining the lateral–directional
transfer function matrix, data for the Lockheed C-5A was obtained from Heffley and
Jewell (1972). The data relate to a flight condition at an altitude of 20,000 ft and
Mach number 0.6 and are referred to aircraft body axes. Although the data is given in
American Imperial units, here it is converted to SI units simply for illustration. The
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normalised derivatives were derived from the data, great care being exercised toensure
the correct units. The derivatives are listed below and, as in previous examples, missing
derivatives are assumed to be insignificant and made equal to zero.

yv = −0.1060 1/s
yp = 0
yr = −189.586 m/s
yφ = 9.8073 m/s2

yψ = 0.3768 m/s2

yξ = −0.0178 m/s2

yζ = 3.3936 m/s2

lv = −0.0070 1/m s
lp = −0.9880 1/s
lr = 0.2820 1/s
lφ = 0
lψ = 0
lξ = 0.4340 1/s2

lζ = 0.1870 1/s2

nv = 0.0023 1/m s
np = −0.0921 1/s
nr = −0.2030 1/s
nφ = 0
nψ = 0
nξ = 0.0343 1/s2

nζ = −0.5220 1/s2

The lateral–directional state equation is obtained by substituting the derivative values
into equation (4.69):

⎡
⎢⎢⎣

v̇
ṗ
ṙ
φ̇

ψ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.106 0 −189.586 9.8073 0.3768
−0.007 −0.988 0.282 0 0
0.0023 −0.0921 −0.203 0 0

0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v
p
r
φ

ψ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

−0.0178 3.3936
0.434 0.187

0.0343 −0.522
0 0
0 0

⎤
⎥⎥⎦
[
ξ

ζ

]

(5.58)

and the output equation, written out in full, is

⎡
⎢⎢⎢⎢⎣

v
p
r
φ

ψ

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v
p
r
φ

ψ

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦

[
ξ

ζ

]
(5.59)

The transfer function matrix was calculated using Program CC. The matrices A, B,
C and D are input to the program and the command for finding the transfer function
matrix is invoked. A printout of the result produced the following:

G(s) = 1

Δ(s)
N(s) (5.60)

where equation (5.60) is the shorthand version of equation (5.57) and

N(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.018s(s + 0.15)(s − 0.98)(s + 367.35) 3.394s(s − 0.012)(s + 1.05)(s + 2.31)

0.434s(s − 0.002)(s2 + 0.33s + 0.57) 0.187s(s − 0.002)(s + 1.55)(s − 2.16)

0.343s(s + 0.69)(s2 − 0.77s + 0.51) −0.522s(s + 1.08)(s2 + 0.031s + 0.056)

0.434(s − 0.002)(s2 + 0.33s + 0.57) 0.187(s − 0.002)(s + 1.55)(s − 2.16)

0.343(s + 0.69)(s2 − 0.77s + 0.51) −0.522(s + 1.08)(s2 + 0.031s + 0.056)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.61)
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and the common denominator, the lateral–directional characteristic polynomial, is
given by

Δ(s) = s(s + 0.01)(s + 1.11)(s2 + 0.18s + 0.58) (5.62)

The lateral-directional characteristic polynomial factorises into three real roots and
a complex pair of roots. The roots, or poles, of the lateral–directional characteristic
polynomial provide a complete description of the lateral–directional stability char-
acteristics of the aeroplane. The zero root indicates neutral stability in yaw, the first
non-zero real root describes the spiral mode, the second real root describes the roll sub-
sidence mode and the complex pair of roots describe the oscillatory dutch roll mode.

It is very important to remember the units of the transfer functions comprising the
transfer function matrix which are

units of G(s) = 1

Δ(s)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N v
ξ (s) N v

ζ (s)

N p
ξ (s) N p

ζ (s)

N r
ξ (s) N r

ζ (s)

Nφ
ξ (s) Nφ

ζ (s)

Nψ
ξ (s) Nψ

ζ (s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

m/s/rad m/s/rad
rad/s/rad rad/s/rad
rad/s/rad rad/s/rad
rad/rad rad/rad
rad/rad rad/rad

⎤
⎥⎥⎥⎥⎦

(5.63)

Thus the transfer functions of interest can be obtained from inspection of equa-
tion (5.61) together with equation (5.62). For example, the transfer function describing
sideslip velocity response to rudder is given by

v(s)

ζ(s)
= N v

ζ (s)

Δ(s)
= 3.394(s − 0.012)(s + 1.05)(s + 29.31)

(s + 0.01)(s + 1.11)(s2 + 0.18s + 0.58)
m/s/rad (5.64)

Comparison of these results with those of the original source material in Heffley and
Jewell (1972) reveals a number of small numerical discrepancies. This is due in part
to the numerical rounding employed to keep this illustration to a reasonable size and
in part to the differences in the computational algorithms used to obtain the solutions.
However, in both cases, the accuracy is adequate for most practical purposes.

It is worth noting that many matrix inversion algorithms introduce numerical errors
that accumulate rapidly with increasing matrix order and it is possible to obtain seri-
ously inaccurate results with some poorly conditioned matrices. The typical aircraft
state matrix has a tendency to fall into this category so it is advisable to check the
result of a transfer function matrix computation for reasonableness when the accuracy
is in doubt. This may be done, for example, by making a test calculation using the
expressions given in Appendix 3. For this reason Program CC includes two different
algorithms for calculating the transfer function matrix. In Example 5.6 it was found
that the Generalised Eigenvalue Problem algorithm gave obviously incorrect values
for some transfer function numerators whereas, the Fadeeva algorithm gave entirely
the correct solution. Thus when using computer tools for handling aircraft stability
and control problems it is advisable to input the aircraft derivative and other data at
the accuracy given.
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5.6.4 Response in terms of state description

The main reasons for the adoption of state space modelling tools are the extreme power
and convenience of machine solution of the equations of motion and that the solution
is obtained in a form that readily lends itself to further analysis in the context of flight
control. Thus the solution process is usually completely hidden from the investigator.
However, it is important to be aware of the mathematical procedures implemented in
the software algorithms for the reasons mentioned above. A description of the methods
of solution of the state equations describing a general system may be found in many
books on modern control or system theory. For example, descriptions may be found
in Barnett (1975), Shinners (1980) and Owens (1981). The following description
is a summary of the solution of the aircraft state equations and only includes those
aspects of the process that are most relevant to the aircraft application. For a more
comprehensive review the reader should consult the references.

The Laplace transform of the state equations (5.49) may be restated for the general
case in which non-zero initial conditions are assumed:

sx(s) − x(0) = Ax(s) + Bu(s)
(5.65)

y(s) = Cx(s) + Du(s)

whence the state equation may be written:

x(s) = [sI − A]−1x(0) + [sI − A]−1Bu(s) (5.66)

or

x(s) = Φ(s)x(0) + Φ(s)Bu(s) (5.67)

where Φ(s) is called the resolvent of A. The most general expression for the state
vector x(t) is determined by finding the inverse Laplace transform of equation (5.67)
and is written:

x(t) = Φ(t − t0)x(t0) +
∫ t

t0
Φ(t − τ)Bu(τ)dτ (5.68)

The state transition matrix Φ(t − t0) is defined:

Φ(t − t0) = L−1{[sI − A]−1} = eA(t−t0) (5.69)

It is equivalent to the matrix exponential and describes the transition in the state
response x(t) from time t0 to time t. The state transition matrix has the following
special properties:

Φ(0) = eAt
t=0 = I

Φ(∞) = eAt
t=∞ = 0

Φ(t + τ) = Φ(t)Φ(τ) = eAteAτ (5.70)
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Φ(t2 − t0) = Φ(t2 − t1)Φ(t1 − t0) = eA(t2−t1)eA(t1−t0)

Φ−1(t) = Φ(−t) = e−At

The integral term in equation (5.68) is a convolution integral whose properties are
well known and are discussed in most texts on linear systems theory. A very accessible
explanation of the role of the convolution integral in determining system response
may be found in Auslander et al. (1974).

For aircraft applications it is usual to measure time from t0 = 0 and equation (5.68)
may be written:

x(t) = Φ(t)x(0) +
∫ t

0
Φ(t − τ)Bu(τ)dτ

= eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ) dτ (5.71)

The output response vector y(t) is determined by substituting the state vector x(t),
obtained from equation (5.71), into the output equation:

y(t) = Cx(t) + Du(t)

= CeAtx(0) + C
∫ t

0
eA(t−τ)Bu(τ) dτ + Du(t) (5.72)

Analytical solution of the state equation (5.71) is only possible when the form of
the input vector u(t) is known; therefore further limited progress can only be made
for specified applications. Three solutions are of particular interest in aircraft appli-
cations, the unforced or homogeneous response, the impulse response and the step
response.

5.6.4.1 Eigenvalues and eigenvectors
The characteristic equation is given by equating the characteristic polynomial to zero:

Δ(s) = |sI − A| = 0 (5.73)

The roots or zeros of equation (5.73), denoted λi, are the eigenvalues of the state matrix
A. An eigenvalue λi and its corresponding non-zero eigenvector vi are such that:

Avi = λivi (5.74)

whence

[λiI − A]vi = 0 (5.75)

Since vi = 0 then [λiI −A] is singular. The eigenvectors vi are always linearly inde-
pendent provided the eigenvalues λi are distinct, that is, the characteristic equation
(5.73) has no repeated roots. When an eigenvalue is complex its corresponding
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eigenvector is also complex and the complex conjugate λ∗
i corresponds with the

complex conjugate v∗
i .

The eigenvector or modal matrix comprises all of the eigenvectors and is defined:

V = [ v1 v2 · · · vm ] (5.76)

It follows directly from equation (5.74) that

AV = V

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1

λ2 0
. . .

0
. . .

λm

⎤
⎥⎥⎥⎥⎥⎥⎦

≡ V� (5.77)

where � is the diagonal eigenvalue matrix. Thus

V−1AV = � (5.78)

and A is said to be similar to the diagonal eigenvalue matrix �. The mathemati-
cal operation on the state matrix A described by equation (5.78) is referred to as a
similarity transform. Similar matrices possess the special property that their eigen-
values are the same. When the state equations are transformed to a similar form such
that the state matrix A is replaced by the diagonal eigenvalue matrix � their solu-
tion is greatly facilitated. Presented in this form the state equations are said to be in
modal form.

Eigenvectors may be determined as follows. Now by definition

[λiI − A]−1 = Adj[λiI − A]

|λiI − A| (5.79)

and since, for any eigenvalue λi, |λiI − A| = 0, equation (5.79) may be rearranged
and written:

[λiI − A]Adj[λiI − A] = |λiI − A|I = 0 (5.80)

Comparing equation (5.80) with equation (5.75) the eigenvector vi corresponding to
the eigenvalue λi is defined:

vi = Adj[λiI − A] (5.81)

Any non-zero column of the adjoint matrix is an eigenvector and if there is more than
one column they differ only by a constant factor. Eigenvectors are therefore unique
in direction only and not in magnitude. However, the dynamic characteristics of a
system determine the unique relationship between each of its eigenvectors.
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5.6.4.2 The modal equations
Define the transform

x(t) = Vz(t) ≡ v1z1(t) + v2z2(t) + · · · + vmzm(t) =
i=m∑
i=1

vizi(t) (5.82)

then the state equations (5.48) may be rewritten in modal form:

ż(t) = �z(t) + V−1Bu(t)
y(t) = CVz(t) + Du(t)

(5.83)

5.6.4.3 Unforced response
With reference to equation (5.71) the solution to the state equation in modal form,
equation (5.83), is given by

z(t) = e�tz(0) +
∫ t

0
e�(t−τ)V−1Bu(τ)dτ (5.84)

The matrix exponential e�t in diagonal form is defined:

e�t =

⎡
⎢⎢⎢⎢⎢⎢⎣

eλ1t

eλ2t 0
. . .

0
. . .

eλmt

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.85)

and since it is diagonal the solution for the transformed state variables zi(t) given by
equation (5.84) are uncoupled, the principal advantage of the transform, whence

zi(t) = eλi t zi(0) +
∫ t

0
eλi(t−τ)V

−1
Bui(τ)dτ (5.86)

The unforced response is given by equation (5.84) when u(t) = 0 whence

z(t) = e�tz(0) (5.87)

Or, substituting equation (5.87) into equation (5.82), the unforced state trajectory x(t)
may be derived:

x(t) = Ve�tz(0) =
i=m∑
i=1

vie
λi t zi(0) =

i=m∑
i=1

vie
λi tV−1xi(0) (5.88)

or

x(t) = Ve�tV−1x(0) ≡ eAtx(0) (5.89)
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and from equation (5.72) the output response follows:

y(t) = Cx(t) = CVe�tV−1x(0) ≡ CeAtx(0) (5.90)

Clearly the system behaviour is governed by the system modes eλi t , the eigenfunctions
vieλi t and by the initial state z(0) =V−1x(0).

5.6.4.4 Impulse response
The unit impulse function or Dirac delta function, denoted δ(t), is usually taken to
mean a rectangular pulse of unit area and in the limit, the width of the pulse tends
to zero whilst its magnitude tends to infinity. Thus the special property of the unit
impulse function is

∫ +∞

−∞
δ(t − t0)dt = 1 (5.91)

where t0 is the time at which the impulse commences.
The solution of the modal state equation in response to a unit impulse follows from

equation (5.84):

z(t) = e�tz(0) +
∫ t

0
e�(t−τ)V−1Buδ(τ)dτ (5.92)

where uδ(τ) is a unit impulse vector. The property of the unit impulse function enables
the convolution integral to be solved and

z(t) = e�tz(0) + e�tV−1B = e�t[z(0) + V−1B] (5.93)

Thus the transform, equation (5.82), enables the state vector to be determined:

x(t) = Ve�tV−1 [x(0) + B] ≡ eAt[x(0) + B] (5.94)

and the corresponding output response vector is given by

y(t) = CVe�tV−1[x(0) + B] + Duδ(t)

≡ CeAt[x(0) + B] + Duδ(t) (5.95)

Now for application to aeroplanes it has already been established in Section 4.4.2
that the direct matrix D is zero. Comparing equations (5.95) and (5.90) it is seen
that the impulse response is the same as the unforced response with initial condition
[x(0) + B].

5.6.4.5 Step response
When the vector input to the system is a step of constant magnitude, denoted uk ,
applied at time t0 = 0 then the state equation (5.96) may be written:

z(t) = e�tz(0) +
∫ t

0
e�(t−τ)V−1Buk dτ (5.96)
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Since the input is constant the convolution integral is easily evaluated and

z(t) = e�tz(0) + �−1[e�t − I]V−1Buk (5.97)

Thus the transform, equation (5.82), enables the state vector to be determined:

x(t) = Ve�t[V−1x(0) + �−1V−1Buk ] − A−1Buk

≡ eAt[x(0) + A−1Buk ] − A−1Buk (5.98)

The derivation of equation (5.98) makes use of the following property of the matrix
exponential:

�−1e�t ≡ e�t�−1 (5.99)

and the similarity transform:

A−1 = V�−1V−1 (5.100)

Again, the output response is obtained by substituting the state vector x(t), equation
(5.98), into the output equation to give

y(t) = CVe�t[V−1x(0) + �−1V−1Buk ] − [CA−1B − D]uk

≡ CeAt[x(0) + A−1Buk ] − [CA−1B − D]uk (5.101)

Since the direct matrix D is zero for aeroplanes, comparing equations (5.101) and
(5.95) it is seen that the step response is the same as the impulse response with initial
condition [x(0) +A−1Buk ] superimposed on the constant output −CA−1Buk .

5.6.4.6 Response shapes
With reference to equations (5.90), (5.95) and (5.101) it is clear that irrespective
of the input the transient output response shapes are governed by the system eigen-
functions Ve�t , or alternatively, by the eigenvectors and eigenvalues. Most computer
solutions of the state equations produce output response in the form of time history
data together with the eigenvalues and eigenvectors. Thus, in aircraft response analy-
sis, the system modes and eigenfunctions may be calculated if required. The value of
this facility is that it provides a very effective means for gaining insight into the key
physical properties governing the response. In particular, it enables the mode content
in any response variable to be assessed merely by inspection of the corresponding
eigenvectors.

The output response to other input functions may also be calculated algebraically
provided the input function can be expressed in a suitable analytic form. Typical exam-
ples include the ramp function and various sinusoidal functions. Computer software
packages intended for analysing system response always include a number of com-
mon input functions and usually have provision for creating other functions. However,
in aircraft response analysis input functions other than those discussed in detail above
are generally of less interest.
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Example 5.7

The longitudinal equations of motion for the Lockheed F-104 Starfighter aircraft given
in Example 5.2 may be written in state form as described in Section 4.4.2. Whence

⎡
⎢⎢⎢⎣

746 0 0 0
0 746 0 0
0 36.4 65000 0
0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u̇
ẇ
q̇
θ̇

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−26.26 79.82 0 −24021.2
−159.64 −328.24 227530 0

0 −1014 −18135 0
0 0 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0
−16502
−303575

0

⎤
⎥⎥⎥⎦η (5.102)

Pre-multiplying this equation by the inverse of the mass matrix results in the usual
form of the state equation in terms of the concise derivatives:

⎡
⎢⎢⎣

u̇
ẇ
q̇
θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.0352 0.1070 0 −32.2
−0.2140 −0.4400 305 0

1.198 × 10−4 −0.0154 −0.4498 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
−22.1206
−4.6580

0

⎤
⎥⎥⎦η

(5.103)

or, in algebraic form,

ẋ(t) = Ax(t) + Bu(t) (5.104)

which defines the matrices A and B and the vectors x(t) and u(t). Using the computer
software package MATLAB interactively the diagonal eigenvalue matrix is calculated:

� =

⎡
⎢⎢⎣

−0.4459 + 2.1644j 0 0 0
0 −0.4459 − 2.1644j 0 0
0 0 −0.0166 + 0.1474j 0
0 0 0 −0.0166 − 0.1474j

⎤
⎥⎥⎦

≡

⎡
⎢⎢⎣

λs 0 0 0
0 λ∗

s 0 0
0 0 λp 0
0 0 0 λ∗

p

⎤
⎥⎥⎦ (5.105)

and the corresponding eigenvector matrix is calculated:

V =

⎡
⎢⎢⎢⎣

0.0071 − 0.0067j 0.0071 + 0.0067j −0.9242 − 0.3816j −0.9242 + 0.3816j
0.9556 − 0.2944j 0.9556 + 0.2944j 0.0085 + 0.0102j 0.0085 − 0.0102j
0.0021 + 0.0068j 0.0021 − 0.0068j −0.0006 − 0.0002j −0.0006 + 0.0002j
0.0028 − 0.0015j 0.0028 + 0.0015j −0.0012 + 0.0045j −0.0012 − 0.0045j

⎤
⎥⎥⎥⎦

(5.106)
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λs, λp and their complex conjugates λ∗
s , λ∗

p are the eigenvalues corresponding to the
short period pitching oscillation and the phugoid respectively. The corresponding
matrix exponential is given by

e�t =

⎡
⎢⎢⎣

e(−0.4459+2.1644j)t 0 0 0
0 e(−0.4459−2.1644j)t 0 0
0 0 e(−0.0166+0.1474j)t 0
0 0 0 e(−0.0166−0.1474j)t

⎤
⎥⎥⎦

(5.107)

The eigenfunction matrixVe�t therefore has complex non-zero elements and each row
describes the dynamic content of the state variable to which it relates. For example, the
first row describes the dynamic content of the velocity perturbation u and comprises
the following four elements:

(0.0071 − 0.0067j)e(−0.4459+2.1644j)t

(0.0071 + 0.0067j)e(−0.4459−2.1644j)t

(−0.9242 − 0.3816j)e(−0.0166+0.1474j)t

(−0.9242 + 0.3816j)e(−0.0166−0.1474j)t

(5.108)

The first two elements in (5.108) describe the short period pitching oscillation content
in a velocity perturbation and the second two elements describe the phugoid content.
The relative magnitudes of the eigenvectors, the terms in parentheses, associated with
the phugoid dynamics are largest and clearly indicate that the phugoid dynamics are
dominant in a velocity perturbation. The short period pitching oscillation, on the other
hand, is barely visible. Obviously, this kind of observation can be made for all of the
state variables simply by inspection of the eigenvector and eigenvalue matrices only.
This is a very useful facility for investigating the response properties of an aeroplane,
especially when the behaviour is not conventional, when stability modes are obscured
or when a significant degree of mode coupling is present.

When it is recalled that

ejπt = cos πt + j sin πt (5.109)

where π represents an arbitrary scalar variable, the velocity eigenfunctions (5.108),
may be written alternatively:

(0.0071 − 0.0067j)e−0.4459t(cos 2.1644t + j sin 2.1644t)
(0.0071 + 0.0067j)e−0.4459t(cos 2.1644t − j sin 2.1644t)
(−0.9242 − 0.3816j)e−0.0166t(cos 0.1474t + j sin 0.1474t)
(−0.9242 + 0.3816j)e−0.0166t(cos 0.1474t − j sin 0.1474t)

(5.110)

Since the elements in (5.110) include sine and cosine functions of time the origins
of the oscillatory response characteristics in the overall solution of the equations of
motion are identified.
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As described in Examples 5.2 and 5.3 the damping ratio and undamped natural fre-
quency characterise the stability modes. This information comprises the eigenvalues,
included in the matrix equation (5.105), and is interpreted as follows:

(i) For the short period pitching oscillation, the higher frequency mode:

Undamped natural frequency ωs = 2.1644 rad/s

ζsωs = 0.4459 rad/s

Damping ratio ζs = 0.206

(ii) For the phugoid oscillation, the lower frequency mode:

Undamped natural frequency ωp = 0.1474 rad/s

ζpωp = 0.0166 rad/s

Damping ratio ζp = 0.1126

It is instructive to calculate the pitch attitude response to a unit elevator step input
using the state space method for comparison with the method described in Example
5.3. The step response is given by equation (5.101) which, for zero initial conditions, a
zero direct matrix D and output matrix C replaced with the identity matrix I reduces to

y(t) = IVe�t�−1V−1Buk − IA−1Buk

= Ve�t�−1V−1b − A−1b (5.111)

Since the single elevator input is a unit step uk = 1 and the input matrix B becomes
the column matrix b. The expression on the right hand side of equation (5.111) is a
(4 × 1) column matrix the elements of which describe u, w, q and θ responses to the
input. With the aid of MATLAB the following were calculated:

�−1V−1b =

⎡
⎢⎢⎣

147.36 + 19.07j
147.36 − 19.07j

223.33 − 133.29j
223.33 + 133.29j

⎤
⎥⎥⎦ A−1b =

⎡
⎢⎢⎣

−512.2005
299.3836

0
1.5548

⎤
⎥⎥⎦ (5.112)

The remainder of the calculation of the first term on the right hand side of equation
(5.111) was completed by hand, an exercise that is definitely not recommended! Pitch
attitude response is given by the fourth row of the resulting column matrix y(t) and is

θ(t) = 0.664e−0.017t(cos 0.147t − 3.510 sin 0.147t)

+ 0.882e−0.446t(cos 2.164t + 0.380 sin 2.164t) − 1.5548 (5.113)

This equation compares very favourably with equation (5.32) and may be
interpreted in exactly the same way.
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This example is intended to illustrate the role of the various elements contributing
to the solution and as such would not normally be undertaken on a routine basis.
Machine computation simply produces the result in the most accessible form that is
usually graphical although the investigator can obtain additional information in much
the same way as shown in this example.

5.7 STATE SPACE MODEL AUGMENTATION

It is frequently necessary to obtain response characteristics for variables that are not
included in the equations of motion of the aeroplane. Provided that the variables
of interest can be expressed as functions of the basic aeroplane motion variables
then response transfer functions can be derived in the same way as the acceleration
response transfer functions described in Section 5.5. However, when the additional
transfer functions of interest are strictly proper they can also be obtained by extending,
or augmenting, the state description of the aeroplane and solving in the usual way as
described above. This latter course of action is extremely convenient as it extends the
usefulness of the aeroplane state space model and requires little additional effort on
behalf of the investigator.

For some additional variables, such as height, it is necessary to create a new state
variable and to augment the state equation accordingly. Whereas for others, such as
flight path angle, which may be expressed as the simple sum of basic aeroplane state
variables it is only necessary to create an additional output variable and to augment the
output equation accordingly. It is also a straightforward matter to augment the state
description to include the additional dynamics of components such as engines and
control surface actuators. In this case, all of the response transfer functions obtained in
the solution of the equations of motion implicitly include the effects of the additional
dynamics.

5.7.1 Height response transfer function

An expression for height rate is given by equation (2.17) which, for small
perturbations, may be written:

ḣ = Uθ − Vφ − W (5.114)

Substitute for (U , V , W ) from equation (2.1) and note that for symmetric flight Ve = 0.
Since the products of small quantities are insignificantly small they may be ignored
and equation (5.114) may be written:

ḣ = Ueθ − We − w (5.115)

With reference to Fig. 2.4, assuming αe to be small then, Ue ∼= V0, We ∼= 0 and to a
good approximation equation (5.114) may be written:

ḣ = V0θ − w (5.116)
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The decoupled longitudinal state equation in concise form, equation (4.67), may be
augmented to include the height variable by the inclusion of equation (5.116):

⎡
⎢⎢⎢⎢⎣

u̇
ẇ
q̇

θ̇

ḣ

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

xu xw xq xθ 0
zu zw zq zθ 0
mu mw mq mθ 0
0 0 1 0 0
0 −1 0 V0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u
w
q
θ

h

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

xη xτ

zη zτ

mη mτ

0 0
0 0

⎤
⎥⎥⎥⎥⎦

[
η

τ

]
(5.117)

Alternatively, this may be written in a more compact form:

⎡
⎣

ẋ(t)
......

ḣ(t)

⎤
⎦ =

⎡
⎢⎣ A

... 0
...............................

0 −1 0 V0
... 0

⎤
⎥⎦
⎡
⎣x(t)

......

h(t)

⎤
⎦+

[
B

.......

0 0

]
u(t) (5.118)

where x(t) and u(t) are the state and input vectors respectively, and A and B
are the state and input matrices respectively of the basic aircraft state equation
(4.67). Solution of equation (5.118) to obtain the longitudinal response trans-
fer functions will now result in two additional transfer functions describing the
height response to an elevator perturbation and the height response to a thrust
perturbation.

5.7.2 Incidence and sideslip response transfer functions

Dealing with the inclusion of incidence angle in the longitudinal decoupled equations
of motion first. It follows from equation (2.5) that for small perturbation motion
incidence α is given by

α ∼= tan α = w

V0
(5.119)

since Ue → V0 as the perturbation tends to zero. Thus incidence α is equivalent
to normal velocity w divided by the steady free stream velocity. Incidence can be
included in the longitudinal state equations in two ways. Either, incidence can be
added to the output vector y(t) without changing the state vector or, it can replace
normal velocity w in the state vector. When the output equation is augmented the
longitudinal state equations (4.67) and (4.68) are written:

ẋ(t) = Ax(t) + Bu(t)

y(t) =

⎡
⎢⎢⎢⎢⎣

u
w
q
θ

α

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1/V0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦ =

⎡
⎣

I
........................

0 1/V0 0 0

⎤
⎦x(t) (5.120)
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When incidence replaces normal velocity, it is first necessary to note that equation
(5.119) may be differentiated to give α̇ = ẇ/V0. Thus the longitudinal state equation
(4.67) may be rewritten:

⎡
⎢⎢⎣

u̇
α̇

q̇
θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xu xwV0 xq xθ

zu/V0 zw zq/V0 zθ/V0

mu mwV0 mq mθ

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
α

q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

xη xτ

zη/V0 zτ/V0

mη mτ

0 0

⎤
⎥⎥⎦
[
η

τ

]

(5.121)

The output equation (4.68) remains unchanged except that the output vector y(t) now
includes α instead of w thus

yT(t) = [u α q θ] (5.122)

In a similar way it is easily shown that in a lateral perturbation the sideslip angle β is
given by

β ∼= tan β = v

V0
(5.123)

and the lateral small perturbation equations can be modified in the same way as the
longitudinal equations in order to incorporate sideslip angle β in the output equation
or alternatively, it may replace lateral velocity v in the state equation. When the output
equation is augmented, the lateral state equations may be written:

ẋ(t) = Ax(t) + Bu(t)

y(t) =

⎡
⎢⎢⎢⎢⎣

v
p
r
φ

β

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1/V0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

v
p
r
φ

⎤
⎥⎥⎦ =

⎡
⎣

I
.......................

1/V0 0 0 0

⎤
⎦x(t) (5.124)

where the lateral state equation is given by equation (4.70). When sideslip angle β

replaces lateral velocity v in the lateral state equation (4.70), it is then written:
⎡
⎢⎢⎣

β̇

ṗ
ṙ
φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

yv yp/V0 yr/V0 yφ/V0

lvV0 lp lr lφ
nvV0 np nr nφ

0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β

p
r
φ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

yξ/V0 yζ/V0

lξ lζ
nξ nζ

0 0

⎤
⎥⎥⎦
[
ξ

ζ

]

(5.125)

Again, for this alternative, the lateral output vector y(t) remains unchanged except
that sideslip angle β replaces lateral velocity v thus

yT(t) = [β p r φ] (5.126)

Solution of the longitudinal or lateral state equations will produce the transfer func-
tion matrix in the usual way. In every case, transfer functions will be calculated to
correspond with the particular set of variables comprising the output vector.



Ch05-H6927.tex 20/6/2007 16: 34 Page 131

The Solution of the Equations of Motion 131

5.7.3 Flight path angle response transfer function

Sometimes flight path angle γ response to controls is required, especially when han-
dling qualities in the approach flight condition are under consideration. Perturbations
in flight path angle γ may be expressed in terms of perturbations in pitch attitude θ

and incidence α, as indicated for the steady state case by equation (2.2). Whence

γ = θ − α ∼= θ − w

V0
(5.127)

Thus the longitudinal output equation (4.68) may be augmented to include flight path
angle as an additional output variable. The form of the longitudinal state equations is
then similar to equation (5.120) and

ẋ(t) = Ax(t) + Bu(t)

y(t) =

⎡
⎢⎢⎢⎢⎣

u
w
q
θ

γ

⎤
⎥⎥⎥⎥⎦

=
⎡
⎣

I
............................

0 −1/V0 0 1

⎤
⎦ x(t) (5.128)

where the state vector x(t) remains unchanged:

xT(t) = [u w q θ] (5.129)

5.7.4 Addition of engine dynamics

Provided that the thrust producing devices can be modelled by a linear transfer func-
tion then, in general, it can be integrated into the aircraft state description. This then
enables the combined engine and airframe dynamics to be modelled by the overall
system response transfer functions. A very simple engine thrust model is described
by equation (2.34), with transfer function:

τ(s)

ε(s)
= kτ

(1 + sTτ)
(5.130)

where τ(t) is the thrust perturbation in response to a perturbation in throttle lever
angle ε(t). The transfer function equation (5.130) may be rearranged thus

sτ(s) = kτ

Tτ

ε(s) − 1

Tτ

τ(s) (5.131)

and this is the Laplace transform, assuming zero initial conditions, of the following
time domain equation:

τ̇(t) = kτ

Tτ

ε(t) − 1

Tτ

τ(t) (5.132)
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The longitudinal state equation (4.67) may be augmented to include the engine
dynamics described by equation (5.132) which, after some rearrangement, may be
written:

⎡
⎢⎢⎢⎢⎣

u̇
ẇ
q̇

θ̇
τ̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

xu xw xq xθ xτ

zu zw zq zθ zτ

mu mw mq mθ mτ

0 0 1 0 0
0 0 0 0 −1/Tτ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u
w
q
θ

τ

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

xη 0
zη 0
mη 0
0 0
0 kτ/Tτ

⎤
⎥⎥⎥⎥⎦

[
η

ε

]
(5.133)

Thus the longitudinal state equation has been augmented to include thrust as an
additional state and the second input variable is now throttle lever angle ε. The output
equation (4.68) remains unchanged except that the C matrix is increased in order
to the (5 × 5) identity matrix I in order to provide the additional output variable
corresponding to the extra state variable τ.

The procedure described above in which a transfer function model of engine dynam-
ics is converted to a form suitable for augmenting the state equation is known as system
realisation. More generally, relatively complex higher order transfer functions can
be realised as state equations although the procedure for so doing is rather more
involved than that illustrated here for a particularly simple example. The mathemat-
ical methods required are described in most books on modern control theory. The
advantage and power of this relatively straightforward procedure is very considerable
since it literally enables the state equation describing a very complex system, such as
an aircraft with advanced flight controls, to be built by repeated augmentation. The
state descriptions of the various system components are simply added to the matrix
state equation until the overall system dynamics are fully represented. Typically this
might mean, for example, that the basic longitudinal or lateral (4 × 4) airframe state
matrix might be augmented to a much higher order of perhaps (12 × 12) or more,
depending on the complexity of the engine model, control system, surface actuators
and so on. However, whatever the result the equations are easily solved using the tools
described above.

Example 5.8

To illustrate the procedure for augmenting an aeroplane state model, let the longitudi-
nal model for the Lockheed F-104 Starfighter of Example 5.2 be augmented to include
height h and flight path angle γ and to replace normal velocity w with incidence α.
The longitudinal state equation expressed in terms of concise derivatives is given by
equation (5.103) and this is modified in accordance with equation (5.121) to replace
normal velocity w with incidence α,

⎡
⎢⎢⎣

u̇
α̇

q̇
θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.0352 32.6342 0 −32.2
−7.016E − 04 −0.4400 1 0
1.198E − 04 −4.6829 −0.4498 0

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
α

q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
−0.0725
−4.6580

0

⎤
⎥⎥⎦η

(5.134)
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Equation (5.134) is now augmented by the addition of equation (5.116), the height
equation expressed in terms of incidence α and pitch attitude θ:

ḣ = V0(θ − α) = 305θ − 305α (5.135)

whence the augmented state equation is written:

⎡
⎢⎢⎢⎢⎣

u̇
α̇

q̇
θ̇

ḣ

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

−0.0352 32.6342 0 −32.2 0
−7.016 × 10−4 −0.4400 1 0 0
1.198 × 10−4 −4.6829 −0.4498 0 0

0 0 1 0 0
0 −305 0 305 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u
α

q
θ

h

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
−0.0725
−4.6580

0
0

⎤
⎥⎥⎥⎥⎦

η

(5.136)

The corresponding output equation is augmented to included flight path angle γ as
given by equation (5.127) and is then written:

⎡
⎢⎢⎢⎢⎢⎢⎣

u
α

q
θ

h
γ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u
α

q
θ

h

⎤
⎥⎥⎥⎥⎦

(5.137)

This, of course, assumes the direct matrix D to be zero as discussed above. Equations
(5.136) and (5.137) together provide the complete state description of the Lockheed
F-104 as required. Solving these equations with the aid of Program CC results in the
six transfer functions describing the response to elevator;

(i) The common denominator polynomial (the characteristic polynomial) is
given by

Δ(s) = s(s2 + 0.033s + 0.022)(s2 + 0.892s + 4.883) (5.138)

(ii) The numerator polynomials are given by

N u
η (s) = −2.367s(s − 4.215)(s + 5.519) ft/s/rad

Nα
η (s) = −0.073s(s + 64.675)(s2 + 0.035s + 0.023) rad/rad

N q
η (s) = −4.658s2(s + 0.134)(s + 0.269) rad/s/rad

(5.139)
N θ

η (s) = −4.658s(s + 0.134)(s + 0.269) rad/rad

N h
η (s) = 22.121(s + 0.036)(s − 4.636)(s + 5.085) ft/rad

N γ
η (s) = 0.073s(s + 0.036)(s − 4.636)(s + 5.085) rad/rad



Ch05-H6927.tex 20/6/2007 16: 34 Page 134

134 Flight Dynamics Principles

Note that the additional zero pole in the denominator is due to the increase in order of
the state equation from four to five and represents the height integration. This is easily
interpreted since an elevator step input will cause the aeroplane to climb or descend
steadily after the transient has died away when the response becomes similar to that
of a simple integrator. Note also that the denominator zero cancels with a zero in all
numerator polynomials except that describing the height response. Thus the response
transfer functions describing the basic aircraft motion variables u, α, q and θ are
identically the same as those obtained from the basic fourth order state equations. The
reason for the similarity between the height and flight path angle response numerators
becomes obvious if the expression for the height equation (5.135) is compared with
the expression for flight path angle, equation (5.127).
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PROBLEMS

1. The free response x(t) of a linear second order system after release from an
initial displacement A is given by

x(t) = 1

2
Ae−ωζt

((
1 + ζ√

ζ2 − 1

)
e−ωt

√
ζ2−1 +

(
1 − ζ√

ζ2 − 1

)
eωt

√
ζ2−1

)

where ω is the undamped natural frequency and ζ is the damping ratio:

(i) With the aid of sketches show the possible forms of the motion as ζ varies
from zero to a value greater than 1.

(ii) How is the motion dependent on the sign of ζ?
(iii) How do the time response shapes relate to the solution of the equations of

motion of an aircraft?
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(iv) Define the damped natural frequency and explain how it depends on
damping ratio ζ. (CU 1982)

2. For an aircraft in steady rectilinear flight describe flight path angle, incidence
and attitude and show how they are related. (CU 1986)

3. Write down the Laplace transform of the longitudinal small perturbation equa-
tions of motion of an aircraft for the special case when the phugoid motion is
suppressed. It may be assumed that the equations are referred to wind axes and

that the influence of the derivatives
◦
Zq,

◦
Zẇ and

◦
M ẇ is negligible. State all other

assumptions made:

(i) By the application of Cramer’s rule obtain algebraic expressions for the
pitch rate response and incidence angle response to elevator transfer
functions.

(ii) Derivative data for the Republic Thunderchief F-105B aircraft flying at an
altitude of 35,000 ft and a speed of 518 kt are,

◦
Zw

m
= −0.4 1/s

◦
M w

Iy
= −0.0082 1/ft s

◦
M q

Iy
= −0.485 1/s

◦
M η

Iy
= −12.03 1/s2

◦
Zη

m
= −65.19 ft/s2

Evaluate the transfer functions for this aircraft and calculate values for the
longitudinal short period mode frequency and damping.

(iii) Sketch the pitch rate response to a 1◦ step of elevator angle and indicate
the significant features of the response. (CU 1990)

4. The roll response to aileron control of the Douglas DC-8 airliner in an approach
flight condition is given by the following transfer function:

φ(s)

ξ(s)
= −0.726(s2 + 0.421s + 0.889)

(s − 0.013)(s + 1.121)(s2 + 0.22s + 0.99)

Realise the transfer function in terms of its partial fractions and by calculating
the inverse Laplace transform, obtain an expression for the roll time history in
response to a unit aileron impulse. State all assumptions.

5. Describe the methods by which the normal acceleration response to elevator
transfer function may be calculated. Using the Republic Thunderchief F-105B
model given in Question 3 calculate the transfer function az(s)/η(s):

(i) With the aid of MATLAB, Program CC or similar software tools, obtain
a normal acceleration time history response plot for a unit elevator step
input. Choose a time scale of about 10 s.

(ii) Calculate the inverse Laplace transform of az(s)/η(s) for a unit step eleva-
tor input. Plot the time history given by the response function and compare
with that obtained in 5(i).
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6. The lateral–directional equations of motion for the Boeing B-747 cruising at
Mach 0.8 at 40,000 ft are given by Heffley and Jewell (1972) as follows:

⎡
⎢⎢⎢⎢⎢⎣

(s + 0.0558) | − (62.074s + 32.1)

774
| (771.51s − 2.576)

774− − − − − − − | − − − − − − −− | − − − − − − −
3.05 | s(s + 0.465) | −0.388

− − − − − − − | − − − − − − −− | − − − − − − −
−0.598 | 0.0318s | (s + 0.115)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

β

p

s
r

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 | 0.00729
− − − −| − − − −
0.143 | 0.153
− − − −| − − − −
0.00775 | −0.475

⎤
⎥⎥⎥⎥⎦

[
ξ

ζ

]

where s is the Laplace operator and all angles are in radians. Using Cramer’s
rule, calculate all of the response transfer functions and factorize the numerators
and common denominator. What are the stability modes characteristics at this
flight condition?

7. The longitudinal equations of motion as given by Heffley and Jewell (1972) are

⎡
⎢⎢⎢⎢⎣

(1 − Xu̇)s − X∗
u | −Xẇs − X∗

w | (−Xq + We)s + g cos θe

− − − − − − − − − | − − − − − − − − − | − − − − − − − − −
−Zu̇s − Z∗

u | (1 − Zẇ)s − Zw | (−Zq − Ue)s + g sin θe

− − − − − − − − − | − − − − − − − − − | − − − − − − − − −
−Mu̇s − M∗

u | −(Mẇs + Mw) | s2 − Mqs

⎤
⎥⎥⎥⎥⎦

⎡
⎣

u
w
θ

⎤
⎦

=
⎡
⎣

Xη

Zη

Mη

⎤
⎦ η

q = sθ

ḣ = −w cos θe + u sin θe + (Ue cos θe + We sin θe)

az = sw − Ueq + (g sin θe
)
θ

Note that the derivatives are in an American notation and represent the mass
or inertia divided dimensional derivatives as appropriate. The * symbol on the
speed dependent derivatives indicates that they include thrust effects as well
as the usual aerodynamic characteristics. All other symbols have their usual
meanings.

Rearrange these equations into the state space format:

Mẋ(t) = A′x(t) + B′u(t)

y(t) = Cx(t) + Du(t)

with state vector x = [u w q θ h], input vector u = η and output vector
y = [u w q θ h az]. State all assumptions made.
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8. Longitudinal data for the DouglasA-4D Skyhawk flying at Mach 1.0 at 15,000 ft
are given in Teper (1969) as follows:

Trim pitch attitude 0.4◦
Speed of sound at 15,000 ft 1058 ft/s
Xw − 0.0251 1/s Mẇ −0.000683 1/ft
Xu − 0.1343 1/s Mq −2.455 1/s
Zw − 1.892 1/s Xη −15.289 ft/rad/s2

Zu − 0.0487 1/s Zη −94.606 ft/rad/s2

Mw − 0.1072 Mη −31.773 1/s2

Mu 0.00263 1/ft s

Using the state space model derived in Problem 7, obtain the state equations
for the Skyhawk in the following format:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Using MATLAB or Program CC, solve the state equations to obtain the response
transfer functions for all output variables. What are the longitudinal stability
characteristics of the Skyhawk at this flight condition?
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Longitudinal Dynamics

6.1 RESPONSE TO CONTROLS

The solution of the longitudinal equations of motion by, for example, the methods
described in Chapter 5 enables the response transfer functions to be obtained. These
completely describe the linear dynamic response to a control input in the plane of
symmetry. Implicit in the response are the dynamic properties determined by the
stability characteristics of the aeroplane. The transfer functions and the response
variables described by them are linear since the entire modelling process is based on
the assumption that the motion is constrained to small disturbances about an equi-
librium trim state. However, it is common practice to assume that the response to
controls is valid when the magnitude of the response can hardly be described as
“a small perturbation’’. For many conventional aeroplanes the error incurred by so
doing is generally acceptably small as such aeroplanes tend to have substantially lin-
ear aerodynamic characteristics over their flight envelopes. For aeroplanes with very
large flight envelopes, significant aerodynamic non-linearity and, or, dependence on
sophisticated flight control systems, it is advisable not to use the linearised equations
of motion for analysis of response other than that which can justifiably be described
as being of small magnitude.

It is convenient to review the longitudinal response to elevator about a trim state
in which the thrust is held constant. The longitudinal state equation (4.67) may then
be written:

⎡
⎢⎢⎣

u̇
ẇ
q̇

θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xu xw xq xθ

zu zw zq zθ

mu mw mq mθ

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

xη

zη

mη

0

⎤
⎥⎥⎦η (6.1)

The four response transfer functions obtained in the solution of equation (6.1) may
conveniently be written:

u(s)

η(s)
≡ N u

η (s)

Δ(s)
= ku(s + 1/Tu)(s2 + 2ζuωus + ω2

u)

(s2 + 2ζpωps + ω2
p)(s2 + 2ζsωss + ω2

s )
(6.2)

w(s)

η(s)
≡ N w

η (s)

Δ(s)
= kw(s + 1/Tα)(s2 + 2ζαωαs + ω2

α)

(s2 + 2ζpωps + ω2
p)(s2 + 2ζsωss + ω2

s )
(6.3)

138
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q(s)

η(s)
≡ N q

η (s)

Δ(s)
= kqs(s + (1/Tθ1 ))(s + (1/Tθ2 ))

(s2 + 2ζpωps + ω2
p)(s2 + 2ζsωss + ω2

s )
(6.4)

θ(s)

η(s)
≡ N θ

η (s)

Δ(s)
= kθ(s + (1/Tθ1 ))(s + (1/Tθ2 ))

(s2 + 2ζpωps + ω2
p)(s2 + 2ζsωss + ω2

s )
(6.5)

The solution of the equations of motion results in polynomial descriptions of the
transfer function numerators and common denominator as set out in Appendix 3. The
polynomials factorise into real and complex pairs of roots that are most explicitly
quoted in the style of equations (6.2)–(6.5) above. Since the roots are interpreted
as time constants, damping ratios and natural frequencies the above style of writing
makes the essential information instantly available. It should also be noted that the
numerator and denominator factors are typical for a conventional aeroplane. Some-
times complex pairs of roots may become two real roots and vice versa. However,
this does not usually mean that the dynamic response characteristics of the aeroplane
become dramatically different. Differences in the interpretation of response may be
evident but will not necessarily be large.

As has already been indicated, the common denominator of the transfer functions
describes the characteristic polynomial which, in turn, describes the stability char-
acteristics of the aeroplane. Thus the response of all variables to an elevator input is
dominated by the denominator parameters namely, damping ratios and natural fre-
quencies. The differences between the individual responses is entirely determined by
their respective numerators. It is therefore important to fully appreciate the role of
the numerator in determining response dynamics. The response shapes of the indi-
vidual variables are determined by the common denominator and “coloured’’ by their
respective numerators. The numerator plays no part in determining stability in a linear
system which is how the aeroplane is modelled here.

Example 6.1

The equations of motion and aerodynamic data for the Ling-Temco-Vought A-7A
Corsair II aircraft were obtained from Teper (1969). The flight condition corresponds
to level cruising flight at an altitude of 15,000 ft at Mach 0.3. The equations of motion,
referred to a body axis system, arranged in state space format are

⎡
⎢⎢⎢⎣

u̇

ẇ

q̇

θ̇

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0.00501 0.00464 −72.90000 −31.34000

−0.08570 −0.54500 309.00000 −7.40000

0.00185 −0.00767 −0.39500 0.00132

0 0 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u

w

q

θ

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

5.63000

−23.80000

−4.51576

0

⎤
⎥⎥⎥⎦η

(6.6)

Since incidence α and flight path angle γ are useful variables in the evaluation of
handling qualities, it is convenient to augment the corresponding output equation, as
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described in paragraph 5.7, in order to obtain their response transfer functions in the
solution of the equations of motion. The output equation is therefore,

⎡
⎢⎢⎢⎢⎢⎢⎣

u
w
q

θ

α

γ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0.00316 0 0
0 −0.00316 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

η (6.7)

Note that all elements in the matrices in equations (6.6) and (6.7) have been rounded
to five decimal places simply to keep the equations to a reasonable physical size. This
should not be done with the equations used in the actual computation.

Solution of the equations of motion using Program CC determines the following
response transfer functions:

u(s)

η(s)
= 5.63(s + 0.369)(s + 0.587)(s + 58.437)

(s2 + 0.033s + 0.020)(s2 + 0.902s + 2.666)
ft/s/rad

w(s)

η(s)
= −23.8(s2 − 0.0088s + 0.0098)(s + 59.048)

(s2 + 0.033s + 0.020)(s2 + 0.902s + 2.666)
ft/s/rad

q(s)

η(s)
= −4.516s(s − 0.008)(s + 0.506)

(s2 + 0.033s + 0.020)(s2 + 0.902s + 2.666)
rad/s/rad (deg/s/deg)

(6.8)
θ(s)

η(s)
= −4.516(s − 0.008)(s + 0.506)

(s2 + 0.033s + 0.020)(s2 + 0.902s + 2.666)
rad/rad (deg/deg)

α(s)

η(s)
= −0.075(s2 − 0.0088s + 0.0098)(s + 59.048)

(s2 + 0.033s + 0.020)(s2 + 0.902s + 2.666)
rad/rad (deg/deg)

γ(s)

η(s)
= 0.075(s − 0.027)(s + 5.004)(s − 6.084)

(s2 + 0.033s + 0.020)(s2 + 0.902s + 2.666)
rad/rad (deg/deg)

All coefficients have again been rounded to a convenient number of decimal places
and the above caution should be noted.

The characteristic equation is given by equating the common denominator
polynomial to zero:

Δ(s) = (s2 + 0.033s + 0.020)(s2 + 0.902s + 2.666) = 0

The first pair of complex roots describes the phugoid stability mode, with character-
istics:

Damping ratio ζp = 0.11
Undamped natural frequency ωp = 0.14 rad/s
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The second pair of complex roots describes the short period pitching oscillation, or
short period stability mode, with characteristics:

Damping ratio ζs = 0.28
Undamped natural frequency ωs = 1.63 rad/s

These mode characteristics indicate that the airframe is aerodynamically stable
although it will be shown later that the short-period mode damping ratio is
unacceptably low.

The response of the aircraft to a unit step (1◦) elevator input is shown in Fig. 6.1.
All of the variables in the solution of the equations of motion are shown the responses
being characterised by the transfer functions, equations (6.8).

The responses clearly show both dynamic stability modes, the short period pitching
oscillation and the phugoid. However, the magnitude of each stability mode differs
in each response variable. For example, the short period pitching oscillation is most
visible as the initial transient in the variables w, q and α whereas the phugoid mode
is visible in all variables although the relative magnitudes vary considerably. Clearly
the stability of the responses is the same, as determined by the common denominator
of the transfer functions, equations (6.8), but the differences between each of the
response variables is determined by the unique numerator of each response transfer
function.

The mode content in each of the motion variables is given most precisely by the
eigenvectors. The analytical procedure described in Example 5.7 is applied to the
equations of motion for the A-7A. With the aid of MATLAB the eigenvector matrix
V is determined as follows:

Short period mode Phugoid mode

V =

⎡
⎢⎢⎣

−0.1682 − 0.1302j −0.1682 + 0.1302j | 0.1467 + 0.9677j 0.1467 − 0.9677j
0.2993 + 0.9301j 0.2993 − 0.9301j | 0.0410 + 0.2008j 0.0410 − 0.2008j

−0.0046 + 0.0018j −0.0046 − 0.0018j | 0.0001 + 0.0006j 0.0001 − 0.0006j
0.0019 + 0.0024j 0.0019 − 0.0024j | 0.0041 − 0.0013j 0.0041 + 0.0013j

⎤
⎥⎥⎦

: u
: w
: q
: θ

(6.9)

To facilitate interpretation of the eigenvector matrix, the magnitude of each
component eigenvector is calculated as follows:

⎡
⎢⎢⎣

0.213 0.213 | 0.979 0.979
0.977 0.977 | 0.204 0.204
0.0049 0.0049 | 0.0006 0.0006
0.0036 0.0036 | 0.0043 0.0043

⎤
⎥⎥⎦

: u
: w
: q
: θ

Clearly, the phugoid mode is dominant in u since 0.979 � 0.213, the short period
mode is dominant in w since 0.977 � 0.204, the short period mode is dominant in
q since 0.0049 � 0.0006 and the short period and phugoid modes content in θ are
of a similar order. These observations accord very well with the responses shown in
Fig. 6.1.

The steady state values of the variables following a unit step (1◦) elevator input
may be determined by application of the final value theorem, equation (5.33). The
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Figure 6.1 Aircraft response to 1◦ elevator step input.
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transfer functions, equations (6.8), assume a unit elevator displacement to mean 1 rad
and this has transfer function:

η(s) = 1

s
rad

For a unit step input of 1◦ the transfer function becomes

η(s) = 1

57.3s
= 0.0175

s
rad

Thus, for example, the Laplace transform of the speed response to a 1◦ elevator step
input is given by

u(s) = 5.63(s + 0.369)(s + 0.587)(s + 58.437)

(s2 + 0.033s + 0.020)(s2 + 0.902s + 2.666)

0.0175

s
ft/s

Applying the final value theorem, equation (5.33):

u(t)|ss = Lim
s→0

(
s

5.63(s + 0.369)(s + 0.587)(s + 58.437)

(s2 + 0.033s + 0.020)(s2 + 0.902s + 2.666)

0.0175

s

)
ft/s

= 23.39 ft/s

Since the step input is positive in the nose down sense the response eventually settles
to the small steady increase in speed indicated.

In a similar way the steady state response of all the motion variables may be
calculated to give

⎡
⎢⎢⎢⎢⎢⎢⎣

u
w
q
θ

α

γ

⎤
⎥⎥⎥⎥⎥⎥⎦

steady
state

=

⎡
⎢⎢⎢⎢⎢⎢⎣

23.39 ft/s
−4.53 ft/s

0
0.34◦

−0.81◦
1.15◦

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.10)

It is important to remember that the steady state values given in equation (6.10)
represent the changes with respect to the initial equilibrium trim state following the
1◦ elevator step input. Although the initial response is applied in the nose down sense,
inspection of equation (6.10) indicates that after the mode transients have damped
out the aircraft is left with a small reduction in incidence, a small increase in pitch
attitude and is climbing steadily at a flight path angle of 1.15◦. This apparent anomaly
is due to the fact that at the chosen flight condition the aircraft is operating close
to the stall boundary on the back side of the drag-speed curve, that is, below the
minimum drag speed. Thus the disturbance results in a significant decrease in drag
leaving the aircraft with sufficient excess power enabling it to climb gently. It is for
the same reason that a number of the transfer functions (6.8), have non-minimum
phase numerator terms where these would not normally be expected.
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6.1.1 The characteristic equation

The longitudinal characteristic polynomial for a classical aeroplane is fourth order; it
determines the common denominator in the longitudinal response transfer functions
and, when equated to zero, defines the characteristic equation which may be written:

As4 + Bs3 + Cs2 + Ds + E = 0 (6.11)

The characteristic equation (6.11) most commonly factorises into two pairs of complex
roots which are most conveniently written:

(s2 + 2ζpωps + ω2
p)(s2 + 2ζsωss + ω2

s ) = 0 (6.12)

As already explained, the second order characteristics in equation (6.12) describe the
phugoid and short period stability modes respectively. The stability modes comprising
equation (6.12) provide a complete description of the longitudinal stability properties
of the aeroplane subject to the constraint of small perturbation motion. Interpretation
of the characteristic equation written in this way is most readily accomplished if
reference is first made to the properties of the classical mechanical mass-spring-
damper system which are summarised in Appendix 6.

Thus the longitudinal dynamics of the aeroplane may be likened to a pair of loosely
coupled mass-spring-damper systems and the interpretation of the motion of the aero-
plane following a disturbance from equilibrium may be made by direct comparison
with the behaviour of the mechanical mass-spring-damper. However, the damping
and frequency characteristics of the aeroplane are obviously not mechanical in origin,
they derive entirely from the aerodynamic properties of the airframe. The connection
between the observed dynamics of the aeroplane and its aerodynamic characteris-
tics is made by comparing equation (6.12) with equation (6.11) and then referring
to Appendix 3 for the definitions of the coefficients in equation (6.11) in terms of
aerodynamic stability derivatives. Clearly, the relationships between the damping
ratios and undamped frequencies of equation (6.12) and their aerodynamic drivers
are neither obvious nor simple. Means for dealing with this difficulty are described
below in which simplifying approximations are made based on the observation and
understanding of the physical behaviour of aeroplane dynamics.

6.2 THE DYNAMIC STABILITY MODES

Both longitudinal dynamic stability modes are excited whenever the aeroplane is
disturbed from its equilibrium trim state. A disturbance may be initiated by pilot
control inputs, a change in power setting, airframe configuration changes such as flap
deployment and by external atmospheric influences such as gusts and turbulence.

6.2.1 The short period pitching oscillation

The short period mode is typically a damped oscillation in pitch about the oy axis.
Whenever an aircraft is disturbed from its pitch equilibrium state the mode is excited
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Figure 6.2 A stable short period pitching oscillation.

and manifests itself as a classical second order oscillation in which the principal
variables are incidence α(w), pitch rate q and pitch attitude θ. This observation is
easily confirmed by reference to the eigenvectors in the solution of the equations of
motion; this may be seen in Example 6.1 and also in Fig. 6.1. Typically the undamped
natural frequency of the mode is in the range 1 rad/s to 10 rad/s and the damping is
usually stabilising although the damping ratio is often lower than desired. A significant
feature of the mode is that the speed remains approximately constant (u = 0) during a
disturbance. As the period of the mode is short, inertia and momentum effects ensure
that speed response in the time scale of the mode is negligible.

The physical situation applying can be interpreted by comparison with a torsional
mass-spring-damper system. The aircraft behaves as if it were restrained by a tor-
sional spring about the oy axis as indicated in Fig. 6.2. A pitch disturbance from trim
equilibrium causes the “spring’’ to produce a restoring moment thereby giving rise
to an oscillation in pitch. The oscillation is damped and this can be interpreted as
a viscous damper as suggested in Fig. 6.2. Of course the spring and viscous damp-
ing effects are not mechanical. In reality they are produced entirely by aerodynamic
mechanisms with contributions from all parts of the airframe, not all of which are
necessarily stabilising in effect. However, in the interests of promoting understanding,
the stiffness and damping effects are assumed to be dominated by the aerodynam-
ics of the tailplane. The spring stiffness arises from the natural weathercock tendency
of the tailplane to align with the incident flow. The damping arises from the motion
of the tailplane during the oscillation when, clearly, it behaves as a kind of viscous
paddle damper. The total observed mode dynamics depend not only on the tailplane
contribution, but also on the magnitudes of the additional contributions from other
parts of the airframe. When the overall stability is marginal it is implied that the
additional contributions are also significant and it becomes much more difficult to
identify and quantify the principal aerodynamic mode drivers.
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Figure 6.3 The development of a stable phugoid.

6.2.2 The phugoid

The phugoid mode is most commonly a lightly damped low frequency oscillation in
speed u which couples into pitch attitude θ and height h. A significant feature of this
mode is that the incidence α(w) remains substantially constant during a disturbance.
Again, these observations are easily confirmed by reference to the eigenvectors in
the solution of the equations of motion, this may be seen in Example 6.1 and also
in Fig. 6.1. However, it is clear that the phugoid appears, to a greater or lesser
extent, in all of the longitudinal motion variables but the relative magnitudes of the
phugoid components in incidence α(w) and in pitch rate q are very small. Typically,
the undamped natural frequency of the phugoid is in the range 0.1 rad/s to 1 rad/s and
the damping ratio is very low. However, the apparent damping characteristics of the
mode may be substantially influenced by power effects in some aeroplanes.

Consider the development of classical phugoid motion following a small distur-
bance in speed as shown in Fig. 6.3. Initially the aeroplane is in trimmed level
equilibrium flight with steady velocity V0 such that the lift L and weight mg are
equal. Let the aeroplane be disturbed at (a) such that the velocity is reduced by a
small amount u. Since the incidence remains substantially constant this results in a
small reduction in lift such that the aeroplane is no longer in vertical equilibrium. It
therefore starts to lose height and since it is flying “down hill’’ it starts to accelerate as
at (b). The speed continues to build up to a value in excess of V0 which is accompa-
nied by a build up in lift which eventually exceeds the weight by a significant margin.
The build up in speed and lift cause the aircraft to pitch up steadily until at (c) it
starts to climb. Since it now has an excess of kinetic energy, inertia and momentum
effects cause it to fly up through the nominal trimmed height datum at (d) losing
speed and lift as it goes as it is now flying “up hill’’. As it decelerates it pitches down
steadily until at (e) its lift is significantly less than the weight and the accelerating
descent starts again. Inertia and momentum effects cause the aeroplane to continue
flying down through the nominal trimmed height datum (f) and as the speed and lift
continue to build up so it pitches up steadily until at (g) it starts climbing again to
commence the next cycle of oscillation. As the motion progresses the effects of drag
cause the motion variable maxima and minima at each peak to reduce gradually in
magnitude until the motion eventually damps out.

Thus the phugoid is classical damped harmonic motion resulting in the aircraft
flying a gentle sinusoidal flight path about the nominal trimmed height datum. As
large inertia and momentum effects are involved the motion is necessarily relatively
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slow such that the angular accelerations, q̇ and α̇(ẇ), are insignificantly small.
Consequently, the natural frequency of the mode is low and since drag is designed to
be low so the damping is also low. Typically, once excited many cycles of the phugoid
may be visible before it eventually damps out. Since the rate of loss of energy is
low, a consequence of low drag damping effects, the motion is often approximated
by undamped harmonic motion in which potential and kinetic energy are exchanged
as the aircraft flies the sinusoidal flight path. This in fact was the basis on which
Lanchester (1908) first successfully analysed the motion.

6.3 REDUCED ORDER MODELS

Thus far the emphasis has been on the exact solution of the longitudinal equations of
motion which results in an exact description of the stability and response characteris-
tics of the aircraft. Although this is usually the object of a flight dynamics investigation
it has two disadvantages. First, a computational facility is required if a very tedious
manual solution is to be avoided and, second, it is difficult, if not impossible, to
establish the relationships between the stability characteristics and their aerodynamic
drivers. Both these disadvantages can be avoided by seeking approximate solutions
that can also provide considerable insight into the physical phenomena governing the
dynamic behaviour of the aircraft.

For example, an approximate solution of the longitudinal characteristic equation
(6.11) is based on the fact that the coefficients A, B, C, D and E have relative values
that do not change very much for conventional aeroplanes. Generally A, B and C are
significantly larger than D and E such that the quartic has the following approximate
factors:

A

(
s2 + (CD − BE)

C2
s + E

C

)(
s2 + B

A
s + C

A

)
= 0 (6.13)

Equation (6.13) is in fact the first step in the classical manual iterative solution
of the quartic; the first pair of complex roots describes the phugoid and the second
pair describes the short period mode. Algebraic expressions, in terms of aerodynamic
derivatives, mass and inertia parameters, etc., for the coefficients A, B, C, D and E
are given in Appendix 3. As these expressions are relatively complex further physical
insight is not particularly revealing unless simplifying assumptions are made. How-
ever, the approximate solution given by equation (6.13) is often useful for preliminary
mode evaluations, or as a check of computer solutions, when the numerical values of
the coefficients A, B, C, D and E are known. For conventional aeroplanes the approx-
imate solution is often surprisingly close to the exact solution of the characteristic
equation.

6.3.1 The short period mode approximation

The short term response characteristics of an aircraft are of particular importance in
flying and handling qualities considerations for the reasons stated in Section 6.5. Since
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short term behaviour is dominated by the short period mode it is convenient to obtain
the reduced-order equations of motion in which the phugoid is suppressed or omitted.
By observing the nature of the short period pitching oscillation, sometimes called the
rapid incidence adjustment, it is possible to simplify the longitudinal equations of
motion to describe short term dynamics only. The terms remaining in the reduced-
order equations of motion are therefore the terms that dominate short term dynamics
thereby providing insight into the important aerodynamic drivers governing physical
behaviour.

It has already been established that the short period pitching oscillation is almost
exclusively an oscillation in which the principal variables are pitch rate q and incidence
α, the speed remaining essentially constant, thus u = 0. Therefore, the speed equation
and the speed dependent terms may be removed from the longitudinal equations of
motion 6.1; since they are all approximately zero in short term motion, the revised
equations may be written:

⎡
⎣

ẇ
q̇

θ̇

⎤
⎦ =

⎡
⎣

zw zq zθ

mw mq mθ

0 1 0

⎤
⎦
⎡
⎣

w
q
θ

⎤
⎦+

⎡
⎣

zη

mη

0

⎤
⎦η (6.14)

Further, assuming the equations of motion are referred to aircraft wind axes and that
the aircraft is initially in steady level flight then

θe ≡ αe = 0 and Ue = V0

and, with reference to Appendix 2, it follows that

zθ = mθ = 0

Equation (6.14) then reduces to its simplest possible form:

[
ẇ
q̇

]
=
[

zw zq

mw mq

][
w
q

]
+
[

zη

mη

]
η (6.15)

where now, the derivatives are referred to a wind axes system. Equation (6.15) is
sufficiently simple that the transfer function matrix may be calculated manually by
the application of equation (5.53):

G(s) = N(s)

Δ(s)
=

[
s − mq zq

mw s − zw

][
zη

mη

]

∣∣∣∣
s − zw −zq

−mw s − mq

∣∣∣∣

=

⎡
⎢⎢⎣

zη

(
s +

(
mq + zq

mη

zη

))

mη

(
s +

(
mw

zη

mη

− zw

))

⎤
⎥⎥⎦

(s2 − (mq + zw)s + (mqzw − mwzq))
(6.16)
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The transfer functions may be further simplified by noting that

zq
mη

zη

� mq and − zw � mw
zη

mη

and with reference to Appendix 2:

zq =
◦

Zq + mUe

m − ◦
Zẇ

∼= Ue

since

◦
Zq � mUe and m � ◦

Zẇ

Thus the two short term transfer functions describing response to elevator may be
written:

w(s)

η(s)
=

zη

(
s + Ue

mη

zη

)

(s2 − (mq + zw)s + (mqzw − mwUe))
≡ kw(s + 1/Tα)

(s2 + 2ζsωss + ω2
s )

(6.17)

q(s)

η(s)
= mη(s − zw)

(s2 − (mq + zw)s + (mqzw − mwUe))
≡ kq(s + 1/Tθ2 )

(s2 + 2ζsωss + ω2
s )

(6.18)

where now it is understood that kw, kq, Tα, Tθ2 , ζs and ωs represent approximate
values. Clearly it is now very much easier to relate the most important parameters
describing longitudinal short term transient dynamics of the aircraft to the aerody-
namic properties of the airframe, represented in equations (6.17) and (6.18) by the
concise derivatives.

The reduced order characteristic equation may be written down on inspection of
equation (6.17) or (6.18):

Δ(s) = s2 + 2ζsωss + ω2
s = s2 − (mq + zw)s + (mqzw − mwUe) = 0 (6.19)

and, by analogy with the classical mass-spring-damper system described in Appendix
6, the damping and natural frequency of the short period mode are given, to a good
approximation, by

2ζsωs = −(mq + zw)
(6.20)

ωs = √
mqzw − mwUe

It is instructive to write the damping and natural frequency expressions (6.20) in
terms of the dimensional derivatives. The appropriate conversions are obtained from
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Appendix 2 and the assumptions made above are applied to give

2ζsωs = −
⎛
⎝

◦
Mq

Iy
+

◦
Zw

m
+

◦
MẇUe

Iy

⎞
⎠

ωs =

√√√√
◦

Mq

Iy

◦
Zw

m
−

◦
MwUe

Iy
(6.21)

Note that the terms on the right hand side of expressions (6.21) comprise aerodynamic
derivatives divided either by mass or moment of inertia in pitch. These terms may
be interpreted in exactly the same way as those of the classical mass-spring-damper.
Thus, it becomes apparent that the aerodynamic derivatives are providing stiffness
and viscous damping in pitch although there is more than one term contributing to
damping and to natural frequency. Therefore the aerodynamic origins of the short
period dynamics are a little more complex than those of the classical mass-spring-
damper and the various contributions do not always act in the most advantageous
way. However, for conventional aeroplanes the overall dynamic characteristics usually
describe a stable short period mode.

For a typical conventional aeroplane the relative magnitudes of the aerodynamic
derivatives are such that to a crude approximation:

2ζsωs = − ◦
Mq

Iy

ωs =

√√√√− ◦
MwUe

Iy
(6.22)

which serves only to indicate what are usually regarded as the dominant terms gov-

erning the short period mode. Normally the derivative
◦
Zw, which is dependent on

the lift curve slope of the wing, and the derivative
◦

Mq, which is determined largely
by the viscous “paddle’’ damping properties of the tailplane, are both negative num-

bers. The derivative
◦

Mw is a measure of the aerodynamic stiffness in pitch and is

also dominated by the aerodynamics of the tailplane. The sign of
◦

Mw depends on the
position of the cg, becoming increasingly negative as the cg moves forward in the
airframe. Thus the short period mode will be stable if the cg is far enough forward

in the airframe. The cg position in the airframe where
◦

Mw changes sign is called the

controls fixed neutral point and
◦

Mw is therefore also a measure of the controls fixed
stability margin of the aircraft. With reference to equation (6.19) and expressions
(6.20), the corresponding cg position where (mqzw − mwUe) changes sign is called
the controls fixed manoeuvre point and (mqzw − mwUe) is a measure of the controls
fixed manoeuvre margin of the aircraft. The subject of manoeuvrability is discussed
in Chapter 8.
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Figure 6.4 The phugoid oscillation.

6.3.2 The phugoid mode approximation

A reduced order model of the aircraft retaining only the phugoid dynamics is very
rarely required in flight dynamics studies. However, the greatest usefulness of such
a model is to identify those aerodynamic properties of the airframe governing the
characteristics of the mode.

6.3.2.1 The Lanchester model
Probably the first successful analysis of aeroplane dynamics was made by Lanchester
(1908) who devised a mathematical model to describe phugoid motion based on
his observations of the behaviour of gliding model aeroplanes. His analysis gives
excellent insight into the physical nature of the mode and may be applied to the
modern aeroplane by interpreting and restating his original assumptions as follows:

(i) The aircraft is initially in steady level flight.
(ii) The total energy of the aircraft remains constant.

(iii) The incidence α remains constant at its initial trim value.
(iv) The thrust τ balances the drag D.
(v) The motion is sufficiently slow that pitch rate q effects may be ignored.

Referring to Fig. 6.4 the aircraft is initially in trimmed straight level flight with
velocity V0. Following a disturbance in speed which excites the phugoid mode the
disturbed speed, pitch attitude and height are denoted V , θ and h respectively. Then
based on assumption (ii):

1

2
mV 2

0 = 1

2
mV 2 + mgh = constant

whence

V 2 = V 2
0 − 2gh (6.23)

which describes the exchange of kinetic and potential energy as the aeroplane flies
the sinusoidal flight path.
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In the initial steady trim state the lift and weight are in balance thus

Le = 1

2
ρV 2

0 SCL = mg (6.24)

and in disturbed flight the lift is given by

L = 1

2
ρV 2SCL (6.25)

As a consequence of assumption (iii) the lift coefficient CL also remains constant and
equations (6.23)–(6.25) may be combined to give

L = mg − ρghSCL (6.26)

Since simple undamped oscillatory motion is assumed, a consequence of assumption
(ii), the single degree of freedom equation of motion in height may be written:

mḧ = L cos θ − mg ∼= L − mg (6.27)

since, by definition, θ is a small angle. Substituting for lift L from equation (6.26)
into equation (6.27):

ḧ +
(

ρgSCL

m

)
h = ḧ + ω2

ph = 0 (6.28)

Thus, approximately, the frequency of the phugoid mode is given by

ωp =
√

ρgSCL

m
= g

√
2

V0
(6.29)

when equation (6.24) is used to eliminate the mass.
Thus, to a reasonable approximation, Lanchester’s model shows that the phugoid

frequency is inversely proportional to the steady trimmed speed about which the mode
oscillates and that its damping is zero.

6.3.2.2 A reduced order model
A more detailed approximate model of the phugoid mode may be derived from the
equations of motion by making simplifications based on assumptions about the nature
of the motion. Following a disturbance, the variables w(α) and q respond in the time
scale associated with the short period mode; thus, it is reasonable to assume that w (α)
and q are quasi-steady in the longer time scale associated with the phugoid. Whence,
it follows that

ẇ = q̇ = 0

Once again, it is assumed that the equations of motion are referred to aircraft wind
axes and since the disturbance takes place about steady level flight then

θe ≡ αe = 0 and Ue = V0
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and, with reference to Appendix 2, it follows that

xθ = −g and zθ = mθ = 0

Also, as for the reduced order short period model and with reference to Appendix 2:

zq =
◦
Zq + mUe

m − ◦
Zẇ

∼= Ue

since

◦
Zq � mUe and m � ◦

Zẇ

Additionally, it is usually assumed that the aerodynamic derivative xq is insignificantly
small. Thus the equations of motion (6.1) may be simplified accordingly:

⎡
⎢⎢⎣

u̇
0
0
θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xu xw 0 −g
zu zw Ue 0
mu mw mq 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

xη

zη

mη

0

⎤
⎥⎥⎦η (6.30)

The second and third rows of equation (6.30) may be written:

zuu + zww + Ueq + zηη = 0

muu + mww + mqq + mηη = 0 (6.31)

Equations (6.31) may be solved algebraically to obtain expressions for w and q in
terms of u and η:

w =
(

muUe − mqzu

mqzw − mwUe

)
u +

(
mηUe − mqzη

mqzw − mwUe

)
η

q =
(

mwzu − muzw

mqzw − mwUe

)
u +

(
mwzη − mηzw

mqzw − mwUe

)
η (6.32)

The expressions for w and q are substituted into rows one and four of equation (6.30)
and following some rearrangement the reduced order state equation is obtained:

[
u̇
θ̇

]
=

⎡
⎢⎢⎢⎢⎢⎣

|
xu − xw

(
muUe − mqzu

mwUe − mqzw

)
| −g
|

− − − − − − − − − − − − |− −−
|
|
|

(
muzw − mwzu

mwUe − mqzw

)
0

⎤
⎥⎥⎥⎥⎥⎦

[
u
θ

]
+

⎡
⎢⎢⎣

xη −
(

mηUe − mqzη

mwUe − mqzw

)

(
mηzw − mwzη

mwUe − mqzw

)

⎤
⎥⎥⎦η

(6.33)

or

ẋ = Apx + Bpu (6.34)
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Equation (6.33) may be solved algebraically to obtain the response transfer functions
for the phugoid variables u and θ. However, it is not very meaningful to analyse long
term dynamic response to elevator in this way. The characteristic equation describing
the reduced order phugoid dynamics is considerably more useful and is given by

Δ(s) = det [sI − Ap] = 0

whence

Δ(s) = s2 + 2ζpωps + ω2
p

= s2 −
(

xu − xw

(
muUe − mqzu

mwUe − mqzw

))
s + g

(
muzw − mwzu

mwUe − mqzw

)
(6.35)

Thus the approximate damping and natural frequency of the phugoid mode are given
in terms of a limited number of aerodynamic derivatives. More explicit, but rather
more approximate, insight into the aerodynamic properties of the aeroplane dominat-
ing the mode characteristics may be obtained by making some further assumptions.
Typically, for conventional aeroplanes in subsonic flight:

mu → 0, |muzw| � |mwzu| and |mwUe| � |mqzw|

then the corresponding expressions for the damping and natural frequency become:

2ζpωp = −xu

ωp =
√−gzu

Ue
(6.36)

Now, with reference to Appendix 2:

xu ∼=
◦

Xu

m
= ρV0SXu

2m
and zu ∼=

◦
Zu

m
= ρV0SZu

2m
(6.37)

since
◦

Xẇ is negligibly small and m � ◦
Zẇ. Expressions for the dimensionless aero-

dynamic derivatives are given in Appendix 8 and may be approximated as shown in
expressions (6.38) when the basic aerodynamic properties are assumed to be indepen-
dent of speed. This follows from the assumption that the prevailing flight condition
is subsonic such that the aerodynamic properties of the airframe are not influenced
by compressibility effects:

Xu = −2CD − V0
∂CD

∂V
+
⎛
⎜⎝ 1

1

2
ρV0S

⎞
⎟⎠ ∂τ

∂V
∼= −2CD

Zu = −2CL − V0
∂CL

∂V
∼= −2CL (6.38)
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Expressions (6.36) may therefore be restated in terms of aerodynamic parameters,
assuming again that the trimmed lift is equal to the aircraft weight, to obtain

ζpωp = gCD

CLV0

ωp =
√

2g2

UeV0
≡ g

√
2

V0
(6.39)

and a simplified approximate expression for the damping ratio follows:

ζp ∼= 1√
2

(
CD

CL

)
(6.40)

These expressions for damping ratio and natural frequency of the phugoid mode are
obviously very approximate since they are the result of many simplifying assump-
tions. Note that the expression for ωp is the same as that derived by Lanchester,
equation (6.29), which indicates that the natural frequency of the phugoid mode
is approximately inversely proportional to the trimmed speed. It is also interesting
and important to note that the damping ratio of the phugoid mode is approximately
inversely proportional to the lift to drag ratio of the aeroplane, equation (6.40). Since
one of the main objectives of aeroplane design is to achieve a high lift to drag ratio it
is easy to see why the damping of the phugoid mode is usually very low.

Example 6.2

To illustrate the use of reduced order models consider the A-7A Corsair II aircraft
of Example 6.1 and at the same flight condition. Now the equations of motion in
Example 6.1 are referred to a body axis system and the use of the reduced order models
described above requires the equations of motion referred to a wind, or stability axis
system. Thus, using the axis transformation relationships given in Appendices 7 and
8 the stability and control derivatives and inertia parameters referred to wind axes
were calculated from the original values, which are of course referred to body axes.
The longitudinal state equation was then recalculated to give

⎡
⎢⎢⎢⎣

u̇

ẇ

q̇

θ̇

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−0.04225 −0.11421 0 −32.2

−0.20455 −0.49774 317.48 0

0.00003 −0.00790 −0.39499 0

0 0 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u

w

q

θ

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0.00381

−24.4568

−4.51576

0

⎤
⎥⎥⎥⎦η

The reduced order model corresponding to the short period approximation, as given
by equation (6.15), is simply taken out of equation (6.41) and is written:

[
ẇ

q̇

]
=
[−0.49774 317.48
−0.00790 −0.39499

][
w
q

]
+
[−24.4568
−4.51576

]
η (6.41)
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Solution of the equations of motion 6.42 using Program CC determines the
following reduced order response transfer functions:

w(s)

η(s)
= −24.457(s + 59.015)

(s2 + 0.893s + 2.704)
ft/s/rad

q(s)

η(s)
= −4.516(s + 0.455)

(s2 + 0.893s + 2.704)
rad/s/rad (deg/s/deg) (6.42)

α(s)

η(s)
= −0.077(s + 59.015)

(s2 + 0.893s + 2.704)
rad/rad (deg/deg)

It is important to remember that these transfer functions describe, approximately,
the short term response of those variables that are dominant in short period motion.
The corresponding short term pitch attitude response transfer function follows since,
for small perturbation motion:

θ(s)

η(s)
= 1

s

q(s)

η(s)
= −4.516(s + 0.455)

s(s2 + 0.893s + 2.704)
rad/rad (deg/deg) (6.43)

From the pitch rate response transfer function in equations (6.43) it is readily
determined that the steady state pitch rate following a positive unit step elevator input
is −0.76 rad/s, which implies that the aircraft pitches continuously until the input is
removed. The pitch attitude response transfer function confirms this since, after the
short period transient has damped out, the aircraft behaves like a perfect integrator in
pitch. This is indicated by the presence of the s term in the denominator of equation
(6.44). In reality the phugoid dynamics usually prevent this situation developing
unless the input is very large and accompanied by a thrust increase that results in a
vertical loop manoeuvre. The model described here would be most inappropriate for
the analysis of such large amplitude motion.

The common denominator of transfer functions (6.43) represents the approximate
reduced order short period characteristic polynomial, equation (6.19). Thus, approxi-
mate values of the damping ratio and undamped natural frequency of the short period
mode are easily calculated and are

Damping ratio ζs = 0.27
Undamped natural frequency ωs = 1.64 rad/s

It will be seen that these values compare very favourably with the exact values given
in Example 6.1.

Interpretation of the reduced order model is probably best illustrated by observing
short term response to an elevator input. The responses to a 1◦ elevator step input
of the variables given in equations (6.43) are shown in Fig. 6.5. Also shown on the
same plots are the corresponding responses of the full aircraft model derived from
equation (6.41). It is clear that the responses diverge with time, as expected, as no
phugoid dynamics are present in the reduced order model. However, for the first ten
seconds or so, the comparison is favourable indicating that the reduced order model
is acceptable for most short term response studies.
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Figure 6.5 Reduced order longitudinal response to 1◦ elevator step input.

Turning now to the approximate reduced order phugoid mode characteristics. From
the state equation referred to wind axes, equation (6.41), the required numerical
parameters are

xu = −0.04225 1/s
zu = −0.20455 1/s
mu = 0.00003 rad/ft/s
Ue ≡ V0 = 317.48 ft/s

The simple Lanchester model determines that the damping of the phugoid is zero
and that the undamped natural frequency is given by equation (6.29). Thus the approx-
imate characteristics of the phugoid mode calculated according to this model are

Damping ratio ζp = 0
Undamped natural frequency ωp = 0.143 rad/s

The approximate phugoid mode characteristics determined according to the rather
more detailed reduced order model are given by equation (6.36). Since the chosen
flight condition is genuinely subsonic, the derivative mu is very small indeed which
matches the constraints of the model well. The approximate characteristics of the
phugoid mode calculated according to this model are

Damping ratio ζp = 0.147
Undamped natural frequency ωp = 0.144 rad/s
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Again, comparing these approximate values of the phugoid mode characteristics
with the exact values in Example 6.1 indicates good agreement, especially for the
undamped natural frequency. Since the phugoid damping ratio is always small (near to
zero) it is very sensitive to computational rounding errors and to the approximating
assumptions that make a really good approximate match difficult to achieve. The
goodness of the match here is enhanced by the very subsonic flight condition that
correlates well with assumptions made in the derivation of the approximate models.

6.4 FREQUENCY RESPONSE

For the vast majority of flight dynamics investigations time domain analysis is usually
adequate, especially when the subject is the classical unaugmented aeroplane. The
principal graphical tool used in time domain analysis is, of course, the time history
plot showing the response of the aeroplane to controls or to some external disturbance.
However, when the subject aeroplane is an advanced modern aeroplane fitted with
a flight control system, flight dynamics analysis in the frequency domain can pro-
vide additional valuable insight into its behaviour. In recent years frequency domain
analysis has made an important contribution to the understanding of the sometimes
unconventional handling qualities of aeroplanes whose flying qualities are largely
shaped by a flight control system. It is for this reason that a brief review of simple
frequency response ideas is considered here. Since frequency response analysis tools
are fundamental to classical control engineering their description can be found in
almost every book on the subject; very accessible material can be found in Shinners
(1980) and Friedland (1987) for example.

Consider the hypothetical situation when the elevator of an otherwise trimmed
aeroplane is operated sinusoidally with constant amplitude k and variable frequency
ω; the longitudinal input to the aeroplane may therefore be expressed:

η(t) = k sin ωt (6.44)

It is reasonable to expect that each of the output variables describing aircraft motion
will respond sinusoidally to the input. However, the amplitudes of the output variables
will not necessarily be the same and they will not necessarily be in phase with one
another or with the input. Thus the general expression describing any output response
variable may be written:

y(t) = K sin(ωt + φ) (6.45)

where both the output amplitude K and phase shift φ are functions of the exciting
frequency ω. As the exciting frequency ω is increased from zero so, initially, at low fre-
quencies, the sinusoidal response will be clearly visible in all output variables. As the
exciting frequency is increased further so the sinusoidal response will start to diminish
in magnitude and will eventually become imperceptible in the outputs. Simultane-
ously, the phase shift φ will indicate an increasingly large lag between the input and
output. The reason for these observations is that at sufficiently high frequencies the
mass and inertia properties of the aeroplane simply prevent it responding quickly
enough to follow the input. The limiting frequency at which the response commences
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to diminish rapidly is referred to as the bandwidth of the aeroplane with respect to
the output variable of interest. A more precise definition of bandwidth is given below.
Since aeroplanes only respond to frequencies below the bandwidth frequency they
have the frequency response properties of a low pass system. At exciting frequencies
corresponding to the damped natural frequencies of the phugoid and the short period
mode, peaks in output magnitude K will be seen together with significant changes
in phase shift φ. The mode frequencies are described as resonant frequencies and
the magnitudes of the output parameters K and φ at resonance are determined by
the damping ratios of the modes. The system (or aeroplane) gain in any particular
response variable is defined:

System gain =
∣∣∣∣
K(ω)

k

∣∣∣∣ (6.46)

where, in normal control system applications, it is usually assumed that the input and
output variables have the same units. This is often not the case in aircraft applications
and care must be exercised in the interpretation of gain.

A number of graphical tools have been developed for the frequency response anal-
ysis of linear systems and include the Nyquist diagram, the Nichols chart and the
Bode diagram. All are intended to simplify analytical procedures, the mathematical
calculation of which is tedious without a computer, and all plot input–output gain and
phase as functions of frequency. Perhaps the simplest of the graphical tools to use
and interpret is the Bode diagram although the amount of information it is capable
of providing is limited. However, today it is used extensively for flight dynamics
analysis, especially in advanced handling qualities studies.

6.4.1 The Bode diagram

The intention here is not to describe the method for constructing a Bode diagram but
to describe its application to the aeroplane and to explain its correct interpretation.
For an explanation of the method for constructing a Bode diagram the reader should
consult a suitable control engineering text, such as either of those referenced above.

To illustrate the application of the Bode diagram to a typical classical aero-
plane consider the pitch attitude response to elevator transfer function as given by
equation (6.5):

θ(s)

η(s)
= kθ(s + (1/Tθ1 ))(s + (1/Tθ2 ))

(s2 + 2ζpωps + ω2
p)(s2 + 2ζsωss + ω2

s )
(6.47)

This response transfer function is of particular relevance to longitudinal handling
studies and it has the simplifying advantage that both the input and output variables
have the same units. Typically, in frequency response calculation it is usual to assume a
sinusoidal input signal of unit magnitude. It is also important to note that whenever the
response transfer function is negative, which is often the case in aircraft applications, a
negative input is assumed that ensures the correct computation of phase. Therefore, in
this particular application, since kθ is usually a negative number a sinusoidal elevator
input of unit magnitude, η(t) = −1 sin ωt is assumed. The pitch attitude frequency
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response is calculated by writing s = jω in equation (6.48); the right hand side then
becomes a complex number whose magnitude and phase can be evaluated for a
suitable range of frequency ω. Since the input magnitude is unity the system gain,
equation (6.47), is given simply by the absolute value of the magnitude of the complex
number representing the right hand side of equation (6.48) and is, of course, a function
of frequency ω.

Since the calculation of gain and phase involves the products of several complex
numbers it is preferred to work in terms of the logarithm of the complex number
representing the transfer function. The total gain and phase then become the simple
sums of the gain and phase of each factor in the transfer function. For example,
each factor in parentheses on the right hand side of equation (6.48) may have its
gain and phase characteristics calculated separately as a function of frequency; the
total gain and phase is then given by summing the contributions from each factor.
However, the system gain is now expressed as a logarithmic function of the gain ratio,
equation (6.47), and is defined:

Logarithmic gain = 20 log10

∣∣∣∣
K(ω)

k

∣∣∣∣ dB (6.48)

and has units of decibels denoted dB. Fortunately it is no longer necessary to calcu-
late frequency response by hand since many computer software packages, such as
MATLAB, have this facility and can also provide the desired graphical output. How-
ever, as always, some knowledge of the analytical procedure for obtaining frequency
response is essential so that the computer output may be correctly interpreted.

The Bode diagram comprises two corresponding plots, the gain plot and the phase
plot. The gain plot shows the logarithmic gain, in dB, plotted against log10(ω) and
the phase plot shows the phase, in degrees, also plotted against log10(ω). To facilitate
interpretation the two plots are often superimposed on a common frequency axis.
The Bode diagram showing the typical pitch attitude frequency response, as given by
transfer function (6.48), is shown in Fig. 6.6.

Also shown in Fig. 6.6 are the asymptotic approximations to the actual gain and
phase plots as functions of frequency. The asymptotes can be drawn in simply from
inspection of the transfer function, equation (6.48), and serve as an aid to interpreta-
tion. Quite often the asymptotic approximation is sufficient for the evaluation in hand,
thereby dispensing with the need to compute the actual frequency response entirely.

The shape of the gain plot is characterised by the break frequencies ω1 to ω4
which determine the locations of the discontinuities in the asymptotic gain plot. Each
break frequency is defined by a key frequency parameter in the transfer function,
namely

ω1 = 1

Tθ1

with first order phase lead (+45◦)

ω2 = ωp with second order phase lag (−90◦)

ω3 = 1

Tθ2

with first order phase lead (+45◦)

ω4 = ωs with second order phase lag (−90◦)
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Figure 6.6 Bode diagram showing classical pitch attitude frequency response.

Since the transfer function is classical minimum phase, the corresponding phase shift
at each break frequency is a lead if it arises from a numerator term or a lag if it arises
from a denominator term. If, as is often the case in aircraft studies, non-minimum
phase terms appear in the transfer function then, their frequency response properties
are unchanged except that the sign of the phase is reversed. Further, a first order term
gives rise to a total phase shift of 90◦ and a second order term gives rise to a total phase
shift of 180◦. The characteristic phase response is such that half the total phase shift
associated with any particular transfer function factor occurs at the corresponding
break frequency. Armed with this limited information a modest interpretation of the
pitch attitude frequency response of the aeroplane is possible. The frequency response
of the other motion variables may be dealt with in a similar way.

6.4.2 Interpretation of the Bode diagram

With reference to Fig. 6.6 it is seen that at very low frequencies, ω < 0.01 rad/s, there
is no phase shift between the input and output and the gain remains constant, at a little
below 5 dB in this illustration. In other words, the pitch attitude will follow the stick
movement more or less precisely. As the input frequency is increased through ω1 so
the pitch response leads the input in phase, the output magnitude increases rapidly and
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the aeroplane appears to behave like an amplifier. At the phugoid frequency the output
reaches a substantial peak, consistent with the low damping, and thereafter the gain
drops rapidly accompanied by a rapid increase in phase lag. As the input frequency is
increased further so the gain continues to reduce gently and the phase settles at −90◦
until the influence of break frequency ω3 comes into play. The reduction in gain is
arrested and the effect of the phase lead may be seen clearly. However, when the
input frequency reaches the short period break frequency a small peak in gain is seen,
consistent with the higher damping ratio, and at higher frequencies the gain continues
to reduce steadily. Meanwhile, the phase lag associated with the short period mode
results in a constant total phase lag of −180◦ at higher frequencies.

Once the output–input gain ratio drops below unity, or 0 dB, the aeroplane appears
to behave like an attenuator. The frequency at which the gain becomes sufficiently
small that the magnitude of the output response becomes insignificant is called the
bandwidth frequency, denoted ωb. There are various definitions of bandwidth, but
the definition used here is probably the most common and defines the bandwidth
frequency as the frequency at which the gain first drops to −3 dB below the zero
frequency, or steady state, gain. The bandwidth frequency is indicated in Fig. 6.6
and it is commonly a little higher than the short period frequency. A gain of −3 dB
corresponds with a gain ratio of 1/

√
2 = 0.707. Thus, by definition, the gain at the

bandwidth frequency is 0.707 times the steady state gain. Since the pitch attitude
bandwidth frequency is close to the short period frequency the latter may sometimes
be substituted for the bandwidth frequency which is often good enough for most
practical purposes.

The peaks in the gain plot are determined by the characteristics of the stability
modes. A very pronounced peak indicates low mode damping and vice versa; an
infinite peak corresponding with zero damping. The magnitude of the changes in
gain and phase occurring in the vicinity of a peak indicates the significance of the
mode in the response variable in question. Figure 6.6 indicates the magnitude of the
phugoid to be much greater than the magnitude of the short period mode in the pitch
response of the aeroplane. This would, in fact, be confirmed by response time histories
and inspection of the corresponding eigenvectors.

In the classical application of the Bode diagram, as used by the control engineer,
inspection of the gain and phase properties in the vicinity of the bandwidth frequency
enables conclusions about the stability of the system to be made. Typically, stability
is quantified in terms of gain margin and phase margin. However, such evaluations
are only appropriate when the system transfer function is minimum phase. Since
aircraft transfer functions that are non-minimum phase are frequently encountered,
and many also have the added complication that they are negative, it is not usual
for aircraft stability to be assessed on the Bode diagram. It is worth noting that,
for aircraft augmented with flight control systems, the behaviour of the phase plot
in the vicinity of the bandwidth frequency is now known to be linked to the sus-
ceptibility of the aircraft to pilot induced oscillations, a particularly nasty handling
deficiency.

Now the foregoing summary interpretation of frequency response assumes a sinu-
soidal elevator input to the aircraft. Clearly, this is never likely to occur as a result of
normal pilot action. However, normal pilot actions may be interpreted to comprise a
mix of many different frequency components. For example, in gentle manoeuvring
the frequency content of the input would generally be low whilst, in aggressive or high
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workload situations the frequency content would be higher and might even exceed the
bandwidth of the aeroplane. In such a limiting condition the pilot would certainly be
aware that the aeroplane could not follow his demands quickly enough and, depending
in detail on the gain and phase response properties of the aeroplane, he could well
encounter hazardous handling problems. Thus bandwidth is a measure of the quick-
ness of response achievable in a given aeroplane. As a general rule it is desirable that
flight control system designers should seek the highest response bandwidth consistent
with the dynamic capabilities of the airframe.

Example 6.3

The longitudinal frequency response of the A-7A Corsair II aircraft is evaluated for
the same flight condition as Examples 6.1 and 6.2. However, the longitudinal response
transfer functions used for the evaluations are referred to wind axes and were obtained
in the solution of the full order state equation (6.41). The transfer functions of primary
interest are

u(s)

η(s)
= 0.00381(s + 0.214)(s + 135.93)(s + 598.3)

(s2 + 0.033s + 0.02)(s2 + 0.902s + 2.666)
ft/s/rad

θ(s)

η(s)
= −4.516(s − 0.008)(s + 0.506)

(s2 + 0.033s + 0.02)(s2 + 0.902s + 2.666)
rad/rad (6.49)

α(s)

η(s)
= −0.077(s2 + 0.042s + 0.02)(s + 59.016)

(s2 + 0.033s + 0.02)(s2 + 0.902s + 2.666)
rad/rad

It will be noticed that the values of the various numerator terms in the velocity and
incidence transfer functions differ significantly from the values in the corresponding
transfer functions in Example 6.1, equation (6.8). This is due to the different reference
axes used and to the fact that the angular difference between body and wind axes is
a significant body incidence angle of 13.3◦. Such a large angle is consistent with
the very low speed flight condition. The frequency response of each transfer func-
tion was calculated with the aid of Program CC and the Bode diagrams are shown
in Figures 6.7–6.9 respectively. Interpretation of the Bode diagrams for the three
variables is straightforward and follows the general interpretation discussed above.
However, important or significant differences are commented on as follows.

The frequency response of axial velocity u to elevator input η is shown in Fig. 6.7
and it is clear, as might be expected, that it is dominated by the phugoid. The very
large low frequency gain values are due entirely to the transfer function units that are
ft/s/rad, and a unit radian elevator input is of course unrealistically large! The peak
gain of 75 dB at the phugoid frequency corresponds with a gain ratio of approximately
5600 ft/s/rad. However, since the aircraft model is linear, this very large gain ratio
may be interpreted equivalently as approximately 98 ft/s/deg, which is much easier
to appreciate physically. Since the gain drops away rapidly as the frequency increases
beyond the phugoid frequency, the velocity bandwidth frequency is only a little higher
than the phugoid frequency. This accords well with practical observation; velocity
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Figure 6.7 A-7A velocity frequency response.

perturbations at frequencies in the vicinity of the short period mode are usually
insignificantly small. The phase plot indicates that there is no appreciable phase shift
between input and output until the frequency exceeds the phugoid frequency when
there is a rapid increase in phase lag. This means that for all practical purposes speed
changes demanded by the pilot will follow the stick in the usable frequency band.

The pitch attitude θ frequency response to elevator input η is shown in Fig. 6.8.
Its general interpretation follows the discussion of Fig. 6.6 and is not repeated here.
However, there are some significant differences which must not be overlooked. The
differences are due to the fact that the transfer function is non-minimum phase, a
consequence of selecting a very low speed flight condition for the example. Refer-
ring to equations (6.50), this means that the numerator zero 1/Tθ1 is negative, and
the reasons for this are discussed in Example 6.1. The non-minimum phase effects
do not influence the gain plot in any significant way, so its interpretation is quite
straightforward. However, the effect of the non-minimum phase numerator zero is
to introduce phase lag at very low frequencies rather than the usual phase lead. It
is likely that in manoeuvring at this flight condition the pilot would be aware of the
pitch attitude lag in response to his stick input.

The body incidence α frequency response to elevator input η is shown in Fig. 6.9
and it is clear that, as might be expected, this is dominated by the short period
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Figure 6.8 A-7A pitch attitude frequency response.

mode. For all practical purposes the influence of the phugoid on both the gain and
phase frequency responses is insignificant. This may be confirmed by reference to
the appropriate transfer function in equations (6.50), where it will be seen that the
second order numerator term very nearly cancels the phugoid term in the denominator.
This is an important observation since it is quite usual to cancel approximately equal
numerator and denominator terms in any response transfer function to simplify it.
Simplified transfer functions often provide adequate response models in both the time
and frequency domains, and can be extremely useful for explaining and interpreting
aircraft dynamic behaviour. In modern control parlance the phugoid dynamics would
be said to be not observable in this illustration. The frequency response in both gain
and phase is more or less flat at frequencies up to the short period frequency, or for
most of the usable frequency range. In practical terms this means that incidence will
follow the stick at constant gain and without appreciable phase lag, which is obviously
a desirable state of affairs.

6.5 FLYING AND HANDLING QUALITIES

The longitudinal stability modes play an absolutely fundamental part in determining
the longitudinal flying and handling qualities of an aircraft and it is essential that their
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characteristics must be “correct’’ if the aircraft is to be flown by a human pilot. A
simplistic view of the human pilot suggests that he behaves like an adaptive dynamic
system and will adapt his dynamics to harmonise with those of the controlled vehicle.
Since his dynamics interact and couple with those of the aircraft he will adapt, within
human limits, to produce the best closed loop system dynamics compatible with the
piloting task. His adaptability enables him to cope well with aircraft with less than
desirable flying qualities. However, the problems of coupling between incompatible
dynamic systems can be disastrous and it is this latter aspect of the piloting task that
has attracted much attention in recent years. Every time the aircraft is disturbed in
response to control commands the stability modes are excited and it is not difficult to
appreciate why their characteristics are so important. Similarly, the stability modes
are equally important in determining ride quality when the main concern is response
to atmospheric disturbances. In military combat aircraft ride quality determines the
effectiveness of the airframe as a weapons platform and in the civil transport aircraft
it determines the comfort of passengers.
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In general it is essential that the short period mode, which has a natural frequency
close to human pilot natural frequency, is adequately damped. Otherwise, dynamic
coupling with the pilot may occur under certain conditions leading to severe, or even
catastrophic, handling problems. On the other hand, as the phugoid mode is much
lower in frequency its impact on the piloting task is much less demanding. The average
human pilot can easily control the aircraft even when the phugoid is mildly unstable.
The phugoid mode can, typically, manifest itself as a minor trimming problem when
poorly damped. Although not in itself hazardous, it can lead to increased pilot work-
load and for this reason it is desirable to ensure adequate phugoid damping. It is also
important that the natural frequencies of the stability modes should be well separated
in order to avoid interaction, or coupling, between the modes. Mode coupling may
give rise to unusual handling characteristics and is generally regarded as an unde-
sirable feature in longitudinal dynamics. The subject of aircraft handling qualities is
discussed in rather more detail in Chapter 10.

6.6 MODE EXCITATION

Since the longitudinal stability modes are usually well separated in frequency, it is
possible to excite the modes more or less independently for the purposes of demon-
stration or measurement. Indeed, it is a general flying qualities requirement that the
modes be well separated in frequency in order to avoid handling problems arising from
dynamic mode coupling. The modes may be excited selectively by the application
of a sympathetic elevator input to the trimmed aircraft. The methods developed for
in-flight mode excitation reflect an intimate understanding of the dynamics involved
and are generally easily adapted to the analytical environment. Because the longitu-
dinal modes are usually well separated in frequency the form of the input disturbance
is not, in practice, very critical. However, some consistency in the flight test or ana-
lytical procedures adopted is desirable if meaningful comparative studies are to be
made.

The short period pitching oscillation may be excited by applying a short duration
disturbance in pitch to the trimmed aircraft. This is best achieved with an elevator pulse
having a duration of a second or less. Analytically this is adequately approximated
by a unit impulse applied to the elevator. The essential feature of the disturbance
is that it must be sufficiently short so as not to excite the phugoid significantly.
However, as the phugoid damping is usually very low it is almost impossible not to
excite the phugoid at the same time but, it does not usually develop fast enough to
obscure observation of the short period mode. An example of a short period response
recorded during a flight test exercise in a Handley Page Jetstream aircraft is shown
in Fig. 6.10. In fact two excitations are shown, the first in the nose up sense and
the second in the nose down sense. The pilot input “impulse’’ is clearly visible and
represents his best attempt at achieving a clean impulse like input; some practice
is required before consistently good results are obtained. Immediately following the
input the pilot released the controls to obtain the controls free dynamic response which
explains why the elevator angle does not recover its equilibrium trim value until the
short period transient has settled. During this short elevator free period its motion is
driven by oscillatory aerodynamic loading and is also coloured by the control circuit
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Figure 6.10 Flight recording of the short period pitching oscillation.

dynamics which can be noticeably intrusive. Otherwise the response is typical of a
well damped aeroplane.

The phugoid mode may be excited by applying a small speed disturbance to the
aircraft in trimmed flight. This is best achieved by applying a small step input to the
elevator which will cause the aircraft to fly up, or down, according to the sign of
the input. If the power is left at its trimmed setting then the speed will decrease, or
increase, accordingly. When the speed has diverged from its steady trimmed value by
about 5% or so, the elevator is returned to its trim setting. This provides the distur-
bance and a stable aircraft will then execute a phugoid oscillation as it recovers its
trim equilibrium. Analytically, the input is equivalent to an elevator pulse of several
seconds duration. The magnitude and length of the pulse would normally be estab-
lished by trial and error since its effect will be very aircraft dependent. However,
it should be remembered that for proper interpretation of the resulting response the
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Figure 6.11 Flight recording of the phugoid.

disturbance should be small in magnitude since a small perturbation model is implied.
An example of a phugoid response recorded during a flight test exercise in a Hand-
ley Page Jetstream aircraft is shown in Fig. 6.11. The pilot input “pulse’’ is clearly
visible and, as for the short period mode, some practice is required before consis-
tently good results are obtained. Again, the controls are released following the input
to obtain the controls free dynamic response and the subsequent elevator motion is
caused by the sinusoidal aerodynamic loading on the surface itself. The leading and
trailing edge steps of the input elevator pulse may excite the short period mode. How-
ever, the short period mode transient would normally decay to zero well before the
phugoid has properly developed and would not therefore obscure the observation of
interest.

It is clear from an inspection of Fig. 6.11 that the phugoid damping is significantly
higher than might be expected from the previous discussion of the mode characteris-
tics. What is in fact shown is the aerodynamic, or basic airframe, phugoid modified by
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the inseparable effects of power. The Astazou engines of the Jetstream are governed
to run at constant rpm and thrust changes are achieved by varying the propeller blade
pitch. Thus as the aircraft flies the sinusoidal flight path during a phugoid disturbance
the sinusoidal propeller loading causes the engine to automatically adjust its power to
maintain constant propeller rpm. This very effectively increases the apparent damping
of the phugoid. It is possible to operate the aircraft at a constant power condition when
the “power damping’’ effect is suppressed. Under these circumstances it is found that
the aerodynamic phugoid is much less stable, as predicted by the simple theoretical
model, and at some flight conditions it is unstable.

The above flight recording of the longitudinal stability modes illustrates the controls
free dynamic stability characteristics. The same exercise could of course be repeated
with the controls held fixed following the disturbing input. In this event the controls
fixed dynamic stability characteristics would be observed. In general the differences
between the responses would be small and not too significant. Now controls free
dynamic response is only possible in aeroplanes with reversible controls which
includes most small classical aeroplanes. Virtually all larger modern aircraft have
powered controls, driven by electronic flight control systems, which are effectively
irreversible and which means that they are only capable of exhibiting controls fixed
dynamic response. Thus, today, most theoretical modelling and analysis is concerned
with controls fixed dynamics only, as is the case throughout this book. However,
a discussion of the differences between controls fixed and controls free aeroplane
dynamics may be found in Hancock (1995).

When it is required to analyse the dynamics of a single mode in isolation, the best
approach is to emulate flight test practice as far as that is possible. It is necessary
to choose the most appropriate transfer functions to show the dominant response
variables in the mode of interest. For example, as shown in Figures 6.10 and 6.11
the short period mode is best observed in the dominant response variables q and
w(α) whereas the phugoid is best observed in its dominant response variables u, h
and θ. It is necessary to apply a control input disturbance sympathetic to the mode
dynamics and it is necessary to observe the response for an appropriate period of
time. For example, Fig. 6.1 shows both longitudinal modes but the time scale of the
illustration reveals the phugoid in much greater detail than the short period mode,
whereas the time scale of Fig. 6.5 was chosen to reveal the short period mode in detail
since that is the mode of interest. The form of the control input is not usually difficult
to arrange in analytical work since most software packages have built-in impulse,
step and pulse functions, whilst more esoteric functions can usually be programmed
by the user. This kind of informed approach to the analysis is required if the best
possible visualisation of the longitudinal modes and their associated dynamics is to be
obtained.
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PROBLEMS

1. A tailless aeroplane of 9072 kg mass has an aspect ratio 1 delta wing of area
37 m2. The longitudinal short period motion of the aeroplane is described by
the characteristic quadratic:

λ2 + Bλ + C = 0 where B = 1

2

(
dCL

dα

)
cos2 α and

C = −1

2

(
μ1

iy

)(
dCm

dα

)
cos α.

α is the wing incidence, μ1 = m/ 1
2ρSc is the longitudinal relative density

parameter, and iy = Iy/mc
2

is the dimensionless moment of inertia in pitch.
The aeroplane’s moment of inertia in pitch is 1.356 × 105 kg/m2. The variation
of CL and Cm with incidence α > 0 is non-linear for the aspect ratio 1 delta
wing:

CL = 1

2
πα + 2α2

Cm = Cm0 − 0.025πα − 0.1α2

Compare and describe the short period motions when the aeroplane is flying
straight and level at 152 m/s at sea level and at 35,000 ft.

ρ0 = 1.225 kg/m3 at sea level, ρ/ρ0 = 0.310 at 35,000 ft. Characteristic time
σ = m/ 1

2ρV0S. (CU 1983)
2. (i) List the characteristics of the longitudinal phugoid stability mode.

(ii) List the characteristics of the longitudinal short period pitching stability
mode.

(iii) The transfer function for the unaugmented McDonnell F-4C Phantom
describing the pitch attitude response to elevator when flying at Mach
1.2 at an altitude of 35,000 ft is given by

θ(s)

η(s)
= −20.6(s + 0.013)(s + 0.62)

(s2 + 0.017s + 0.002)(s2 + 1.74s + 29.49)
rad/rad

Write down the longitudinal characteristic equation and state whether the
aeroplane is stable, or not.

(iv) What are the numerical parameters describing the longitudinal stability
modes of the McDonnell F-4C Phantom? (CU 1999)

3. Describe the longitudinal short period pitching oscillation. On what parameters
do its characteristics depend?
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A model aircraft is mounted in a wind tunnel such that it is free to pitch about
an axis through its cg as shown. The model is restrained by two springs attached
at a point on a fuselage aft extension which is at a distance l = 0.5 m from the
cg. The model has wing span b = 0.8 m, mean aerodynamic chord c = 0.15 m
and the air density may be taken as ρ = 1.225 kg/m3.

l

q, q, a

k V0

k

With the wind off the model is displaced in pitch and released. The frequency
of the resulting oscillation is 10 rad/s and the damping ratio 0.1. The experiment
is repeated with a wind velocity V0 = 30 m/s, the frequency is now found to be
12 rad/s and the damping ratio 0.3. Given that the spring stiffness k = 16 N/m,
calculate the moment of inertia in pitch, and values for the dimensionless stabil-
ity derivatives Mq and Mw. It may be assumed that the influence of the derivative
Mẇ is negligible. State all assumptions made. (CU 1987)

4. (i) Show that the period of the phugoid is given approximately by,
Tp = √

2π V0
g , and state all assumptions used during the derivation.

(ii) State which aerodynamic parameters introduce damping into a phugoid,
and discuss how varying forward speed whilst on approach to landing
may influence phugoid characteristics. (LU 2001)

5. (i) Using a simple physical model, show that the short period pitching
oscillation can be approximated to by

Iy θ̈ + 1

2
ρV0a1ST l2

T θ̇ − 1

2
ρV 2

0 Sc
dCm

dα
θ = 0

(ii) The aircraft described below is flying at sea level at 90 m/s. Determine
the cg location at which the short period pitching oscillation ceases to be
oscillatory:

Wing lift curve slope = 5.7 1/rad
Tailplane lift curve slope = 3.7 1/rad
Horizontal tail arm = 6 m
Tailplane area = 5 m2

dε/dα = 0.30
Iy = 40,000 kg/m2

Wing area = 30 m2

Mean aerodynamic chord = 1.8 m
Aerodynamic centre = 0.18c

(Hint: Modify the equation in part (i) to include tailplane lag effects.)



Ch06-H6927.tex 20/6/2007 16: 34 Page 173

Longitudinal Dynamics 173

(iii) Determine the period of the short period pitching oscillation if the cg
location is moved 0.2c forward of the position calculated in part (ii).

(LU 2001)

6. For a conventional aircraft on an approach to landing, discuss how the aircraft’s
aerodynamics may influence longitudinal stability. (LU 2002)

7. Determine the time to half amplitude and the period of the short period
pitching oscillation. Assume that the short period pitching oscillation can be
approximated by

Iy θ̈ − ∂M

∂q
θ̇ − ∂M

∂w
V θ = 0 and in addition Mw = ∂Cm/∂α. (LU 2003)
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Chapter 7

Lateral–Directional Dynamics

7.1 RESPONSE TO CONTROLS

The procedures for investigating and interpreting the lateral–directional dynamics of
an aeroplane are much the same as those used to deal with the longitudinal dynamics
and are not repeated at the same level of detail in this chapter. However, some aspects
of lateral–directional dynamics, and their interpretation, differ significantly from the
longitudinal dynamics and the procedures for interpreting the differences are dealt
with appropriately. The lateral–directional response transfer functions are obtained
in the solution of the lateral–directional equations of motion using, for example, the
methods described in Chapter 5. The transfer functions completely describe the linear
dynamic asymmetric response in sideslip, roll and yaw to aileron and rudder inputs. As
in the longitudinal solution, implicit in the response are the dynamic properties deter-
mined by the lateral–directional stability characteristics of the aeroplane. As before,
the transfer functions and the response variables described by them are linear since
the entire modelling process is based on the assumption that the motion is constrained
to small disturbances about an equilibrium trim state. The equilibrium trim state is
assumed to mean steady level flight in the first instance and the previously stated
caution concerning the magnitude of a small lateral–directional perturbation applies.

The most obvious difference between the solution of the longitudinal equations of
motion and the lateral–directional equations of motion is that there is more algebra
to deal with. Since two aerodynamic inputs are involved, the ailerons and the rudder,
two sets of input–output response transfer functions are produced in the solution of
the equations of motion. However, these are no more difficult to deal with than a
single input–output set of transfer functions, there are just more of them! The most
significant difference between the longitudinal and lateral–directional dynamics of
the aeroplane concerns the interpretation. In general the lateral–directional stability
modes are not so distinct and tend to exhibit dynamic coupling to a greater extent.
Thus some care is needed in the choice of assumptions made to facilitate their inter-
pretation. A mitigating observation is that, unlike the longitudinal dynamics, the
lateral–directional dynamics do not change very much with flight condition since
most aeroplanes possess aerodynamic symmetry by design.

The lateral–directional equations of motion describing small perturbations about
an equilibrium trim condition and referred to wind axes are given by the state equation
(4.70) as follows:

⎡
⎢⎢⎣

v̇
ṗ
ṙ
φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

yv yp yr yφ

lv lp lr lφ
nv np nr nφ

0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v
p
r
φ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

yξ yζ

lξ lζ
nξ nζ

0 0

⎤
⎥⎥⎦
[
ξ

ζ

]
(7.1)

174
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The solution of equation (7.1) produces two sets of four response transfer functions,
one set describing motion in response to aileron input and a second set describing
response to rudder input. As for the longitudinal response transfer functions, it is
convenient to adopt a shorthand style of writing the transfer functions. The transfer
functions describing response to aileron are conveniently written

v(s)

ξ(s)
≡ N v

ξ (s)

Δ(s)
= kv(s + (1/Tβ1 ))(s + (1/Tβ2 ))

(s + (1/Ts))(s + (1/Tr))(s2 + 2ζdωds + ω2
d )

(7.2)

p(s)

ξ(s)
≡ N p

ξ (s)

Δ(s)
= kps(s2 + 2ζφωφs + ω2

φ)

(s + (1/Ts))(s + (1/Tr))(s2 + 2ζdωds + ω2
d )

(7.3)

r(s)

ξ(s)
≡ N r

ξ (s)

Δ(s)
= kr(s + (1/Tψ))(s2 + 2ζψωψs + ω2

ψ)

(s + (1/Ts))(s + (1/Tr))(s2 + 2ζdωds + ω2
d )

(7.4)

φ(s)

ξ(s)
≡ Nφ

ξ (s)

Δ(s)
= kφ(s2 + 2ζφωφs + ω2

φ)

(s + (1/Ts))(s + (1/Tr))(s2 + 2ζdωds + ω2
d )

(7.5)

and the transfer functions describing response to rudder are conveniently written

v(s)

ζ(s)
≡ N v

ζ (s)

Δ(s)
= kv(s + (1/Tβ1 ))(s + (1/Tβ2 ))(s + (1/Tβ3 ))

(s + (1/Ts))(s + (1/Tr))(s2 + 2ζdωds + ω2
d )

(7.6)

p(s)

ζ(s)
≡ N p

ζ (s)

Δ(s)
= kps(s + (1/Tφ1 ))(s + (1/Tφ2 ))

(s + (1/Ts))(s + (1/Tr))(s2 + 2ζdωds + ω2
d )

(7.7)

r(s)

ζ(s)
≡ N r

ζ (s)

Δ(s)
= kr(s + (1/Tψ))(s2 + 2ζψωψs + ω2

ψ)

(s + (1/Ts))(s + (1/Tr))(s2 + 2ζdωds + ω2
d )

(7.8)

φ(s)

ζ(s)
≡ Nφ

ζ (s)

Δ(s)
= kφ(s + (1/Tφ1 ))(s + (1/Tφ2 ))

(s + (1/Ts))(s + (1/Tr))(s2 + 2ζdωds + ω2
d )

(7.9)

The solution of the equations of motion results in polynomial descriptions of the
transfer function numerators and common denominator as set out in Appendix 3. The
polynomials factorise into real and complex pairs of roots that are most explicitly
quoted in the style of equations (7.2)–(7.9) above. Since the roots are interpreted
as time constants, damping ratios and natural frequencies the above style of writing
makes the essential information instantly available. It should also be noted that the
numerator and denominator factors are typical for a conventional aeroplane. Some-
times complex pairs of roots may be replaced with two real roots and vice versa.
However, this does not usually mean that the dynamic response characteristics of the
aeroplane become dramatically different. Differences in the interpretation of response
may be evident but will not necessarily be large.
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Transfer functions (7.2)–(7.9) each describe uniquely different, but related, vari-
ables in the motion of the aeroplane in response to a control input. However, it will
be observed that the notation adopted indicates similar values for some numerator
terms in both aileron and rudder response transfer functions, for example, kr , Tψ, ζψ

and ωψ, appear in both N r
ξ (s) and N r

ζ (s). It must be understood that the numerator
parameters are context dependent and usually have a numerical value which is unique
to the transfer function in question. To repeat the comment made above, the notation
is a convenience for allocating particular numerator terms and serves only to identify
the role of each term as a gain, time constant, damping ratio or frequency.

As before, the denominator of the transfer functions describes the characteristic
polynomial which, in turn, describes the lateral–directional stability characteristics of
the aeroplane. The transfer function denominator is therefore common to all response
transfer functions. Thus the response of all variables to an aileron or to a rudder
input is dominated by the denominator parameters namely, time constants, damping
ratio and natural frequency. The differences between the individual responses are
entirely determined by their respective numerators and the response shapes of the
individual variables are determined by the common denominator and “coloured’’ by
their respective numerators.

Example 7.1

The equations of motion and aerodynamic data for the Douglas DC-8 aircraft were
obtained from Teper (1969). At the flight condition of interest the aircraft has a total
weight of 190,000 lb and is flying at Mach 0.44 at an altitude of 15,000 ft. The source
data are referenced to aircraft body axes and for the purposes of this illustration
it has been converted to a wind axes reference using the transformations given in
Appendices 7 and 9. The equations of motion, referred to wind axes and quoted in
terms of concise derivatives are, in state space format

⎡
⎢⎢⎢⎣

v̇

ṗ

ṙ

φ̇

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

−0.1008 0 −468.2 32.2
−0.00579 −1.232 0.397 0
0.00278 −0.0346 −0.257 0

0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v
p
r
φ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 13.48416
−1.62 0.392

−0.01875 −0.864
0 0

⎤
⎥⎥⎦
[
ξ

ζ

]
(7.10)

Since it is useful to have the transfer function describing sideslip angle β as well as
sideslip velocity v, the output equation is augmented as described in Section 5.7. Thus
the output equation is

⎡
⎢⎢⎢⎢⎣

v
p
r
φ

β

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.00214 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

v
p
r
φ

⎤
⎥⎥⎦ (7.11)
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Again, the numerical values of the matrix elements in equations (7.10) and (7.11) have
been rounded to five decimal places in order to keep the equations to a reasonable
written size. This should not be done with the equations used in the actual computation.

Solution of the equations of motion using Program CC produced the following two
sets of transfer functions. First, the transfer functions describing response to aileron

v(s)

ξ(s)
= 8.779(s + 0.197)(s − 7.896)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
ft/s/rad

p(s)

ξ(s)
= −1.62s(s2 + 0.362s + 1.359)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/s/rad (deg/s/deg)

r(s)

ξ(s)
= −0.0188(s + 1.59)(s2 − 3.246s + 4.982)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/s/rad (deg/s/deg)

φ(s)

ξ(s)
= −1.62(s2 + 0.362s + 1.359)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/rad (deg/deg)

β(s)

ξ(s)
= 0.0188(s + 0.197)(s − 7.896)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/rad (deg/deg) (7.12)

and second, the transfer functions describing response to rudder

v(s)

ζ(s)
= 13.484(s − 0.0148)(s + 1.297)(s + 30.207)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
ft/s/rad

p(s)

ζ(s)
= 0.392s(s + 1.85)(s − 2.566)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/s/rad (deg/s/deg)

r(s)

ζ(s)
= −0.864(s + 1.335)(s2 − 0.03s + 0.109)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/s/rad (deg/s/deg)

φ(s)

ζ(s)
= 0.392(s + 1.85)(s − 2.566)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/rad (deg/deg)

β(s)

ζ(s)
= 0.029(s − 0.0148)(s + 1.297)(s + 30.207)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/rad (deg/deg) (7.13)

The characteristic equation is given by equating the denominator to zero

Δ(s) = (s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433) = 0 (7.14)

The first real root describes the spiral mode with time constant

Ts = 1

0.0065
∼= 154 s
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the second real root describes the roll subsidence mode with time constant

Tr = 1

1.329
= 0.75 s

and the pair of complex roots describe the oscillatory dutch roll mode with
characteristics

Damping ratio ζd = 0.11

Undamped natural frequency ωd = 1.2 rad/s

Since both real roots are negative and the pair of complex roots have negative
real parts then the mode characteristics indicate the airframe to be aerodynamically
stable.

The response of the aeroplane to a unit (1◦) aileron pulse, held on for 2 s and then
returned to zero is shown in Fig. 7.1. All of the variables obtained in the solution of
the equations of motion are shown, the individual responses being characterised by
the transfer functions, equations (7.12).

The dynamics associated with the three stability modes are visible in the responses
although, at first glance, they would appear to be dominated by the oscillatory dutch
roll mode since its damping is relatively low. Since the non-oscillatory spiral and
roll modes are not so distinct, and since the dynamic coupling between modes is sig-
nificant it is rather more difficult to expose the modes analytically unless some care
is taken in their graphical presentation. This subject is discussed in greater detail in
Section 7.6. Both the roll and spiral modes appear as exponentially convergent charac-
teristics since they are both stable in this example. The roll mode converges relatively
quickly with a time constant of 0.75 s, whereas the spiral mode converges very slowly
indeed with a time constant of 154 s. The roll mode is most clearly seen in the roll
rate response p where it determines the exponential rise at zero seconds and the expo-
nential recovery when the pulse is removed at 2 s. The spiral mode characteristic
is rather more subtle and is most easily seen in the roll attitude response φ where
it determines the longer term convergence to zero and is fully established at 30 s.
Once again, all of the response shapes are determined by the common stability mode
dynamics and the obvious differences between them are due to the unique numerators
in each transfer function. All of the response variables shown in Fig. 7.1 eventually
decay to zero in the time scale of the spiral mode (about 200 s) since the aircraft
is stable.

The response of the aeroplane to a unit (1◦) rudder step input is shown in Fig. 7.2.
All of the variables obtained in the solution of the equations of motion are shown, the
individual responses being characterised by the transfer functions, equations (7.13).

Again, it is very clear that the response is dominated by the oscillatory dutch roll
mode. However, unlike the previous illustration, the roll and spiral modes are not dis-
cernible in the response. This is due to the fact that a step was chosen as the input which
simply causes the aircraft to diverge from its initial equilibrium. This motion, together
with the dutch roll oscillation effectively masks the two non-oscillatory modes. Now
it is possible to observe another interesting phenomenon in the response. Inspection
of the transfer functions, equations (7.12) and (7.13), reveals that a number possess
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Figure 7.1 Aircraft response to 1◦ 2 s aileron pulse input.

non-minimum phase numerator terms. The effect of these non-minimum phase terms
would seem to be insignificantly small since they are not detectable in the responses
shown in Figs 7.1 and 7.2, with one exception. The roll rate response p to rudder,
shown in Fig. 7.2, exhibits a sign reversal for the first second or so of its response and
this is the manifestation of the non-minimum phase effect. In aeronautical parlance
it is referred to as adverse roll in response to rudder.

A positive rudder step input is assumed and this will cause the aircraft to turn
to the left, which is a negative response in accordance with the notation. Once the
turn is established this results in negative yaw and yaw rate together with negative
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Figure 7.2 Aircraft response to 1◦ rudder step input.

roll and roll rate induced by yaw-roll coupling. These general effects are correctly
portrayed in the responses shown in Fig. 7.2. However, when the rudder is deflected
initially a substantial side force is generated at the centre of pressure of the fin which
in turn generates the yawing moment causing the aircraft to turn. However, the side
force acts at some distance above the roll axis and also generates a rolling moment
which causes the aircraft to roll in the opposite sense to that induced by the yaw-
ing motion. Since inertia in roll is somewhat lower than inertia in yaw the aircraft
responds quicker in roll and starts to roll in the “wrong’’ direction, but as the yawing
motion becomes established the aerodynamically induced rolling moment eventually
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overcomes the adverse rolling moment and the aircraft then rolls in the “correct’’
sense. This behaviour is clearly visible in Fig. 7.2 and is a characteristic found in
most aircraft. The magnitude of the effect is aircraft dependent and if not carefully
controlled by design can lead to unpleasant handling characteristics. A similar char-
acteristic, adverse yaw in response to aileron is caused by the differential drag effects
associated with aileron deflection giving rise to an adverse yawing moment. This
characteristic is also commonly observed in many aircraft; reference to equations
(7.12) indicates that it is present in the DC-8 but is insignificantly small at the chosen
flight condition.

The mode content in each of the motion variables is given most precisely by the
eigenvectors. The relevance of eigenvectors is discussed in Section 5.6 and the analyt-
ical procedure for obtaining them is shown in Example 5.7. With the aid of MATLAB
the eigenvector matrix V was obtained from the state matrix in equation (7.10)

Dutch roll mode
Roll
mode

Spiral
mode

V =

⎡
⎢⎢⎣

−0.845 + 0.5291j −0.845 − 0.5291j | −0.9970 | 0.9864
0.0012 − 0.0033j 0.0012 + 0.0033j | −0.0619 | −0.0011
0.0011 + 0.0021j 0.0011 − 0.0021j | 0.0006 | 0.0111

−0.0029 − 0.0007j −0.0029 + 0.0007j | 0.0466 | 0.1641

⎤
⎥⎥⎦

: v
: p
: r
: φ

(7.15)

To facilitate interpretation of the eigenvector matrix, the magnitude of each
component eigenvector is calculated as follows:

|V| =

⎡
⎢⎢⎣

0.9970 0.9970 | 0.9970 | 0.9864
0.0035 0.0035 | 0.0619 | 0.0011
0.0024 0.0024 | 0.0006 | 0.0111
0.0030 0.0030 | 0.0466 | 0.1641

⎤
⎥⎥⎦

: v
: p
: r
: φ

Clearly, the content of all three modes in sideslip velocity v, and hence in β, is of
similar order, the roll mode is dominant in roll rate p and the spiral mode is dominant in
roll attitude response φ. These observations correlate well with the responses shown in
Figs 7.1 and 7.2 although the low dutch roll damping obscures the observation in some
response variables. Although not the case in this example, eigenvector analysis can
be particularly useful for interpreting lateral–directional response in aircraft where
mode coupling is rather more pronounced and the modes are not so distinct.

The steady state values of the motion variables following a unit step (1◦) aileron
or rudder input may be determined by the application of the final value theorem,
equation (5.33), to the transfer functions, equations (7.12) and (7.13). The calculation
procedure is shown in Example 6.1 and is not repeated here. Thus the steady state
response of all the motion variables to an aileron unit step input is

⎡
⎢⎢⎢⎢⎣

v
p
r
φ

β

⎤
⎥⎥⎥⎥⎦

steady
state

=

⎡
⎢⎢⎢⎢⎣

−19.24 ft/s
0

−11.99 deg/s
−177.84 deg
−2.35 deg

⎤
⎥⎥⎥⎥⎦

aileron

(7.16)
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and the steady state response to a rudder unit step input is

⎡
⎢⎢⎢⎢⎣

v
p
r
φ

β

⎤
⎥⎥⎥⎥⎦

steady
state

=

⎡
⎢⎢⎢⎢⎣

−11.00 ft/s
0

−10.18 deg/s
−150.36 deg
−1.35 deg

⎤
⎥⎥⎥⎥⎦

rudder

(7.17)

It must be realised that the steady state values given in equations (7.16) and (7.17)
serve only to give an indication of the control sensitivity of the aeroplane. At such large
roll attitudes the small perturbation model ceases to apply and in practice significant
changes in the aerodynamic operating conditions would accompany the response. The
actual steady state values would undoubtedly be somewhat different and could only
be ascertained with a full non-linear simulation model. This illustration indicates the
limiting nature of a small perturbation model for the analysis of lateral–directional
dynamics and the need to exercise care in its interpretation.

7.1.1 The characteristic equation

The lateral–directional characteristic polynomial for a classical aeroplane is fourth
order; it determines the common denominator of the lateral and directional response
transfer functions and, when equated to zero, defines the characteristic equation which
may be written

As4 + Bs3 + Cs2 + Ds + E = 0 (7.18)

The characteristic equation (7.18) most commonly factorises into two real roots and
a pair of complex roots which are most conveniently written

(1 + (1/Ts))(1 + (1/Tr))(s2 + 2ζdωds + ω2
d ) = 0 (7.19)

As indicated previously, the first real root in equation (7.19) describes the non-
oscillatory spiral mode, the second real root describes the non-oscillatory roll
subsidence mode and the pair of complex roots describe the oscillatory dutch roll
mode. Now, since the equations of motion from which the characteristic equation is
derived are referred to a wind axes reference, the stability modes comprising equation
(7.19) provide a complete description of the lateral–directional stability properties
of the aeroplane with respect to the total steady velocity vector and subject to the
constraints of small perturbation motion.

When the equations of motion are referred to a body axes system, the state equation
(4.69) is fifth order and the characteristic equation is also of fifth order. The solution
of the characteristic equation then has the following factors:

s(1 + (1/Ts))(1 + (1/Tr))(s2 + 2ζdωds + ω2
d ) = 0 (7.20)
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The modes are unchanged except for the addition of a zero root which indicates neu-
tral stability. The zero root results from the addition of yaw angle to the state equation
and indicates neutral stability in yaw, or heading. Interpretation of lateral–directional
dynamics is unchanged and the additional information indicates the aeroplane to have
an indeterminate yaw or heading angle. In other words, lateral–directional dynam-
ics are evaluated about the steady total velocity vector which assumes an arbitrary
direction in azimuth, yaw or heading. Interpretation of the non-zero roots of the
characteristic equation is most easily accomplished if reference is first made to the
properties of the classical mass–spring–damper system which are summarised in
Appendix 6.

Unlike the longitudinal dynamics, interpretation of the lateral–directional dynam-
ics is not quite so straightforward as the stability modes are not so distinct; there
usually exists a significantly greater degree of mode coupling, or interaction. This
tends to make the necessary simplifying assumptions less appropriate with a conse-
quent reduction of confidence in the observations. However, an assortment of well
tried procedures for interpreting the dynamic characteristics of the well behaved aero-
plane exist and these will be discussed below. The principal objective of course, is
to identify the aerodynamic drivers for each of the stability modes. The connection
between the observed dynamics of the aeroplane and its aerodynamic characteristics
is made by comparing equation (7.18) with either of equation (7.19) or (7.20), and
then referring to Appendix 3 for the definitions of the coefficients in equation (7.18)
in terms of aerodynamic stability derivatives. It will be appreciated immediately
that further analytical progress is impossibly difficult unless some gross simplifying
assumptions are made. Means for dealing with this difficulty requires the derivation
of reduced order models as described in Section 7.3.

7.2 THE DYNAMIC STABILITY MODES

As for the longitudinal stability modes, whenever the aeroplane is disturbed from
its equilibrium trim state the lateral–directional stability modes will also be excited.
Again, the disturbance may be initiated by pilot control action, a change in power
setting, airframe configuration changes, such as flap deployment, and by external
influences such as gusts and turbulence.

7.2.1 The roll subsidence mode

The roll subsidence mode, or simply the roll mode, is a non-oscillatory lateral charac-
teristic which is usually substantially decoupled from the spiral and dutch roll modes.
Since it is non-oscillatory it is described by a single real root of the characteristic poly-
nomial, and it manifests itself as an exponential lag characteristic in rolling motion.
The aeromechanical principles governing the behaviour of the mode are shown in
Fig. 7.3.

With reference to Fig. 7.3, the aircraft is viewed from the rear so the indicated
motion is shown in the same sense as it would be experienced by the pilot. Assume
that the aircraft is constrained to the single degree of freedom motion in roll about the
ox axis only, and that it is initially in trimmed wings level flight. If then, the aeroplane
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Figure 7.3 The roll subsidence mode.

experiences a positive disturbing rolling moment it will commence to roll with an
angular acceleration in accordance with Newton’s second law of motion. In rolling
motion the wing experiences a component of velocity normal to the wing py, where
y is the spanwise coordinate measured from the roll axis ox. As indicated in Fig. 7.3
this results in a small increase in incidence on the down-going starboard wing and
a small decrease in incidence on the up-going port wing. The resulting differential
lift gives rise to a restoring rolling moment as indicated. The corresponding resulting
differential induced drag would also give rise to a yawing moment, but this is usually
sufficiently small that it is ignored. Thus following a disturbance the roll rate builds up
exponentially until the restoring moment balances the disturbing moment and a steady
roll rate is established. In practice, of course, this kind of behaviour would be transient
rather than continuous as implied in this figure. The physical behaviour explained is
simple “paddle’’ damping and is stabilising in effect in all aeroplanes operating in
normal, aerodynamically linear, flight regimes. For this reason, the stability mode is
sometimes referred to as the damping in roll.

In some modern combat aeroplanes which are designed to operate in seriously
non-linear aerodynamic conditions, for example, at angles of attack approaching
90◦, it is possible for the physical conditions governing the roll mode to break down
completely. The consequent loss of roll stability can result in rapid roll departure
followed by complex lateral–directional motion of a hazardous nature. However, in
the conventional aeroplane the roll mode appears to the pilot as a lag in roll response
to controls. The lag time constant is largely dependent on the moment of inertia in
roll and the aerodynamic properties of the wing, and is typically around 1 s or less.

7.2.2 The spiral mode

The spiral mode is also non-oscillatory and is determined by the other real root in
the characteristic polynomial. When excited, the mode dynamics are usually slow to
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Figure 7.4 The spiral mode development.

develop and involve complex coupled motion in roll, yaw and sideslip. The dominant
aeromechanical principles governing the mode dynamics are shown in Fig. 7.4. The
mode characteristics are very dependent on the lateral static stability and on the
directional static stability of the aeroplane and these topics are discussed in Sections
3.4 and 3.5.

The mode is usually excited by a disturbance in sideslip which typically follows
a disturbance in roll causing a wing to drop. Assume that the aircraft is initially in
trimmed wings level flight and that a disturbance causes a small positive roll angle φ to
develop; left unchecked this results in a small positive sideslip velocity v as indicated
at (a) in Fig. 7.4. The sideslip puts the fin at incidence β which produces lift, and
which in turn generates a yawing moment to turn the aircraft into the direction of the
sideslip. The yawing motion produces differential lift across the wing span which, in
turn, results in a rolling moment causing the starboard wing to drop further thereby
exacerbating the situation. This developing divergence is indicated at (b) and (c) in
Fig. 7.4. Simultaneously, the dihedral effect of the wing generates a negative restoring
rolling moment due to sideslip which acts to return the wing to a level attitude. Some
additional restoring rolling moment is also generated by the fin lift force when it acts
at a point above the roll axis ox, which is usual.

Therefore, the situation is one in which the fin effect, or directional static stability,
and the dihedral effect, or lateral static stability, act in opposition to create this
interesting dynamic condition. Typically, the requirements for lateral and directional
static stability are such that the opposing effects are very nearly equal. When dihedral
effect is greater the spiral mode is stable, and hence convergent, and when the fin
effect is greater the spiral mode is unstable, and hence divergent. Since these effects
are nearly equal the spiral mode will be nearly neutrally stable, and sometimes it may
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even be neutrally stable, that is, it will be neither convergent or divergent. Since the
mode is non-oscillatory it manifests itself as a classical exponential convergence or
divergence and, since it is nearly neutral, the time constant is very large, typically
100 s or more. This means that when the mode is stable the wing is slow to recover
a level attitude following a disturbance and when it is unstable the rate at which it
diverges is also very slow. When it is neutral the aircraft simply flies a turn at constant
roll attitude.

Now it is the unstable condition which attracts most attention for obvious reasons.
Once the mode is excited the aircraft flies a slowly diverging path in both roll and yaw
and since the vertical forces are no longer in equilibrium the aircraft will also lose
height. Thus the unstable flight path is a spiral descent which left unchecked will end
when the aircraft hits the ground! However, since the rate at which the mode diverges is
usually very slow most pilots can cope with it. Consequently, an unstable spiral mode
is permitted provided its time constant is sufficiently large. Because the mode is very
slow to develop the accelerations in the resulting motion are insignificantly small and
the motion cues available to the pilot are almost imperceptible. In a spiral departure
the visual cues become the most important cues to the pilot. It is also important to
appreciate that a spiral departure is not the same as a spin. Spinning motion is a fully
stalled flight condition whereas in a spiral descent the wing continues to fly in the
usual sense.

7.2.3 The dutch roll mode

The dutch roll mode is a classical damped oscillation in yaw, about the oz axis
of the aircraft, which couples into roll and, to a lesser extent, into sideslip. The
motion described by the dutch roll mode is therefore a complex interaction between
all three lateral–directional degrees of freedom. Its characteristics are described by
the pair of complex roots in the characteristic polynomial. Fundamentally, the dutch
roll mode is the lateral–directional equivalent of the longitudinal short period mode.
Since the moments of inertia in pitch and yaw are of similar magnitude the frequency
of the dutch roll mode and the longitudinal short period mode are of similar order.
However, the fin is generally less effective than the tailplane as a damper and the
damping of the dutch roll mode is often inadequate. The dutch roll mode is so called
since the motion of the aeroplane following its excitation is said to resemble the
rhythmical flowing motion of a dutch skater on a frozen canal. One cycle of a typical
dutch rolling motion is shown in Fig. 7.5.

The physical situation applying can be appreciated by imagining that the aircraft is
restrained in yaw by a torsional spring acting about the yaw axis oz, the spring stiffness
being aerodynamic and determined largely by the fin. Thus when in straight, level
trimmed equilibrium flight a disturbance in yaw causes the “aerodynamic spring’’
to produce a restoring yawing moment which results in classical oscillatory motion.
However, once the yaw oscillation is established the relative velocity of the air over the
port and starboard wing also varies in an oscillatory manner giving rise to oscillatory
differential lift and drag perturbations. This aerodynamic coupling gives rise in turn
to an oscillation in roll which lags the oscillation in yaw by approximately 90◦. This
phase difference between yawing and rolling motion means that the forward going
wing panel is low and the aft going wing panel is high as indicated in Fig. 7.5.
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Figure 7.5 The oscillatory dutch roll mode.

Consequently, the classical manifestation of the dutch roll mode is given by the path
described by the wing tips relative to the horizon and which is usually elliptical,
also shown in Fig. 7.5. The peak roll to peak yaw ratio is usually less than one, as
indicated, and is usually associated with a stable dutch roll mode. However, when the
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peak roll to peak yaw ratio is greater than one an unstable dutch roll mode is more
likely.

Whenever the wing is disturbed from level trim, left to its own devices the aeroplane
starts to slip sideways in the direction of the low wing. Thus the oscillatory rolling
motion leads to some oscillatory sideslipping motion in dutch rolling motion although
the sideslip velocity is generally small. Thus it is fairly easy to build up a visual
picture of the complex interactions involved in the dutch roll mode. In fact the motion
experienced in a dutch rolling aircraft would seem to be analogous to that of a ball
bearing dropped into an inclined channel having a semi-circular cross section. The
ball bearing rolls down the inclined channel whilst oscillating from side to side on
the circular surface.

Both the damping and stiffness in yaw, which determine the characteristics of the
mode, are largely determined by the aerodynamic properties of the fin, a large fin being
desirable for a well behaved stable dutch roll mode. Unfortunately this contradicts the
requirement for a stable spiral mode. The resulting aerodynamic design compromise
usually results in aeroplanes with a mildly unstable spiral mode and a poorly damped
dutch roll mode. Of course, the complexity of the dynamics associated with the dutch
roll mode suggests that there must be other aerodynamic contributions to the mode
characteristics in addition to the fin. This is generally the case and it is quite possible for
the additional aerodynamic effects to be as significant as the aerodynamic properties
of the fin if not more so. However, one thing is quite certain; it is very difficult to
quantify all the aerodynamic contributions to the dutch roll mode characteristics with
any degree of confidence.

7.3 REDUCED ORDER MODELS

Unlike the longitudinal equations of motion it is more difficult to solve the lateral–
directional equations of motion approximately. Because of the motion coupling
present, to a greater or lesser extent, in all three modes dynamics, the modes are not
so distinct and simplifying approximations are less relevant with the consequent loss
of accuracy. Response transfer functions derived from reduced order models based
on simplified approximate equations of motion are generally insufficiently accurate
to be of any real use other than as a means for providing enhanced understanding of
the aeromechanics of lateral–directional motion.

The simplest, and most approximate, solution of the characteristic equation pro-
vides an initial estimate for the two real roots only. This approximate solution of
the lateral–directional characteristic equation (7.18) is based on the observation that
conventional aeroplanes give rise to coefficients A, B, C, D and E that have relative
values which do not change very much with flight condition. Typically, A and B are
relatively large whilst D and E are relatively small, in fact E is very often close to
zero. Further, it is observed that B >> A and E << D suggesting the following real
roots as approximate solutions of the characteristic equation

(s + (1/Tr)) ∼= (s + (B/A))

(s + (1/Ts)) ∼= (s + (E/D))
(7.21)
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No such simple approximation for the pair of complex roots describing the dutch roll
mode may be determined. Further insight into the aerodynamic drivers governing
the characteristics of the roll and spiral modes may be made, with some difficulty, by
applying assumptions based on the observed behaviour of the modes to the polynomial
expressions for A, B, D and E given in Appendix 3. Fortunately, the same information
may be deduced by a rather more orderly process involving a reduction in order of
the equations of motion. The approximate solutions for the non-oscillatory modes
as given by equations (7.21) are only useful for preliminary mode evaluations, or as
a check of computer solutions, when the numerical values of the coefficients in the
characteristic equation are known.

7.3.1 The roll mode approximation

Provided the perturbation is small, the roll subsidence mode is observed to involve
almost pure rolling motion with little coupling into sideslip or yaw. Thus a reduced
order model of the lateral–directional dynamics retaining only the roll mode follows
by removing the side force and yawing moment equations from the lateral–directional
state equation (7.1) to give

[
ṗ
φ̇

]
=
[

lp lφ
1 0

][
p
φ

]
+
[

lξ lζ
0 0

][
ξ

ζ

]
(7.22)

Further, if aircraft wind axes are assumed then lφ = 0 and equation (7.22) reduces to
the single degree of freedom rolling moment equation

ṗ = lpp + lξξ + lζζ (7.23)

The roll response to aileron transfer function is easily derived from equation (7.23).
Taking the Laplace transform of equation (7.23), assuming zero initial conditions and
assuming that the rudder is held fixed, ζ = 0, then

sp(s) = lpp(s) + lξξ(s) (7.24)

which on rearranging may be written

p(s)

ξ(s)
= lξ

(s − lp)
≡ kp

(s + (1/Tr))
(7.25)

The transfer function given by equation (7.25) is the approximate reduced order
equivalent to the transfer function given by equation (7.3) and is the transfer function of
a simple first order lag with time constant Tr . For small perturbation motion equation
(7.25) describes the first second or two of roll response to aileron with a reasonable
degree of accuracy and is especially valuable as a means for identifying the dominant
physical properties of the airframe which determine the roll mode time constant.
With reference to the definitions of the concise aerodynamic stability derivatives in
Appendix 2, the roll mode time constant is determined approximately by

Tr ∼= − 1

lp
= − (IxIz − I 2

xz)(
Iz

◦
Lp + Ixz

◦
Np

) (7.26)
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Since Ix >> Ixz and Iz >> Ixz then equation (7.26) may be further simplified to give
the classical approximate expression for the roll mode time constant

Tr ∼= − Ix
◦

Lp

(7.27)

where Ix is the moment of inertia in roll and
◦

Lp is the dimensional derivative describing
the aerodynamic damping in roll.

7.3.2 The spiral mode approximation

Since the spiral mode is very slow to develop following a disturbance, it is usual to
assume that the motion variables v, p and r are quasi-steady relative to the time scale
of the mode. Whence v̇ = ṗ = ṙ = 0 and the lateral–directional state equation (7.1)
may be written

⎡
⎢⎢⎣

0
0
0
φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

yv yp yr yφ

lv lp lr lφ
nv np nr nφ

0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v
p
r
φ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

yξ yζ

lξ lζ
nξ nζ

0 0

⎤
⎥⎥⎦
[
ξ

ζ

]
(7.28)

Further, if aircraft wind axes are assumed lφ = nφ = 0 and if the controls are assumed
fixed such that unforced motion only is considered ξ = ζ = 0 then equation (7.28)
simplifies to

⎡
⎢⎢⎣

0
0
0
φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

yv yp yr yφ

lv lp lr 0
nv np nr 0
0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v
p
r
φ

⎤
⎥⎥⎦ (7.29)

The first three rows in equation (7.29) may be rearranged to eliminate the variables v
and r to give a reduced order equation in which the variables are roll rate p and roll
angle φ only

[
0
φ̇

]
=
⎡
⎣yv

(
lpnr − lrnp

)
(lrnv − lvnr)

+ yp + yr

(
lvnp − lpnv

)
(lrnv − lvnr)

yφ

1 0

⎤
⎦
[

p
φ

]
(7.30)

The first element of the first row of the reduced order state matrix in equation (7.30)
may be simplified since the terms involving yv and yp are assumed to be insignificantly
small compared with the term involving yr . Thus equation (7.30) may be rewritten

[
0
φ̇

]
=
⎡
⎣yr

(
lvnp − lpnv

)
(lrnv − lvnr)

yφ

1 0

⎤
⎦
[

p
φ

]
(7.31)
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Since φ̇ = p, equation (7.31) may be reduced to the single degree of freedom
equation describing, approximately, the unforced rolling motion involved in the
spiral mode

φ̇ +
(

yφ (lrnv − lvnr)

yr
(
lvnp − lpnv

)
)

φ = 0 (7.32)

The Laplace transform of equation (7.32), assuming zero initial conditions, is

φ(s)

(
s +

(
yφ (lrnv − lvnr)

yr
(
lvnp − lpnv

)
))

≡ φ(s)(s + (1/Ts)) = 0 (7.33)

It should be noted that equation (7.33) is the reduced order lateral–directional char-
acteristic equation retaining a very approximate description of the spiral mode
characteristics only, whence an approximate expression for the time constant of the
spiral mode is defined

Ts ∼= yr(lvnp − lpnv)

yφ(lrnv − lvnr)
(7.34)

The spiral mode time constant 7.34 may be expressed conveniently in terms of the
dimensional or dimensionless aerodynamic stability derivatives to provide a more
direct link with the aerodynamic mode drivers. With reference to Appendix 2 and

noting that
◦

Yr << mUe, so yr ∼= −Ue ≡ −V0, and that yφ = g since aircraft wind axes
are assumed, then equation (7.34) may be re-stated

Ts ∼= −
Ue

( ◦
Lv

◦
Np − ◦

Lp
◦

Nv

)

g

( ◦
Lr

◦
Nv − ◦

Lv
◦

Nr

) ≡ −V0(LvNp − LpNv)

g(LrNv − LvNr)
(7.35)

Now a stable spiral mode requires that the time constant Ts is positive. Typically for
most aeroplanes, especially in sub-sonic flight

(LvNp − LpNv) > 0

and the condition for the mode to be stable simplifies to the approximate classical
requirement that

LvNr > LrNv (7.36)

Further analysis of this requirement is only possible if the derivatives in equation
(7.36) are expressed in terms of the aerodynamic properties of the airframe. This
means that Lv, dihedral effect, and Nr , damping in yaw should be large whilst Nv,
the yaw stiffness, should be small. Rolling moment due to yaw rate, Lr , is usually
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significant in magnitude and positive. In very simple terms aeroplanes with small fins
and reasonable dihedral are more likely to have a stable spiral mode.

7.3.3 The dutch roll mode approximation

For the purpose of creating a reduced order model to describe the dutch roll mode
it is usual to make the rather gross assumption that dutch rolling motion involves no
rolling motion at all. Clearly this is contradictory, but it is based on the fact that the
mode is firstly a yawing oscillation and aerodynamic coupling causes rolling motion
as a secondary effect. It is probably true that for most aeroplanes the roll to yaw ratio
in dutch rolling motion is less than one, and in some cases may be much less than one,
which gives the assumption some small credibility from which the lateral–directional
state equation (7.1) may be simplified by writing

ṗ = p = φ̇ = φ = 0

As before, if aircraft wind axes are assumed lφ = nφ = 0 and if the controls are assumed
fixed such that unforced motion only is considered ξ = ζ = 0 then equation (7.1)
simplifies to

[
v̇
ṙ

]
=
[

yv yr

nv nr

][
v
r

]
(7.37)

If equation (7.37) is written

ẋd = Adxd

then the reduced order characteristic equation describing the approximate dynamic
characteristics of the dutch roll mode is given by

Δd (s) = det [sI − Ad ] =
∣∣∣∣
s − yv −yr

−nv s − nr

∣∣∣∣ = 0

or

Δd (s) = s2 − (nr + yv)s + (nryv − nvyr) = 0 (7.38)

Therefore the damping and frequency properties of the mode are given
approximately by

2ζdωd
∼= −(nr + yv)

(7.39)
ω2

d
∼= (nryv − nvyr)

With reference to Appendix 2, the expressions given by equations (7.39) can be
re-stated in terms of dimensional aerodynamic stability derivatives. Further approx-

imating simplifications are made by assuming
◦

Yr << mUe, so that yr ∼= −Ue ≡ −V0,
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and by assuming, quite correctly, that both Ix and Iz are usually much greater than
Ixz . It then follows that

2ζdωd
∼= −

⎛
⎝

◦
Nr

Iz
+

◦
Yv

m

⎞
⎠

ω2
d

∼=
⎛
⎝

◦
Nr

Iz

◦
Yv

m
+ V0

◦
Nv

Iz

⎞
⎠ ∼= V0

◦
Nv

Iz

(7.40)

Comparing the damping and frequency terms in the expressions in equations (7.40)
with those of the mass–spring–damper in Appendix 6 it is easy to identify the roles
of those aerodynamic stability derivatives which are dominant in determining the

characteristics of the dutch roll mode. For example,
◦

Nr is referred to as the yaw

damping derivative and
◦

Nv is referred to as the yaw stiffness derivative, and both are
very dependent on the aerodynamic design of the fin and the fin volume ratio.

Although the dutch roll mode approximation gives a rather poor impression of the
real thing, it is useful as a means for gaining insight into the physical behaviour of
the mode and its governing aerodynamics.

Example 7.2

It has been stated that the principle use of the lateral–directional reduced order models
is for providing insight into the aerodynamic mode drivers. With the exception of the
transfer function describing roll rate response to aileron, transfer functions derived
from the reduced order models are not commonly used in analytical work as their
accuracy is generally poor. However, it is instructive to compare the values of the
modes characteristics obtained from reduced order models with those obtained in the
solution of the full order equations of motion.

Consider the Douglas DC-8 aircraft of Example 7.1. The equations of motion
referred to wind axes are given by equation (7.10) and the solution gives the
characteristic equation (7.14). The unfactorised characteristic equation is

Δ(s) = s4 + 1.5898s3 + 1.7820s2 + 1.9200s + 0.0125 = 0 (7.41)

In accordance with the expression given in equations (7.21), approximate values for
the roll mode and spiral mode time constants are given by

Tr ∼= A

B
= 1

1.5898
= 0.629 s

Ts ∼= D

E
= 1.9200

0.0125
= 153.6 s

(7.42)

The approximate roll mode time constant does not compare particularly well with the
exact value of 0.75 s whereas, the spiral mode time constant compares extremely well
with the exact value of 154 s.
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Figure 7.6 Roll rate response to 1◦ aileron step input.

The approximate roll rate response to aileron transfer function, given by equation
(7.25) may be evaluated by obtaining the values for the concise derivatives lp and lξ
from equation (7.10) whence

p(s)

ξ(s)
= −1.62

(s + 1.232)
deg/s/deg (7.43)

With reference to equation (7.25), an approximate value for the roll mode time
constant is given by

Tr ∼= 1

1.232
= 0.812 s (7.44)

and this value compares rather more favourably with the exact value. The short term
roll rate response of the DC-8 to a 1◦ aileron step input as given by equation (7.43)
is shown in Fig. 7.6 where it is compared with the exact response of the full order
model as given by equations (7.12).

Clearly, for the first 2 s, or so, the match is extremely good which confirms the
assumptions made about the mode to be valid provided the period of observation
of roll behaviour is limited to the time scale of the roll mode. The approximate roll
mode time constant calculated by substituting the appropriate derivative and roll
inertia values, given in the aircraft data, into the expression given by equation (7.27)
results in a value almost the same as that given by equation (7.44). This simply serves
to confirm the validity of the assumptions made about the roll mode.

With reference to equations (7.34) and (7.35) the approximate spiral mode time
constant may be written in terms of concise derivatives as

Ts ∼= −Ue(lvnp − lpnv)

g(lrnv − lvnr)
(7.45)

Substituting values for the concise derivatives obtained from equation (7.10), the
velocity Ue and g then

Ts ∼= −468.2(0.0002 + 0.00343)

32.2(0.0011 − 0.00149)
= 135.34 s (7.46)

Clearly this approximate value of the spiral mode time constant does not compare so
well with the exact value of 154 s. However, this is not so important since the mode
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is very slow in the context of normal piloted manoeuvring activity. The classical
requirement for spiral mode stability given by the inequality condition of equation
(7.36) is satisfied since

0.00149 > 0.0011

Notice how close the values of the two numbers are, suggesting the mode to be close
to neutrally stable in the time scale of normal transient response. This observation is
quite typical of a conventional aeroplane like the DC-8.

Approximate values for the dutch roll mode damping ratio and undamped natural
frequency are obtained by substituting the relevant values for the concise derivatives,
obtained from equation (7.10), into the expressions given by equations (7.39). Thus,
approximately

ωd
∼= 1.152 rad/s

ζd
∼= 0.135

These approximate values compare reasonably well with the exact values which are, a
natural frequency of 1.2 rad/s and a damping ratio of 0.11. Such a good comparison is
not always achieved and merely emphasises once more, the validity of the assumptions
about the dutch roll mode in this particular application. The implication is that at the
flight condition of interest the roll to yaw ratio of the dutch roll mode in the DC-8 is
significantly less than one and, indeed, this may be inferred from either Fig. 7.1 or 7.2.

7.4 FREQUENCY RESPONSE

It is useful, and sometimes necessary, to investigate the lateral–directional response
properties of an aeroplane in the frequency domain. The reasons why such an inves-
tigation might be made are much the same as those given for the longitudinal case in
Section 6.4. Again, the Bode diagram is the most commonly used graphical tool for
lateral–directional frequency response analysis. The method of construction of the
Bode diagram and its interpretation follow the general principles described in Section
6.4 and are not repeated here. Since it is difficult to generalise, a typical illustration
of lateral–directional frequency response analysis is given in the following example.

Example 7.3

The lateral–directional frequency response of the Douglas DC-8 aircraft is evaluated
for the same flight condition as Examples 7.1 and 7.2. The total number of transfer
functions which could be evaluated on a Bode diagram is ten, given by equations
(7.12) and (7.13), and to create ten Bode diagrams would be prohibitively lengthy
in the present context. Since the essential frequency response information can be
obtained from a much smaller number of transfer functions the present example is
limited to four transfer functions only. The chosen transfer functions were selected
from equations (7.12) and (7.13); all are referred to aircraft wind axes and are repeated
here for convenience

φ(s)

ξ(s)
= −1.62(s2 + 0.362s + 1.359)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/rad (deg/deg)
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β(s)

ξ(s)
= 0.0188(s + 0.197)(s − 7.896)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/rad (deg/deg)

(7.47)

r(s)

ζ(s)
= −0.864(s + 1.335)(s2 − 0.03s + 0.109)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/s/rad (deg/s/deg)

p(s)

ζ(s)
= 0.392s(s + 1.85)(s − 2.566)

(s + 0.0065)(s + 1.329)(s2 + 0.254s + 1.433)
rad/s/rad (deg/s/deg)

The first two transfer functions (7.47) describe lateral response to the lateral com-
mand (aileron) variable, the third transfer function describes directional response to
the directional command (rudder) variable, the last transfer function was chosen to
illustrate cross-coupling and describes lateral response to the directional command
variable. Now consider the frequency response of each transfer function in turn.

The frequency response of roll attitude φ to aileron input ξ is shown in Fig. 7.7.
The most obvious features of the Bode diagram are the very high steady state gain,
45 dB, and the very small peak at the dutch roll frequency. The roll-off in phase
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Figure 7.7 DC-8 roll attitude frequency response to aileron.
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behaves quite conventionally in accordance with the transfer function properties. The
high zero frequency gain corresponds with a gain ratio of approximately 180. This
means that following a 1◦ aileron step input the aeroplane will settle at a roll attitude
of −180◦, in other words inverted! Clearly, this is most inappropriate for a large
civil transport aeroplane and serves as yet another illustration of the limitations of
linear system modelling. Such a large amplitude excursion is definitely not a small
perturbation and should not be regarded as such. However, the high zero frequency,
or steady state, gain provides a good indication of the roll control sensitivity. As the
control input frequency is increased the attitude response attenuates steadily with
increasing phase lag, the useful bandwidth being a little above the spiral mode break
frequency 1/Ts. However, at all frequencies up to that corresponding with the roll
subsidence mode break frequency, 1/Tr , the aeroplane will respond to aileron since
the gain is always greater than 0 dB; it is the steady reduction in control sensitivity
that will be noticed by the pilot. Since the dutch roll damping ratio is relatively low at
0.11, an obvious peak might be expected in the gain plot at the dutch roll frequency.
Clearly this is not the case. Inspection of the relevant transfer function in equation
(7.47) shows that the second order numerator factor very nearly cancels the dutch roll
roots in the denominator. This means that the dutch roll dynamics will not be very
obvious in the roll attitude response to aileron in accordance with the observation.
This conclusion is also confirmed by the time history response shown in Fig. 7.1. In
fact the dutch roll cancellation is sufficiently close that it is permissible to write the
transfer function in approximate form

φ(s)

ξ(s)
= −1.62

(s + 0.0065)(s + 1.329)
rad/rad (deg/deg) (7.48)

with little loss of meaning. The time response plot and the Bode diagram derived
from this approximate transfer function correspond closely with those derived from
the full transfer function and may be interpreted to achieve the same conclusions for
all practical purposes.

The frequency response of sideslip angle β to aileron input ξ is shown in Fig. 7.8
and corresponds with the second transfer function given in equation (7.47). Again,
there are no real surprises here. The transfer function is non-minimum phase since
the numerator term 1/Tβ2 is negative which introduces 90◦ of phase lag at the corre-
sponding break frequency. In this response variable the dutch roll gain peak is clearly
visible although at the dutch roll frequency the gain is attenuated by about −20 dB
which means that the pilot would see no significant oscillatory sideslip behaviour.
Again, it is established that the usable bandwidth is a little higher than the spiral
mode break frequency 1/Ts.

The frequency response of yaw rate r to rudder input ζ is shown in Fig. 7.9. This
transfer function describes the typical classical directional response to control and
the frequency response, shown in Fig. 7.9, has some interesting features. The gain
plot shows a steady but significant attenuation with increasing frequency to reach
a minimum of about −30 dB at ωψ, the resonant frequency of the second order
numerator factor. The gain rises rapidly with a further increase in frequency to reach
a maximum of 10 dB at the dutch roll frequency only to decrease rapidly thereafter.
At very low input frequencies the phase lag increases gently in accordance with the
spiral mode dynamics until the effect of the second order numerator term becomes
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Figure 7.8 DC-8 sideslip angle frequency response to aileron.

apparent. The rate of change of phase is then very dramatic since the effective damping
ratio of the second order numerator term is very small and negative. At the dutch roll
frequency, approximately, the phase reaches −360◦ and the response appears to be in
phase again only to roll off smartly at higher frequency. Again, the effective bandwidth
is a little higher than the spiral mode break frequency 1/Ts. These unusual frequency
response characteristics are easily appreciated in a flight demonstration.

If the pilot approximates a sinusoidal rudder input by pedalling gently on the rud-
der pedals then, at very low frequencies approaching the steady state the yaw rate
response will follow the input easily and obviously, since the gain is approximately
20 dB, and with very little phase lag. As he increases the frequency of his pedalling
the response will lag the input and the magnitude of the response will reduce very
quickly until there is no significant observable response. If he increases the frequency
of his forcing yet further, then the aircraft will spring into life again as the dutch roll
frequency (resonance) is reached when the yaw rate response will be approximately in
phase with the input. At higher frequencies still the response will rapidly attenuate for
good. The substantial dip in both gain and phase response with frequency, caused by
the second order numerator factor, effectively isolates the dutch roll mode to a small
window in the frequency band. This then makes it very easy for the pilot to identify and
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Figure 7.9 DC-8 yaw rate frequency response to rudder.

excite the dutch roll mode by rudder pedalling. This is very good for flight demonstra-
tion but may not be so good for handling if the dutch roll damping is low and the second
order numerator factor is not too close in frequency to that of the dutch roll mode.

The frequency response of roll rate p to rudder input ζ is shown in Fig. 7.10. This
frequency response example is interesting since it represents a cross-coupling case.
In the steady state, or equivalently at zero frequency, roll rate in response to a rudder
input would not be expected. This is clearly evident on the gain plot where the gain
is −∞ dB at zero frequency. This observation is driven by the zero in the numerator
which also introduces 90◦ of phase lead at the very lowest frequencies. This zero
also very nearly cancels with the spiral mode denominator root such that at input
frequencies above the spiral mode break frequency 1/Ts the response in both gain and
phase is essentially flat until the effects of the remaining numerator and denominator
roots come into play, all at frequencies around the dutch roll frequency. The dutch
roll resonant peak in gain and the subsequent roll off in both gain and phase is
absolutely classical and is easily interpreted. These frequency response observations
correspond well with the response time history shown in Fig. 7.2 where the effects
of the roll subsidence mode and the dutch roll mode are clearly visible, whilst the
longer term convergence associated with the spiral mode is not visible at all. In this



Ch07-H6927.tex 20/6/2007 16: 34 Page 200

200 Flight Dynamics Principles

G
ai

n 
p 

(d
B

)

�30

�20

�10

0

10

20

Frequency w (rad/s)

0.001 0.01 0.1 1 10

P
ha

se
 f

 (
de

g)

�270

�135

�180

�225

�90

�45

0

45

90
1/Ts 1/Tf1

, 1/Tf2
wd , 1/Tr

Figure 7.10 DC-8 roll rate frequency response to rudder.

example bandwidth tends to lose its meaning. However, it would not be unrealistic to
suggest that the usable bandwidth is a little higher than the dutch roll mode frequency,
provided the effects at very low frequency are ignored. This then assumes that the
zero numerator factor cancels with the spiral mode denominator factor to give the
approximate transfer function

p(s)

ζ(s)
= 0.392(s + 1.85)(s − 2.566)

(s + 1.329)(s2 + 0.254s + 1.433)
rad/s/rad (deg/s/deg) (7.49)

As before, this approximate transfer function may be interpreted in both the time
domain and in the frequency domain with little loss of meaning over the usable
frequency band.

7.5 FLYING AND HANDLING QUALITIES

As with longitudinal stability the lateral–directional stability characteristics of the
aeroplane are critically important in the determination of its flying and handling
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qualities and there is no doubt that they must be correct. Traditionally the empha-
sis on lateral–directional flying and handling qualities has been much less than the
emphasis on the longitudinal flying and handling qualities. Unlike the longitudinal
flying and handling qualities the lateral–directional flying and handling qualities do
not usually change significantly with flight condition, especially in the context of small
perturbation modelling. So once they have been fixed by the aerodynamic design of
the airframe they tend to remain more or less constant irrespective of flight condition.
Any major lateral–directional departures from nominally small perturbations about
trim are likely to be transient, under full pilot control and, consequently, unlikely to
give rise to serious handling problems. However, this is not necessarily a safe assump-
tion to make when considering highly augmented aircraft, a topic which is beyond
the scope of the present discussion.

It is a recurrent theme in handling qualities work that short term dynamics are prop-
erly controlled by design. The typical frequencies involved in short term dynamics
are similar to human pilot frequencies and their inadvertent mismatch is a sure recipe
for potential handling problems. So for reasons similar to those discussed in greater
detail in Section 6.5 referring to longitudinal dynamics, it is equally important that
the lateral–directional short period stability modes be properly controlled. This may
be interpreted to mean that the damping of both the roll subsidence mode and the
dutch roll mode should be adequate.

The roll subsidence mode appears to the pilot as a lag in the response to control
and, clearly, if the time constant should become too large roll response to control
would become too sluggish. A large roll mode time constant is the direct result of
low roll stability although the mode is usually stable as discussed in Section 7.2.1.
Generally, acceptable levels of roll mode stability result in a time constant, or roll
response lag which is almost imperceptible to the pilot. However, it is quite common
to find aircraft in which the roll mode damping is inadequate but, it is unusual to find
over damped aircraft.

The spiral mode, being a long period mode, does not usually influence short term
handling significantly. When it is stable and its time constant is sufficiently long it has
little, or no impact on flying and handling qualities. However, when it is unstable it
manifests itself as a trimming problem since the aeroplane will continually attempt to
diverge laterally. When the time constant of the mode is short it is more unstable, the
rate of divergence becomes faster with a corresponding increase in pilot workload.
Since the mode is generally so slow to develop the motion cues associated with it
may well be imperceptible to the pilot. Thus a hazardous situation may easily arise
if the external visual cues available to the pilot are poor or absent altogether, such
as in IMC flight conditions. It is not unknown for inexperienced pilots to become
disorientated in such circumstances with the inevitable outcome! Therefore the gen-
eral requirement is that, the spiral mode should preferably be stable but, since this is
difficult to achieve in many aeroplanes, when it is unstable the time constant should
be greater than a defined minimum.

Since the dutch roll mode is a short period mode and is the directional equivalent
of the longitudinal short period mode its importance to handling is similarly critical.
Generally, it is essential that the dutch roll mode is stable and that its damping is greater
than a defined minimum. Similarly tight constraints are placed on the permitted range
of combinations of frequency and damping. However, a level of damping lower than
that of the longitudinal short period mode is permitted. This is perhaps convenient
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but is more likely to result from the design conflict with the spiral mode which must
not have more than a limited degree of instability.

7.6 MODE EXCITATION

Unlike the longitudinal stability modes the lateral–directional stability modes usually
exhibit a significant level of dynamic coupling and as a result it is more difficult to
excite the modes independently for the purposes of demonstration or measurement.
However, the lateral–directional stability modes may be excited selectively by the
careful application of a sympathetic aileron or rudder input to the trimmed aircraft.
Again, the methods developed for in-flight mode excitation reflect an intimate under-
standing of the dynamics involved and are generally easily adapted to the analytical
environment. Because the lateral–directional stability modes usually exhibit a degree
of dynamic coupling, the choice and shape of the disturbing input is critical to the
mode under investigation. As always, standard experimental procedures have been
developed in order to achieve consistency in the flight test or analytical process so
that meaningful comparative studies may be made.

The roll subsidence mode may be excited by applying a short duration square pulse
to the aileron, the other controls remaining fixed at their trim settings. The magnitude
and duration of the pulse must be carefully chosen if the aeroplane is not to roll
too rapidly through a large attitude change and thereby exceed the limit of small
perturbation motion. Since the mode involves almost pure rolling motion only no
significant motion coupling will be seen in the relatively short time scale of the mode.
Therefore, to see the classical characteristics of the roll subsidence mode it is only
necessary to observe roll response for a few seconds. An example of a roll response
showing the roll subsidence mode recorded during a flight test exercise in a Handley
Page Jetstream aircraft is shown in Fig. 7.11. The input aileron pulse is clearly seen
and has a magnitude of about 4◦ and duration of about 4 s. The shape of this input
will have been established by the pilot by trial and error since the ideal input is very
much aircraft dependent. The effect of the roll mode time constant is clearly visible
since it governs the exponential rise in roll rate p as the response attempts to follow
the leading edge of the input ξ. The same effect is seen again in reverse when the input
is returned to its datum at the end of the pulse. The barely perceptible oscillation in
roll rate during the “steady part’’ of the response is, in fact, due to a small degree of
coupling with the dutch roll mode.

In order to conduct the flight experiment without large excursions in roll attitude φ

it is usual to first establish the aircraft in a steady turn with, in this illustration, −30◦
of roll attitude. On application of the input pulse the aircraft rolls steadily through to
+30◦ of roll attitude when the motion is terminated by returning the aileron to datum.
This is also clearly visible in Fig. 7.11. The effect of the roll mode time constant on
the roll attitude response is to smooth the entry to, and exit from the steady part of the
response. Since the roll mode time constant is small, around 0.4 s for the Jetstream, its
effect is only just visible in the roll attitude response. It is interesting to observe that
the steady part of the roll response is achieved when the moment due to the damping
in roll becomes established at a value equal and opposite to the disturbing moment
in roll caused by the aileron deflection. Clearly, therefore, the roll subsidence mode
governs the transient entry to, and exit from all rolling motion.
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Figure 7.11 Flight recording of the roll subsidence mode.

The spiral mode may be excited by applying a small step input to rudder ζ, the
remaining controls being held at their trim settings. The aeroplane responds by starting
to turn, the wing on the inside of the turn starts to drop and sideslip develops in the
direction of the turn. When the roll attitude has reached about 20◦ the rudder is
gently returned to datum and the aeroplane left to its own devices. When the spiral
mode is stable the aeroplane will slowly recover wings level flight, the recovery being
exponential with spiral mode time constant. When the mode is unstable the coupled
roll-yaw-sideslip departure will continue to develop exponentially with spiral mode
time constant. An example of an unstable spiral mode, captured from the time the
disturbing rudder input is returned gently to datum, and recorded during a flight
test exercise in a Handley Page Jetstream aircraft is shown in Fig. 7.12. The slow
exponential divergence is clearly visible in all recorded variables, with the possible
exception of sideslip angle β which is rather noisy. In any event the magnitude of
sideslip would normally be limited to a small value by the weathercock effect of the
fin. Although speed and altitude play no part in determining the characteristic of the
mode, the exponential departure in these variables is a classical, and very visible,
consequence of an unstable spiral mode. Once excited, since the aircraft is no longer
in wings level flight, lift is insufficient to maintain altitude and so an accelerating
descent follows and the spiral flight path is determined by the aeromechanics of the
mode. The first 30 s of the descent is shown in Fig. 7.12. Obviously, the departure
must be terminated after a short time if the safety of the aeroplane and its occupants
is not to be jeopardised.



Ch07-H6927.tex 20/6/2007 16: 34 Page 204

204 Flight Dynamics Principles

50

40

20

30
f 

(d
eg

)

10

0

1.5

1.0

b 
(d

eg
)

V
 k

ts
 (

E
A

S
)

0.0

0.5

180

170

160

150

140

A
lt

it
ud

e 
(f

t)

6500

6000

5500

5000
0 5 10 15 20

Seconds

25 30

Figure 7.12 Flight recording of the spiral mode departure.

Ideally, the dutch roll mode may be excited by applying a doublet to the rudder
pedals with a period matched to that of the mode, all other controls remaining at
their trim settings. In practice the pilot pedals continuously and cyclically on the
rudder pedal and by adjusting the frequency it is easy to find the resonant condition.
See the related comments in Example 7.3 and note that the dutch roll frequency is
comfortably within the human bandwidth. In this manner a forced oscillation may
easily be sustained. On ceasing the forcing input the free transient characteristics of
the dutch roll mode may be seen. This free response is shown in the flight recording
in Fig. 7.13 which was made in a Handley Page Jetstream aircraft. The rudder input ζ

shows the final doublet before ceasing the forcing at about 5 s, the obvious oscillatory
rudder motion after 5 s is due to the cyclic aerodynamic load on the free rudder. The
classical damped oscillatory motion is clearly visible in the variables shown, yaw rate
r, roll rate p and sideslip angle β. The motion would also be clearly evident in both
roll and yaw attitude variables which are not shown. Note the relative magnitudes
of, and the phase shift between yaw rate r and roll rate p, observations which are
consistent with the classical physical explanation of the mode dynamics.
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Figure 7.13 Flight recording of the dutch roll mode.

As for the longitudinal modes discussed in Section 6.6 the above flight recordings
of the lateral–directional stability modes illustrate the controls free dynamic stability
characteristics. The same exercise could be repeated with the controls held fixed
following the disturbing input. Obviously, in this event the controls fixed dynamic
stability characteristics would be observed and, in general, the differences between
the responses would be small. To re-iterate the important comments made in Section
6.6, controls free dynamic response is only possible in aeroplanes with reversible
controls which includes most small classical aeroplanes. Virtually all larger modern
aircraft have powered controls, driven by electronic flight control systems, which
are effectively irreversible and which means that they are only capable of exhibiting
controls fixed dynamic response. Thus, today, most theoretical modelling and analysis
is concerned with controls fixed dynamics only, as is the case throughout this book.
However, a discussion of the differences between controls fixed and controls free
aeroplane dynamics may be found in Hancock (1995).

When it is required to investigate the dynamics of a single mode in isolation ana-
lytically, the best approach is to emulate flight test practice as far as that is possible.
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It is necessary to choose the most appropriate transfer functions to show the dominant
response variables in the mode of interest. For example, the roll subsidence mode may
only be observed sensibly in the dominant response variable p and, to a lesser extent,
in φ. Similarly for the spiral and dutch roll modes, it is important to observe the motion
in those variables which are dominant, and hence most visible in the mode dynam-
ics. It is also essential to apply a control input disturbance sympathetic to the mode
dynamics and it is essential to observe the response for an appropriate period of time.
Otherwise the dynamics of interest will inevitably be obscured by motion coupling
effects. For example, Fig. 7.11 shows both the roll subsidence mode and the dutch
roll mode but, the excitation, choice of output variables and time scale were chosen
to optimise the recording of the roll subsidence mode. The form of the control input
is not usually difficult to arrange in analytical work since most software packages
have built-in impulse, step and pulse functions, whilst more esoteric functions can
usually be programmed by the user. For the analysis of the lateral–directional mode
dynamics especially, this kind of informed approach is critically important if the best
possible visualisation of the modes and their associated dynamics are to be obtained.
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PROBLEMS

1. Describe the possible modes of lateral–directional motion of an aircraft when
disturbed slightly from steady flight.

An aircraft in steady horizontal flight is disturbed slightly in the lateral plane.
If the inertia forces associated with the angular accelerations in the resulting
motion are neglected, as well as the components of the acceleration and aero-
dynamic forces along the oy axis, show that the resulting motion is either a
divergence or a subsidence depending in general on the sign of (LvNr − LrNv).
Describe how the stability of an aircraft in this mode will change with increase
of fin size. (CU 1979)

2. A transport aircraft whose wing span is 35.8 m is flying at 262 kts at an alti-
tude where the lateral relative density parameter μ2 = 24.4. The dimensionless
controls fixed lateral–directional characteristic equation is

λ4 + 5.8λ3 + 20.3λ2 + 79.0λ + 0.37 = 0

(i) What can be deduced about the lateral–directional stability of the aircraft
from inspection of the characteristic equation?

(ii) Solve the characteristic equation approximately; determine estimates for
the time constants of the non-oscillatory modes and the frequency and
damping ratio of the oscillatory mode.

(iii) Comment on the acceptability of this aircraft. (CU 1980)
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3. (i) What is the lateral–directional weathercock stability of an aircraft?
(ii) State the main aerodynamic contributions to weathercock stability.

(CU 1982)
4. The Navion is a small light aeroplane of conventional layout and in a low speed

level flight condition the coefficients of the dimensionless lateral–directional
stability quartic are given by

λ4 + B2λ
3 + C2λ

2 + D2λ + E2 = 0

where

B2 = 20.889

C2 = 46.714 − kv

D2 = 115.120 − 18.636kv

E2 = 55.570 + 1.994kv

and kv = −μ2Nv

iz

The lateral relative density parameter μ2 = 11.937, and the dimensionless
moment of inertia in yaw iz = 0.037. The quartic factorises to

(λ + B2)

(
λ + E2

D2

) (
λ2 + k1λ + k2

) = 0

Show that if the fin were made too large the aircraft would become dynamically
unstable. What would happen to the aircraft if a critical value were exceeded?

(CU 1983)
5. Describe and explain the physical characteristics of the roll subsidence stability

mode.
Assuming the motion associated with the mode comprises pure rolling only

write down the equation of motion assuming the rudder to be fixed (ζ = 0). By
taking the Laplace transform of this equation show that the roll control transfer
function is given by

p(s)

ξ(s)
= −k

(1 + sTr)

where k = ◦
Lξ /

◦
Lp and Tr = −Ix/

◦
Lp. State any assumptions made in obtaining

the transfer function.
Obtain the inverse Laplace transform of the transfer function to show that the

roll rate response to a unit step of aileron is given by

p(t) = −k
(

1 − e
t

Tr

)

The Republic F-105 Thunderchief aircraft has a wing span of 10.4 m and
moment of inertia in roll of 13965 kg m2. In a cruise flight condition at Mach
0.9 at an altitude of 35,000 ft, the dimensionless derivatives have the following
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values, Lp = −0.191 and Lξ = −0.029. Sketch the roll rate response to a 1◦ step
of aileron deflection and comment on the roll handling of the aircraft.

(CU 1986)
6. The aircraft described below is flying at a true airspeed of 150 m/s at sea level.

At this flight condition the aircraft is required to have a steady roll rate of
60 deg/s, when each aileron is deflected through 10 deg. Assuming that the out-
board edges of the ailerons are at the wing tip, calculate the required aileron
span. If the ailerons produce 17,500 Nm of adverse yawing moment, calculate
the rudder deflection required for trim.

Aircraft data:
Rectangular unswept wing Fin

Span = 15 m Area = 3 m2

Area = 27 m2 Moment arm from cg = 6 m
Lp = −0.2 Rudder Area = 1.2 m2

Aileron dCL/dξ = 2 1/rad dCL/dζ = 2.3 1/rad
(LU 2001)

7. Using a simple model show that the time to half amplitude of the roll subsidence
mode may be approximated by,

t1/2 = − Ix
◦

Lp

ln (2)

Given that the rolling moment due to roll rate derivative may be written,

◦
Lp = −ρV0

∫ s

0

(
CD + dCL

dα

)

y
cyy2dy

Determine the time to half amplitude of the roll subsidence mode for an aircraft
with the following characteristics, when it is flying at sea level at 100 m/s.

Wing span = 10 m dCL/dα at root = 5.7 1/rad
Wing root chord = 1.5 m dCL/dα at tip = 5.7 1/rad
Wing tip chord = 0.75 m CD = 0.005 (constant)
Inertia in roll = 8000 kg m2

Assume dCL/dα varies linearly along the span. (LU 2002)
8. For the aircraft described below, determine the value of wing dihedral required

to make the spiral mode neutrally stable. The rolling moment due to sideslip
derivative is given by

Lv = − 1

Ss

∫ s

0
cyay�y dy

and the time to half (double) amplitude for the spiral mode is given by

t1/2 = V0

g

(
LvNp − LpNv

LvNr − LrNv

)
ln (2)
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Aircraft data:

Wing area S = 52 m2

Wing span B = 14.8 m
Wing root chord 5.0 m
Wing tip chord 2.0 m
Fin area SF = 8.4 m2

Fin roll arm hF = 1.8 m
Wing lift-curve slope ay = 3.84 1/rad
Fin lift curve slope a1F = 2.2 1/rad
Lr −0.120
Nr −0.120
Nv 0.158

Discuss how the geometry of the wing and fin influence the stability of the spiral
mode. (LU 2003)
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Chapter 8

Manoeuvrability

8.1 INTRODUCTION

8.1.1 Manoeuvring flight

What is a manoeuvre? An aeroplane executing aerobatics in a vast blue sky or, aero-
planes engaged in aerial combat are the kind of images associated with manoeuvring
flight. By their very nature such manoeuvres are difficult to quantify, especially when
it is required to described manoeuvrability in an analytical framework. In reality
most manoeuvres are comparatively mundane and simply involve changing from one
trimmed flight condition to another. When a pilot wishes to manoeuvre away from
the current flight condition he applies control inputs which upset the equilibrium trim
state by producing forces and moments to manoeuvre the aeroplane toward the desired
flight condition. The temporary out of trim forces and moments cause the aeroplane
to accelerate in a sense determined by the combined action of the control inputs.
Thus manoeuvring flight is sometimes called accelerated flight and is defined as the
condition when the airframe is subject to temporary, or transient, out of trim linear
and angular accelerations resulting from the displacement of the controls relative to
their trim settings. In analytical terms, the manoeuvre is regarded as an increment in
steady motion, over and above the initial trim state, in response to an increment in
control angle.

The main aerodynamic force producing device in an aeroplane is the wing, and
wing lift acts normal to the direction of flight in the plane of symmetry. Normal
manoeuvring involves rotating the airframe in roll, pitch and yaw to point the lift vector
in the desired direction and the simultaneous adjustment of both angle of attack and
speed enables the lift force to generate the acceleration to manoeuvre. For example,
in turning flight the aeroplane is rolled to the desired bank angle when the horizontal
component of lift causes the aeroplane to turn in the desired direction. Simultaneous
aft displacement of the pitch stick is required to generate pitch rate, which in turn
generates an increase in angle of attack to produce more lift such that the vertical
component is sufficient to balance the weight of the aeroplane, and hence to maintain
level flight in the turn. The requirements for simple turning flight are illustrated in
Example 2.3. Thus manoeuvrability is mainly concerned with the ability to rotate
about aircraft axes, the modulation of the normal or lift force and the modulation of
the axial or thrust force. The use of lateral sideforce to manoeuvre is not common in
conventional aeroplanes since it is aerodynamically inefficient and it is both unnatural
and uncomfortable for the pilot. The principal aerodynamic manoeuvring force is
therefore lift, which acts in the plane of symmetry of the aeroplane, and this is
controlled by operating the control column in the pitch sense. When the pilot pulls

210
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back on the pitch stick the aeroplane pitches up to generate an increased lift force
and since this results in out-of-trim normal acceleration the pilot senses, and is very
sensitive to, the change in acceleration. The pilot senses what appears to be an increase
in the earth’s gravitational acceleration g and is said to be pulling g.

8.1.2 Stability

Aircraft stability is generally concerned with the requirement that trimmed equilib-
rium flight may be achieved and that small transient upsets from equilibrium shall
decay to zero. However, in manoeuvring flight the transient upset is the deliberate
result following a control input, it may not be small and may well be prolonged. In the
manoeuvre the aerodynamic forces and moments may be significantly different from
the steady trim values and it is essential that the changes do not impair the stability of
the aeroplane. In other words, there must be no tendency for the aeroplane to diverge
in manoeuvring flight.

The classical theory of manoeuvrability is generally attributed to Gates and Lyon
(1944) and various interpretations of that original work may be found in most books on
aircraft stability and control. Perhaps one of the most comprehensive and accessible
summaries of the theory is included in Babister (1961). In this chapter the subject
is introduced at the most basic level in order to provide an understanding of the
concepts involved since they are critically important in the broader considerations
of flying and handling qualities. The original work makes provision for the effects
of compressibility. In the following analysis subsonic flight only is considered in the
interests of simplicity and hence in the promotion of understanding.

The traditional analysis of manoeuvre stability is based on the concept of the
steady manoeuvre in which the aeroplane is subject to a steady normal accelera-
tion in response to a pitch control input. Although rather contrived, this approach
does enable the manoeuvre stability of an aeroplane to be explained analytically. The
only realistic manoeuvres which can be flown at constant normal acceleration are the
inside or outside loop and the steady banked turn. For the purpose of analysis the loop
is simplified to a pull-up, or push-over, which is just a small segment of the circular
flight path. Whichever manoeuvre is analysed, the resulting conditions for stability
are the same.

Since the steady acceleration is constrained to the plane of symmetry the problem
simplifies to the analysis of longitudinal manoeuvre stability, and since the motion is
steady the analysis is a simple extension of that applied to longitudinal static stability
as described in Chapter 3. Consequently, the analysis leads to the concept of the
longitudinal manoeuvre margin, the stability margin in manoeuvring flight, which in
turn gives rise to the corresponding control parameters stick displacement per g and
stick force per g.

8.1.3 Aircraft handling

It is not difficult to appreciate that the manoeuvrability of an airframe is a critical factor
in its overall flying and handling qualities. Too much manoeuvre stability means that
large control displacements and forces are needed to encourage the development of
the normal acceleration vital to effective manoeuvring. On the other hand, too little
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manoeuvre stability implies that an enthusiastic pilot could overstress the airframe
by the application of excessive levels of normal acceleration. Clearly, the difficult
balance between control power, manoeuvre stability, static stability and dynamic
stability must be correctly controlled over the entire flight envelope of the aeroplane.

Today, considerations of manoeuvrability in the context of aircraft handling have
moved on from the simple analysis of normal acceleration response to controls alone.
Important additional considerations concern the accompanying roll, pitch and yaw
rates and accelerations that may be achieved from control inputs since these determine
how quickly a manoeuvre can become established. Manoeuvre entry is also coloured
by transients associated with the short term dynamic stability modes. The aggressive-
ness with which a pilot may fly a manoeuvre and the motion cues available to him also
contribute to his perception of the overall handling characteristics of the aeroplane.
The “picture’’ therefore becomes very complex, and it is further complicated by the
introduction of flight control systems to the aeroplane. The subject of aircraft agility
is a relatively new and exciting topic of research which embraces the ideas mentioned
above and which is, unfortunately, beyond the scope of the present book.

8.1.4 The steady symmetric manoeuvre

The analysis of longitudinal manoeuvre stability is based on steady motion which
results in constant additional normal acceleration and, as mentioned above, the sim-
plest such manoeuvre to analyse is the pull-up. In symmetric flight inertial normal
acceleration, referred to the cg, is given by equation (5.39):

az = ẇ − qUe (8.1)

Since the manoeuvre is steady ẇ = 0 and the aeroplane must fly a steady pitch rate
in order to generate the normal acceleration required to manoeuvre. A steady turn
enables this condition to be maintained ad infinitum in flight but is less straightforward
to analyse. In symmetric flight, a short duration pull-up can be used to represent
the lower segment of a continuous circular flight path in the vertical plane since a
continuous loop is not practical for many aeroplanes.

It is worth noting that many modern combat aeroplanes and some advanced civil
transport aeroplanes have flight control systems which feature direct lift control
(DLC). In such aeroplanes pitch rate is not an essential prerequisite to the generation
of normal acceleration since the wing is fitted with a system of flaps for producing
lift directly. However, in some applications it is common to mix the DLC flap control
with conventional elevator control in order to improve manoeuvrability, manoeuvre
entry in particular. The manoeuvrability of aeroplanes fitted with DLC control sys-
tems may be significantly enhanced although its analysis may become rather more
complex.

8.2 THE STEADY PULL-UP MANOEUVRE

An aeroplane flying initially in steady level flight at speed V0 is subject to a small
elevator input δη which causes it to pull up with steady pitch rate q. Consider the
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Vertical circle
flight path

Pitch rate q

Weight
mg

Lift L

Steady velocity V0

Figure 8.1 A symmetric pull-up manoeuvre.

situation when the aircraft is at the lowest point of the vertical circle flight path as
shown in Fig. 8.1.

In order to sustain flight in the vertical circle it is necessary that the lift L balances
not only the weight mg but the centrifugal force also, thus the lift is greater than the
weight and

L = nmg (8.2)

where n is the normal load factor. Thus the normal load factor quantifies the total lift
necessary to maintain the manoeuvre and in steady level flight n = 1. The centrifugal
force balance is therefore given by

L − mg = mV0q (8.3)

and the incremental normal load factor may be derived directly:

δn = (n − 1) = V0q

g
(8.4)

Now as the aircraft is pitching up steadily the tailplane experiences an increase in
incidence δαT due to the pitch manoeuvre as indicated in Fig. 8.2.

Since small perturbation motion is assumed the increase in tailplane incidence is
given by

δαT ∼= tan δαT = qlT
V0

(8.5)

where lT is the moment arm of the aerodynamic centre of the tailplane with respect
to the centre of rotation in pitch, the cg. Eliminating pitch rate q from equations (8.4)
and (8.5),

δαT = (n − 1)glT
V 2

0

(8.6)

Now, in the steady level flight condition about which the manoeuvre is executed the
lift and weight are equal whence

V 2
0 = 2mg

ρSCLw

(8.7)
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Steady pitch rate q

cgac

Steady velocity V0

lT

V0

qlT

V

Incident velocity at tailplane

ac

LT

Lw

daT

Figure 8.2 Incremental tailplane incidence in pull-up manoeuvre.

where CLw is the steady level flight value of wing–body lift coefficient. Thus from
equations (8.6) and (8.7),

δαT = (n − 1)ρSCLw lT
2m

= (n − 1)CLw lT

μ1c
≡ δCLw lT

μ1c
(8.8)

where μ1 is the longitudinal relative density parameter and is defined:

μ1 = m
1
2ρSc

(8.9)

and the increment in lift coefficient, alternatively referred to as incremental “g’’,
necessary to sustain the steady manoeuvre is given by

δCLw = (n − 1)CLw (8.10)

Care should be exercised when using the longitudinal relative density parameter since
various definitions are in common use.

8.3 THE PITCHING MOMENT EQUATION

Subject to the same assumptions about thrust, drag, speed effects and so on, in the
steady symmetric manoeuvre the pitching moment equation in coefficient form given
by equation (3.7) applies and may be written:

C ′
m = Cm0 + C ′

Lw
(h − h0) − C ′

LT
V T (8.11)

where a dash indicates the manoeuvring value of the coefficient and,

C ′
m = Cm + δCm

C ′
Lw

= CLw + δCLw ≡ nCLw

C ′
LT

= CLT + δCLT
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where, Cm, CLw and CLT denote the steady trim values of the coefficients and δCm,
δCLw and δCLT denote the increments in the coefficients required to manoeuvre.

The corresponding expression for the tailplane lift coefficient is given by equation
(3.8) which, for manoeuvring flight, may be written

C ′
LT

= a1α
′
T + a2η

′ + a3βη (8.12)

It is assumed that the tailplane has a symmetric aerofoil section, a0 = 0, and that the
tab angle βη is held at the constant steady trim value throughout the manoeuvre. In
other words, the manoeuvre is the result of elevator input only. Thus, using the above
notation,

α′
T = αT + δαT

η′ = η + δη

Tailplane incidence is given by equation (3.11) and in the manoeuvre this may be
written:

αT = C ′
Lw

a

(
1 − dε

dα

)
+ ηT (8.13)

Total tailplane incidence in the manoeuvre is therefore given by the sum of
equations (8.8) and (8.13):

α′
T = C ′

Lw

a

(
1 − dε

dα

)
+ ηT + δCLw lT

μ1c
(8.14)

Substituting for α′
T in equation (8.12) the expression for tailplane lift coefficient in

the manoeuvre may be written:

C ′
LT

= C ′
Lw

a1

a

(
1 − dε

dα

)
+ a1ηT + δCLw a1lT

μ1c
+ a2η

′ + a3βη (8.15)

Substitute the expression for tailplane lift coefficient, equation (8.15), into equa-
tion (8.11), and after some re-arrangement the pitching moment equation may be
written:

C ′
m = Cm0 + C ′

Lw
(h − h0) − V T

(
C ′

Lw
a1

a

(
1 − dε

dα

)
+ a1ηT

+δCLw a1lT

μ1c
+ a2η

′ + a3βη

)
(8.16)

Equation (8.16) describes the total pitching moment in the manoeuvre. To obtain the
incremental pitching moment equation which describes the manoeuvre effects only it
is first necessary to replace the “dashed’’ variables and coefficients in equation (8.16)
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with their equivalent expressions. Then, after some re-arrangement equation (8.16)
may be written:

Cm + δCm =
(

Cm0 +CLw (h − h0) − V T

(
CLw a1

a

(
1 − dε

dα

)
+ a1ηT + a2η + a3βη

))

+
(
δCLw (h − h0) − V T

(
δCLw a1

a

(
1 − dε

dα

)
+ δCLw a1lT

μ1c
+ a2δη

))

(8.17)

Now in the steady equilibrium flight condition about which the manoeuvre is executed
the pitching moment is zero therefore

Cm = Cm0 + CLw (h − h0) − V T

(
CLw a1

a

(
1 − dε

dα

)
+ a1ηT + a2η + a3βη

)
= 0

(8.18)

and equation (8.17) simplifies to that describing the incremental pitching moment
coefficient:

δCm = δCLw (h − h0) − V T

(
δCLw a1

a

(
1 − dε

dα

)
+ δCLw a1lT

μ1c
+ a2δη

)
(8.19)

8.4 LONGITUDINAL MANOEUVRE STABILITY

As for longitudinal static stability, discussed in Chapter 3, in order to achieve a stable
manoeuvre the following condition must be satisfied:

dC ′
m

dC ′
Lw

< 0 (8.20)

and for the manoeuvre to remain steady then

C ′
m = 0 (8.21)

Analysis and interpretation of these conditions leads to the definition of controls fixed
manoeuvre stability and controls free manoeuvre stability which correspond with the
parallel concepts derived in the analysis of longitudinal static stability.

8.4.1 Controls fixed stability

The total pitching moment equation (8.16) may be written:

C ′
m = Cm0 + C ′

Lw
(h − h0) − V T

(
C ′

Lwa1

a

(
1 − dε

dα

)
+ a1ηT

+ (C ′
Lw

− CLw )a1lT

μ1c
+ a2η

′ + a3βη

)
(8.22)
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and since, by definition, the controls are held fixed in the manoeuvre:

dη′

dC ′
Lw

= 0

Applying the condition for stability, equation (8.20), to equation (8.22) and noting
that CLw and βη are constant at their steady level flight values and that ηT is also a
constant of the aircraft configuration then

dC ′
m

dC ′
Lw

= (h − h0) − V T

(
a1

a

(
1 − dε

dα

)
+ a1lT

μ1c

)
(8.23)

Or, writing,

Hm = − dC ′
m

dC ′
Lw

= hm − h (8.24)

where Hm is the controls fixed manoeuvre margin and the location of the controls
fixed manoeuvre point hm on the mean aerodynamic chord c is given by

hm = h0 + V T

(
a1

a

(
1 − dε

dα

)
+ a1lT

μ1c

)
= hn + V T a1lT

μ1c
(8.25)

Clearly, for controls fixed manoeuvre stability the manoeuvre margin Hm must be
positive and, with reference to equation (8.24), this implies that the cg must be ahead of
the manoeuvre point. Equation (8.25) indicates that the controls fixed manoeuvre point
is aft of the corresponding neutral point by an amount depending on the aerodynamic
properties of the tailplane. It therefore follows that

Hm = Kn + V T a1lT

μ1c
(8.26)

which indicates that the controls fixed manoeuvre stability is greater than the controls
fixed static stability. With reference to Appendix 8, equation (8.26) may be re-stated
in terms of aerodynamic stability derivatives:

Hm = −Mw

a
− Mq

μ1
(8.27)

A most important conclusion is that additional stability in manoeuvring flight is
provided by the aerodynamic pitch damping properties of the tailplane. However,
caution is advised since this conclusion may not apply to all aeroplanes in large
amplitude manoeuvring or, to manoeuvring in conditions where the assumptions do
not apply.

As for controls fixed static stability, the meaning of controls fixed manoeuvre
stability is easily interpreted by considering the pilot action required to establish a
steady symmetric manoeuvre from an initial trimmed level flight condition. Since
the steady (fixed) incremental elevator angle needed to induce the manoeuvre is of
interest the incremental pitching moment equation (8.19) is applicable. In a stable
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steady, and hence by definition, non-divergent manoeuvre the incremental pitching
moment δCm is zero. Whence, equation (8.19) may be re-arranged to give

δη

δCLw

= 1

V T a2

(
(h − h0) − V T

(
a1

a

(
1 − dε

dα

)
+ a1lT

μ1c

))
= −Hm

V T a2
(8.28)

Or, in terms of aerodynamic stability derivatives,

δη

δCLw

= −Hm

Mη

= 1

Mη

(
Mw

a
+ Mq

μ1

)
(8.29)

Referring to equation (8.10),

δCLw = (n − 1)CLw

which describes the incremental aerodynamic load acting on the aeroplane causing
it to execute the manoeuvre, expressed in coefficient form, and measured in units of
“g’’. Thus, both equations (8.28) and (8.29) express the elevator displacement per
g capability of the aeroplane which is proportional to the controls fixed manoeuvre
margin and inversely proportional to the elevator control power, quantified by the
aerodynamic control derivative Mη. Since elevator angle and pitch control stick angle
are directly related by the control gearing then the very important stick displacement
per g control characteristic follows directly and is also proportional to the controls
fixed manoeuvre margin. This latter control characteristic is critically important in
the determination of longitudinal handling qualities. Measurements of elevator angle
and normal acceleration in steady manoeuvres for a range of values of normal load
factor provide an effective means for determining controls fixed manoeuvre stability
from flight experiments. However, in such experiments it is not always possible to
ensure that all of the assumptions can be adhered to.

8.4.2 Controls free stability

The controls free manoeuvre is not a practical way of controlling an aeroplane. It
does, of course, imply that the elevator angle required to achieve the manoeuvre is
obtained by adjustment of the tab angle. As in the case of controls free static stability,
this equates to the control force required to achieve the manoeuvre which is a most
significant control characteristic. Control force derives from elevator hinge moment in
a conventional aeroplane and the elevator hinge moment coefficient in manoeuvring
flight is given by equation (3.21) and may be re-stated as

C ′
H = CH + δCH = b1α

′
T + b2η

′ + b3βη (8.30)

Since the elevator angle in a controls free manoeuvre is indeterminate it is convenient
to express η′ in terms of hinge moment coefficient by re-arranging equation (8.30):

η′ = 1

b2
C ′

H − b1

b2
α′

T − b3

b2
βη (8.31)
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Substitute the expression for α′
T , equation (8.14), into equation (8.31) to obtain,

η′ = 1

b2
C ′

H − b1

ab2

(
1 − dε

dα

)
C ′

Lw
− b1

b2
ηT − b1lT

b2μ1c
δCLw − b3

b2
βη (8.32)

Equation (8.32) may be substituted into the manoeuvring pitching moment equa-
tion (8.16) in order to replace the indeterminate elevator angle by hinge moment
coefficient. After some algebraic re-arrangement the manoeuvring pitching moment
may be expressed in the same format as equation (8.22):

C ′
m = Cm0 + C ′

Lw
(h − h0)

− V T

⎛
⎜⎜⎜⎝

C ′
Lw

a1

a

(
1 − dε

dα

)(
1 − a2b1

a1b2

)
+ a1ηT + C ′

H
a2

b2

+ (C ′
Lw

− CLw )
a1lT

μ1c

(
1 − a2b1

a1b2

)
+ βη

(
1 − a2b3

a3b2

)

⎞
⎟⎟⎟⎠ (8.33)

and since, by definition, the controls are free in the manoeuvre then

C ′
H = 0

Applying the condition for stability, equation (8.20), to equation (8.33) and noting
that, as before, CLw and βη are constant at their steady level flight values and that ηT

is also a constant of the aircraft configuration then

dC ′
m

dC ′
Lw

= (h − h0) − V T

(
a1

a

(
1 − dε

dα

)
+ a1lT

μ1c

)(
1 − a2b1

a1b2

)
(8.34)

Or, writing,

H ′
m = − dC ′

m

dC ′
Lw

= h′
m − h (8.35)

where H ′
m is the controls free manoeuvre margin and the location of the controls free

manoeuvre point h′
m on the mean aerodynamic chord c is given by

h′
m = h0 + V T

(
a1

a

(
1 − dε

dα

)
+ a1lT

μ1c

)(
1 − a2b1

a1b2

)

= h′
n + V T

a1lT

μ1c

(
1 − a2b1

a1b2

)
(8.36)

Clearly, for controls free manoeuvre stability the manoeuvre margin H ′
m must be

positive and, with reference to equation (8.35), this implies that the cg must be ahead
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of the manoeuvre point. Equation (8.36) indicates that the controls free manoeuvre
point is aft of the corresponding neutral point by an amount again depending on the
aerodynamic damping properties of the tailplane. It therefore follows that

H ′
m = K ′

n + V T
a1lT

μ1c

(
1 − a2b1

a1b2

)
≡ K ′

n + Mq

μ1

(
1 − a2b1

a1b2

)
(8.37)

which indicates that the controls free manoeuvre stability is greater than the controls
free static stability when

(
1 − a2b1

a1b2

)
> 0 (8.38)

Since a1 and a2 are both positive the degree of controls free manoeuvre stability,
over and above the controls free static stability, is controlled by the signs of the hinge
moment parameters b1 and b2. This, in turn, depends on the aerodynamic design of
the elevator control surface.

As for controls free static stability the meaning of controls free manoeuvre stability
is easily interpreted by considering the pilot action required to establish a steady sym-
metric manoeuvre from an initial trimmed level flight condition. Since the controls
are “free’’ this equates to a steady tab angle increment or, more appropriately, a steady
control force increment in order to cause the aeroplane to manoeuvre. Equation (8.33)
may be re-written in terms of the steady and incremental contributions to the total
controls free manoeuvring pitching moment in the same way as equation (8.17):

Cm + δCm =

⎛
⎜⎜⎜⎝Cm0 + CLw (h − h0) − V T

⎛
⎜⎜⎜⎝

CLw

a1

a

(
1 − dε

dα

)(
1 − a2b1

a1b2

)

+ a1ηT + CH
a2

b2
+ βη

(
1 − a2b3

a3b2

)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝δCLw (h − h0) − V T

⎛
⎜⎜⎜⎝

δCLw

a1

a

(
1 − dε

dα

)(
1 − a2b1

a1b2

)

+ δCH
a2

b2
+ δCLw

a1lT

μ1c

(
1 − a2b1

a1b2

)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

(8.39)

Now in the steady equilibrium flight condition about which the manoeuvre is executed
the pitching moment is zero thus

Cm = Cm0 + CLw (h − h0) − V T

⎛
⎜⎜⎜⎝

CLw

a1

a

(
1 − dε

dα

)(
1 − a2b1

a1b2

)

+ a1ηT + CH
a2

b2
+ βη

(
1 − a2b3

a3b2

)

⎞
⎟⎟⎟⎠= 0

(8.40)
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and equation (8.39) simplifies to that describing the incremental controls free pitching
moment coefficient:

δCm = δCLw (h − h0) − V T

⎛
⎜⎜⎜⎜⎝

δCLw

a1

a

(
1 − dε

dα

)(
1 − a2b1

a1b2

)

+ δCH
a2

b2
+ δCLw

a1lT

μ1c

(
1 − a2b1

a1b2

)

⎞
⎟⎟⎟⎟⎠

(8.41)

Now in the steady manoeuvre the incremental pitching moment δCm is zero and
equation (8.41) may be re-arranged to give

δCH

δCLw

= b2

a2V T

(
(h − h0) − V T

(
a1

a

(
1 − dε

dα

)
+ a1lT

μ1c

)(
1 − a2b1

a1b2

))

= −b2H ′
m

a2V T
(8.42)

In a conventional aeroplane the hinge moment coefficient relates directly to the control
stick force, see equation (3.32). Equation (8.42) therefore indicates the very important
result that the stick force per g control characteristic is proportional to the controls
free manoeuvre margin. This control characteristic is critically important in the deter-
mination of longitudinal handling qualities and it must have the correct value. In other
words, the controls free manoeuvre margin must lie between precisely defined upper
and lower bounds. As stated above, in an aerodynamically controlled aeroplane this
control characteristic can be adjusted independently of the other stability character-
istics by selective design of the values of the hinge moment parameters b1 and b2.
The controls free manoeuvre stability is critically dependent on the ratio b1/b2 which
controls the magnitude and sign of expression (8.38). For conventional aeroplanes fit-
ted with a plain flap type elevator control both b1 and b2 are usually negative and, see
equation (8.37), the controls free manoeuvre stability would be less than the controls
free static stability. Adjustment of b1 and b2 is normally achieved by aeromechani-
cal means which are designed to modify the elevator hinge moment characteristics.
Typically, this involves carefully tailoring the aerodynamic balance of the elevator by
means, such as set back hinge line, horn balances, spring tabs, servo tabs and so on.
Excellent descriptions of these devices may be found in Dickinson (1968) and in
Babister (1961).

The measurement of stick force per g is easily undertaken in flight. The aeroplane
is flown in steady manoeuvring flight, the turn probably being the simplest way of
achieving a steady normal acceleration for a period long enough to enable good quality
measurements to be made. Measurements of stick force and normal acceleration
enable estimates to be made of the controls free manoeuvre margin and the location
of the controls free manoeuvre point. With greater experimental difficulty, stick force
per g can also be measured in steady pull-ups and in steady push-overs. However the
experiment is done it must be remembered that it is not always possible to ensure that
all of the assumptions can be adhered to.
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8.5 AIRCRAFT DYNAMICS AND MANOEUVRABILITY

The preceding analysis shows how the stability of an aeroplane in manoeuvring
flight is dependent on the manoeuvre margins and, further, that the magnitude of the
manoeuvre margins determines the critical handling characteristics, stick displace-
ment per g and stick force per g. However, the manoeuvre margins of the aeroplane
are also instrumental in determining some of the dynamic response characteristics
of the aeroplane. This fact further reinforces the statement made elsewhere that the
static, manoeuvre and dynamic stability and control characteristics of an aeroplane
are really very much inter-related and should not be treated entirely as isolated topics.

In Chapter 6 reduced order models of an aircraft are discussed and from the longi-
tudinal model representing short term dynamic stability and response an approximate
expression for the short period mode undamped natural frequency is derived, equation
(6.21), in terms of dimensional aerodynamic stability derivatives. With reference to
Appendix 2, this expression may be re-stated in terms of dimensionless derivatives:

ω2
s =

1
2ρV 2

0 Sc

Iy

(
1
2ρSc

m
MqZw + Mw

)
=

1
2ρV 2

0 Sc

Iy

(
MqZw

μ1
+ Mw

)
(8.43)

where μ1 is the longitudinal relative density factor defined in equation (8.9).
Now with reference to Appendix 8 an approximate expression for Zw is given as

Zw ∼= −CD − ∂CL

∂α
= −CD − a (8.44)

for small perturbation motion in subsonic flight. Since a >> CD equation (8.44) may
be approximated further, and substituting for Zw in equation (8.43) to obtain

ω2
s =

1
2ρV 2

0 Sca

Iy

(
−Mq

μ1
− Mw

a

)
= kHm ≡ k

(
Kn − Mq

μ1

)
(8.45)

where k is a constant at the given flight condition. Equation (8.45) therefore shows
that the undamped natural frequency of the longitudinal short period mode is directly
dependent on the controls fixed manoeuvre margin. Alternatively, this may be inter-
preted as a dependency on the controls fixed static margin and pitch damping. Clearly,
since the controls fixed manoeuvre margin must lie between carefully defined bound-
aries if satisfactory handling is to be ensured, this implies that the longitudinal short
period mode must also be constrained to a corresponding frequency band. Flying
qualities requirements have been developed from this kind of understanding and are
discussed in Chapter 10.

In many modern aeroplanes the link between the aerodynamic properties of the
control surface and the stick force is broken by a servo actuator and other flight
control system components. In this case the control forces are provided artificially
and may not inter-relate with other stability and control characteristics in the classical
way. However, it is obviously important that the pilots perception of the handling
qualities of his aeroplane look like those of an aeroplane with acceptable aerodynamic
manoeuvre margins. Since many of the subtle aerodynamic inter-relationships do
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not exist in aeroplanes employing sophisticated flight control systems it is critically
important to be fully aware of the handling qualities implications at all stages of a
control system design.
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Chapter 9

Stability

9.1 INTRODUCTION

Stability is referred to frequently in the foregoing chapters without a formal definition
so it is perhaps useful to re-visit the subject in a little more detail in this chapter. Having
established the implications of both static and dynamic stability in the context of
aircraft response to controls it is convenient to develop some simple analytical and
graphical tools to help in the interpretation of aircraft stability.

9.1.1 A definition of stability

There are many different definitions of stability which are dependent on the kind
of system to which they are applied. Fortunately, in the present context the aircraft
model is linearised by limiting its motion to small perturbations. The definition of the
stability of a linear system is the simplest and most commonly encountered, and is
adopted here for application to the aeroplane. The definition of the stability of a linear
system may be found in many texts in applied mathematics, in system analysis and in
control theory. A typical definition of the stability of a linear system with particular
reference to the aeroplane may be stated as follows.

A system which is initially in a state of static equilibrium is said to be stable if after a dis-
turbance of finite amplitude and duration the response ultimately becomes vanishingly
small.

Stability is therefore concerned with the nature of the free motion of the system
following a disturbance. When the system is linear the nature of the response, and
hence its stability, is independent of the magnitude of the disturbing input. The small
perturbation equations of motion of an aircraft are linear since, by definition, the
perturbations are small. Consequently, it is implied that the disturbing input must
also be small in order to preserve that linearity. When, as is often the case, input
disturbances which are not really small are applied to the linear small perturbation
equations of motion of an aircraft, some degradation in the interpretation of stability
from the observed response must be anticipated. However, for most applications
this does not give rise to major difficulties since the linearity of the aircraft model
usually degrades relatively slowly with increasing perturbation amplitude. Thus it
is considered reasonable to use linear system stability theory for general aircraft
applications.

224
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9.1.2 Non-linear systems

Many modern aircraft, especially combat aircraft which depend on flight control sys-
tems for their normal flying qualities, can, under certain conditions, demonstrate
substantial non-linearity in their behaviour. This may be due, for example, to large
amplitude manoeuvring at the extremes of the flight envelope where the aerody-
namic properties of the airframe are decidedly non-linear. A rather more common
source of non-linearity, often found in an otherwise nominally linear aeroplane and
often overlooked, arises from the characteristics of common flight control system
components. For example, control surface actuators all demonstrate static friction,
hysteresis, amplitude and rate limiting to a greater or lesser extent. The non-linear
response associated with these characteristics is not normally intrusive unless the
demands on the actuator are limiting, such as might be found in the fly-by-wire con-
trol system of a high performance aircraft. The mathematical models describing such
non-linear behaviour are much more difficult to create and the applicable stability cri-
teria are rather more sophisticated and, in any event, beyond the scope of the present
discussion. Non-linear system theory, more popularly known as chaotic system the-
ory today, is developing rapidly to provide the mathematical tools, understanding
and stability criteria for dealing with the kind of problems posed by modern highly
augmented aircraft.

9.1.3 Static and dynamic stability

Any discussion of stability must consider the total stability of the aeroplane at the
flight condition of interest. However, it is usual and convenient to discuss static
stability and dynamic stability separately since the related dependent characteristics
can be identified explicitly in aircraft behaviour. In reality static and dynamic stability
are inseparable and must be considered as an entity. An introductory discussion of
static and dynamic stability is contained in Section 3.1 and their simple definitions
are re-iterated here. The static stability of an aeroplane is commonly interpreted to
describe its tendency to converge on the initial equilibrium condition following a small
disturbance from trim. Dynamic stability describes the transient motion involved in
the process of recovering equilibrium following the disturbance. It is very important
that an aeroplane possesses both static and dynamic stability in order that they shall
be safe. However, the degree of stability is also very important since this determines
the effectiveness of the controls of the aeroplane.

9.1.4 Control

By definition, a stable aeroplane is resistant to disturbance, in other words it will
attempt to remain at its trimmed equilibrium flight condition. The “strength’’ of the
resistance to disturbance is determined by the degree of stability possessed by the
aeroplane. It follows then, that a stable aeroplane is reluctant to respond when a
disturbance is deliberately introduced as the result of pilot control action. Thus the
degree of stability is critically important to aircraft handling. An aircraft which is
very stable requires a greater pilot control action in order to manoeuvre about the
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Figure 9.1 Stability and control.

trim state and clearly, too much stability may limit the controllability, and hence the
manoeuvrability, of the aeroplane. On the other hand, too little stability in an otherwise
stable aeroplane may give rise to an over responsive aeroplane with the resultant pilot
tendency to over control. Therefore, too much stability can be as hazardous as too
little stability and it is essential to place upper and lower bounds on the acceptable
degree of stability in an aeroplane in order that it shall remain completely controllable
at all flight conditions.

As described in Chapter 3, the degree of static stability is governed by cg position
and this has a significant effect on the controllability of the aeroplane and on the pilot
workload. Interpretation of control characteristics as a function of degree of stability,
and consequently cg position is summarised in Fig. 9.1. In particular, the control
action, interpreted as stick displacement and force, becomes larger at the extremes
of stability and this has implications for pilot workload. It is also quite possible for
very large pilot action to reach the limit of stick displacement or the limit of the
pilot’s ability to move the control against the force. For this reason, constraints are
placed on the permitted cg operating range in the aircraft, as discussed in Chapter 3.
The control characteristics are also influenced by the dynamic stability properties
which are governed by cg position and also by certain aerodynamic properties of the
airframe. This has implications for pilot workload if the dynamic characteristics of
the aircraft are not within acceptable limits. However, the dynamic aspects of control
are rather more concerned with the time dependency of the response, but in general
the observations shown in Fig. 9.1 remain applicable. By reducing the total stability to
static and dynamic components, which are further reduced to the individual dynamic
modes, it becomes relatively easy to assign the appropriate degree of stability to each
mode in order to achieve a safe controllable aeroplane in total. However, this may
require the assistance of a command and stability augmentation system, and it may
also require control force shaping by means of an artificial feel system.
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9.2 THE CHARACTERISTIC EQUATION

It has been shown in previous chapters that the denominator of every aircraft response
transfer function defines the characteristic polynomial, the roots of which determine
the stability modes of the aeroplane. Equating the characteristic polynomial to zero
defines the classical characteristic equation and thus far two such equations have
been identified. Since decoupled motion only is considered the solution of the equa-
tions of motion of the aeroplane results in two fourth order characteristic equations,
one relating to longitudinal symmetric motion and one relating to lateral–directional
asymmetric motion. In the event that the decoupled equations of motion provide an
inadequate aircraft model, such as is often the case for the helicopter, then a single
characteristic equation, typically of eighth order, describes the stability characteristics
of the aircraft in total. For aircraft with significant stability augmentation, the flight
control system introduces additional dynamics resulting in a higher order character-
istic equation. For advanced combat aircraft the longitudinal characteristic equation,
for example, can be of order 30 or more! Interpretation of high order characteristic
equations can be something of a challenge for the flight dynamicist.

The characteristic equation of a general system of order n may be expressed in the
familiar format as a function of the Laplace operator s

Δ(s) = ansn + an−1sn−1 + an−2sn−2 + an−3sn−3 + · · · + a1s + a0 = 0 (9.1)

and the stability of the system is determined by the n roots of equation (9.1). Provided
that the constant coefficients in equation (9.1) are real then the roots may be real,
complex pairs or a combination of the two. Thus the roots may be written in the
general form

(i) Single real roots, for example s = −σ1 with time solution k1e−σ1t

(ii) Complex pairs of roots, for example s = −σ2 ± jγ2 with time solution
k2e−σ2t sin (γ2t + φ2) or, more familiarly, s2 + 2σ2s + (σ2

2 + γ2
2 ) = 0

where σ is the real part, γ is the imaginary part, φ is the phase angle and k is a gain
constant. When all the roots have negative real parts the transient component of the
response to a disturbance decays to zero as t → ∞ and the system is said to be stable.
The system is unstable when any root has a positive real part and neutrally stable
when any root has a zero real part. Thus the stability and dynamic behaviour of any
linear system is governed by the sum of the dynamics associated with each root of
its characteristic equation. The interpretation of the stability and dynamics of a linear
system is summarised in Appendix 6.

9.3 THE ROUTH–HURWITZ STABILITY CRITERION

The development of a criterion for testing the stability of linear systems is generally
attributed to Routh. Application of the criterion involves an analysis of the character-
istic equation and methods for interpreting and applying the criterion are very widely
known and used, especially in control systems analysis. A similar analytical proce-
dure for testing the stability of a system by analysis of the characteristic equation
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was developed simultaneously, and quite independently, by Hurwitz. As a result both
authors share the credit and the procedure is commonly known as the Routh–Hurwitz
criterion to control engineers. The criterion provides an analytical means for testing
the stability of a linear system of any order without having to obtain the roots of the
characteristic equation.

With reference to the typical characteristic equation (9.1), if any coefficient is zero
or, if any coefficient is negative then at least one root has a zero or positive real
part indicating the system to be unstable, or at best neutrally stable. However, it is
a necessary but not sufficient condition for stability that all coefficients in equation
(9.1) are non-zero and of the same sign. When this condition exists the stability of
the system described by the characteristic equation may be tested as follows.

An array, commonly known as the Routh Array, is constructed from the coefficients
of the characteristic equation arranged in descending powers of s as follows

sn

sn−1

sn−2

sn−3

·
·
·

s1

s0

an an−2 an−4 an−6 · · · · · ·
an−1 an−3 an−5 an−7 · · · · · ·
u1 u2 u3 u4 ·
v1 v2 v3 ·
· · ·
· ·
·
y
z

(9.2)

The first row of the array is written to include alternate coefficients starting with the
highest power term and the second row includes the remaining alternate coefficients
starting with the second highest power term as indicated. The third row is constructed
as follows:

u1 = an−1an−2 − anan−3

an−1
u2 = an−1an−4 − anan−5

an−1
u3 = an−1an−6 − anan−7

an−1

and so on until all remaining u are zero. The fourth row is constructed similarly from
coefficients in the two rows immediately above as follows:

v1 = u1an−3 − u2an−1

u1
v2 = u1an−5 − u3an−1

u1
v3 = u1an−7 − u4an−1

u1

and so on until all remaining v are zero. This process is repeated until all remaining
rows of the array are completed. The array is triangular as indicated and the last two
rows comprise only one term each, y and z respectively.

The Routh–Hurwitz criterion states:

The number of roots of the characteristic equation with positive real parts (unstable) is
equal to the number of changes of sign of the coefficients in the first column of the array.

Thus for the system to be stable all the coefficients in the first column of the array
must have the same sign.
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Example 9.1

The lateral–directional characteristic equation for the Douglas DC-8 aircraft in a low
altitude cruise flight condition, obtained from Teper (1969) is

Δ(s) = s4 + 1.326s3 + 1.219s2 + 1.096s − 0.015 = 0 (9.3)

Inspection of the characteristic equation (9.3) indicates an unstable aeroplane since the
last coefficient has a negative sign. The number of unstable roots may be determined
by constructing the array as described above

s4

s3

s2

s1

s0

1 1.219 −0.015
1.326 1.096 0
0.393 −0.015 0
1.045 0 0

−0.015 0 0

(9.4)

Working down the first column of the array there is one sign change, from 1.045 to
−0.015, which indicates the characteristic equation to have one unstable root. This is
verified by obtaining the exact roots of the characteristic equation (9.3)

s = −0.109 ± 0.99j

s = −1.21 (9.5)

s = +0.013

The complex pair of roots with negative real parts describe the stable dutch roll, the
real root with negative real part describes the stable roll subsidence mode and the real
root with positive real part describes the unstable spiral mode. A typical solution for
a classical aeroplane.

9.3.1 Special cases

Two special cases which may arise in the application of the Routh–Hurwitz criterion
need to be considered although they are unlikely to occur in aircraft applications. The
first case occurs when, in the routine calculation of the array, a coefficient in the first
column is zero. The second case occurs when, in the routine calculation of the array,
all coefficients in a row are zero. In either case no further progress is possible and an
alternative procedure is required. The methods for dealing with these cases are best
illustrated by example.

Example 9.2

Consider the arbitrary characteristic equation

Δ(s) = s4 + s3 + 6s2 + 6s + 7 = 0 (9.6)
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The array for this equation is constructed in the usual way

s4

s3

s2

s1

s0

1 6 7
1 6 0
ε 7 0(

6ε − 7

ε

)
0 0

7 0 0

(9.7)

Normal progress can not be made beyond the third row since the first coefficient is
zero. In order to proceed the zero is replaced with a small positive number, denoted
ε. The array can be completed as at (9.7) and as ε → 0 so the first coefficient in the
fourth row tends to a large negative value. The signs of the coefficients in the first
column of the array 9.7 are then easily determined

s4

s3

s2

s1

s0

+
+
+
−
+

(9.8)

There are two changes of sign, from row three to row four and from row four to row
five. Therefore the characteristic equation (9.6) has two roots with positive real parts
and this is verified by the exact solution

s = −0.6454 ± 0.9965j
(9.9)

s = +0.1454 ± 2.224j

Example 9.3

To illustrate the required procedure when all the coefficients in a row of the array are
zero consider the arbitrary characteristic equation

Δ(s) = s5 + 2s4 + 4s3 + 8s2 + 3s + 6 = 0 (9.10)

Constructing the array in the usual way

s5

s4

s3

1 4 3
2 8 6
0 0

(9.11)

no further progress is possible since the third row comprises all zeros. In order to
proceed, the zero row, the third row in this example, is replaced by an auxiliary
function derived from the preceding non-zero row. Thus the function is created from
the row commencing with the coefficient of s to the power of four as follows:

2s4 + 8s2 + 6 = 0 or equivalently s4 + 4s2 + 3 = 0 (9.12)
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Only terms in alternate powers of s are included in the auxiliary function (9.12)
commencing with the highest power term determined from the row of the array from
which it is derived. The auxiliary function is differentiated with respect to s and the
resulting polynomial is used to replace the zero row in the array. Equation (9.12) is
differentiated to obtain

4s3 + 8s = 0 or equivalently s3 + 2s = 0 (9.13)

Substituting equation (9.13) into the third row of the array (9.11), it may then be
completed in the usual way:

s5

s4

s3

s2

s1

s0

1 4 3
2 8 6
1 2 0
4 6 0

0.5 0 0
6 0 0

(9.14)

Inspection of the first column of the array (9.14) indicates that all roots of the charac-
teristic equation (9.10) have negative real parts. However, the fact that in the derivation
of the array one row comprises zero coefficients suggests that something is different.
The exact solution of equation (9.10) confirms this suspicion

s = 0 ± 1.732j

s = 0 ± 1.0j (9.15)

s = −2.0

Clearly the system is neutrally stable since the two pairs of complex roots both have
zero real parts.

9.4 THE STABILITY QUARTIC

Since both the longitudinal and lateral–directional characteristic equations derived
from the small perturbation equations of motion of an aircraft are fourth order, consid-
erable emphasis has always been placed on the solution of a fourth order polynomial,
sometimes referred to as the stability quartic. A general quartic equation applicable
to either longitudinal or to lateral–directional motion may be written

As4 + Bs3 + Cs2 + Ds + E = 0 (9.16)

When all of the coefficients in equation (9.16) are positive, as is often the case,
then no conclusions may be drawn concerning stability unless the roots are found or
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the Routh–Hurwitz array is constructed. Constructing the Routh–Hurwitz array as
described in Section 9.3

s4 A C E
s3 B D

s2

(
BC − AD

B

)
E

s1

(
D(BC − AD) − B2E

BC − AD

)

s0 E

(9.17)

Assuming that all of the coefficients in the characteristic equation (9.16) are positive
and that B and C are large compared with D and E, as is usually the case, then the
coefficients in the first column of (9.17) are also positive with the possible exception
of the coefficient in the fourth row. Writing

R = D(BC − AD) − B2E (9.18)

R is called Routh’s Discriminant and since (BC −AD) is positive, the outstanding
condition for stability is

R > 0

For most classical aircraft operating within the constraints of small perturbation
motion, the only coefficient in the characteristic equation (9.16) likely to be neg-
ative is E. Thus typically, the necessary and sufficient conditions for an aeroplane to
be stable are

R > 0 and E > 0

When an aeroplane is unstable some conclusions about the nature of the instability
can be made simply by observing the values of R and E.

9.4.1 Interpretation of conditional instability

(i) When R < 0 and E > 0
Observation of the signs of the coefficients in the first column of the array (9.17)
indicates that two roots of the characteristic equation (9.16) have positive real
parts. For longitudinal motion this implies a pair of complex roots and in most
cases this means an unstable phugoid mode since its stability margin is usually
smallest. For lateral–directional motion the implication is that either the two
real roots, or the pair of complex roots have positive real parts. This means
that either the spiral and roll subsidence modes are unstable or that the dutch
roll mode is unstable. Within the limitations of small perturbation modelling an
unstable roll subsidence mode is not possible. Therefore the instability must be
determined by the pair of complex roots describing the dutch roll mode.
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(ii) When R < 0 and E < 0
For this case, observation of the signs of the coefficients in the first column of
the array (9.17) indicates that one root only of the characteristic equation (9.16)
has a positive real part. Clearly, the “unstable’’ root can only be a real root.
For longitudinal motion this may be interpreted to mean that the phugoid mode
has changed such that it is no longer oscillatory and is therefore described by a
pair of real roots, one of which has a positive real part. The “stable’’ real root
typically describes an exponential heave characteristic whereas, the “unstable’’
root describes an exponentially divergent speed mode. For lateral–directional
motion the interpretation is similar and in this case the only “unstable’’ real
root must be that describing the spiral mode. This, of course, is a commonly
encountered condition in lateral–directional dynamics.

(iii) When R > 0 and E < 0
As for the previous case, observation of the signs of the coefficients in the first
column of the array (9.17) indicates that one root only of the characteristic
equation (9.16) has a positive real part. Again, the “unstable’’ root can only be a
real root. Interpretation of the stability characteristics corresponding with this
particular condition is exactly the same as described in (ii) above.

When all the coefficients in the characteristic equation (9.16) are positive and
R is negative the instability can only be described by a pair of complex roots,
the interpretation of which is described in (i) above. Since the unstable motion
is oscillatory the condition R > 0 is sometimes referred to as the criterion for
dynamic stability. Alternatively, the most common unstable condition arises
when the coefficients in the characteristic equation (9.16) are positive with the
exception of E. In this case the instability can only be described by a single real
root, the interpretation of which is described in (iii) above. Now the instability is
clearly identified as a longitudinal speed divergence or, as the divergent lateral–
directional spiral mode both of which are dynamic characteristics. However,
the aerodynamic contribution to E is substantially dependent on static stability
effects and when E < 0 the cause is usually static instability. Consequently the
condition E > 0 is sometimes referred to as the criterion for static stability. This
simple analysis emphasises the role of the characteristic equation in describing
the total stability of the aeroplane and reinforces the reason why, in reality, static
and dynamic stability are inseparable, and why one should not be considered
without reference to the other.

9.4.2 Interpretation of the coefficient E

Assuming the longitudinal equations of motion to be referred to a system of aircraft
wind axes then, the coefficient E in the longitudinal characteristic equation may be
obtained directly from Appendix 3

E = mg

( ◦
Mw

◦
Zu − ◦

Mu
◦

Zw

)
(9.19)

and the longitudinal static stability criterion may be expressed in terms of dimension-
less derivatives

MwZu > MuZw (9.20)
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For most aeroplanes the derivatives in equation (9.20) have negative values so that
the terms on either side of the inequality are usually both positive. Mw is a measure of
the controls fixed longitudinal static stability margin, Zu is largely dependent on lift
coefficient, Zw is dominated by lift curve slope and Mu only assumes significant values
at high Mach number. Thus provided the aeroplane possesses a sufficient margin of
controls fixed longitudinal static stability Mw will be sufficiently large to ensure that
the inequality (9.20) is satisfied. At higher Mach numbers when Mu becomes larger
the inequality is generally maintained since the associated aerodynamic changes also
cause Mw to increase.

Similarly the coefficient E in the lateral–directional characteristic equation may be
obtained directly from Appendix 3

E = mg

( ◦
Lv

◦
Nr − ◦

Lr
◦

Nv

)
(9.21)

and the lateral–directional static stability criterion may be expressed in terms of
dimensionless derivatives

LvNr > LrNv (9.22)

For most aeroplanes the derivatives Lv and Nr are both negative, the derivative Lr is
usually positive and the derivative Nv is always positive. Thus the terms on either side
of the inequality (9.22) are usually both positive. Satisfaction of the inequality is usu-
ally determined by the relative magnitudes of the derivatives Lv and Nv. Now Lv and
Nv are the derivatives describing the lateral and directional controls fixed static stabil-
ity of the aeroplane respectively, as discussed in Sections 3.4 and 3.5. The magnitude
of the derivative Lv is determined by the lateral dihedral effect and the magnitude of
the derivative Nv is determined by the directional weathercock effect. The inequality
(9.22) also determines the condition for a stable spiral mode as described in Section
7.3.2 and, once again, the inseparability of static and dynamic stability is illustrated.

9.5 GRAPHICAL INTERPRETATION OF STABILITY

Today, the foregoing analysis of stability is of limited practical value since all of
the critical information is normally obtained in the process of solving the equations
of motion exactly and directly using suitable computer software tools as described
elsewhere. However, its greatest value is in the understanding and interpretation of
stability it provides. Of much greater practical value are the graphical tools much
favoured by the control engineer for the interpretation of stability on the s-plane.

9.5.1 Root mapping on the s-plane

The roots of the characteristic equation are either real or complex pairs as stated in
Section 9.2. The possible forms of the roots may be mapped on to the s-plane as shown
in Fig. 9.2. Since the roots describe various dynamic and stability characteristics
possessed by the system to which they relate the location of the roots on the s-plane
also conveys the same information in a highly accessible form. “Stable’’ roots have
negative real parts and lie on the left half of the s-plane, “unstable’’ roots have positive
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Figure 9.2 Roots on the s-plane.

real parts and lie on the right half of the s-plane and roots describing neutral stability
have zero real parts and lie on the imaginary axis. Complex roots lie in the upper
half of the s-plane, their conjugates lie in the lower half of the s-plane and since their
locations are mirrored in the real axis it is usual to show the upper half of the plane
only. Complex roots describe oscillatory motion, so all roots lying in the plane and
not on the real axis describe such characteristics. Roots lying on the real axis describe
non-oscillatory motions the time constants of which are given by T = 1/σ. A root
lying at the origin therefore, is neutrally stable and has an infinite time constant. As
real roots move away from the origin so their time constants decrease, in the stable
sense on the left half plane and in the unstable sense on the right half plane.

Consider the interpretation of a complex pair of roots on the s-plane in rather greater
detail. As stated in Section 9.2, the typical pair of complex roots may be written

(s + σ + jγ)(s + σ − jγ) = s2 + 2σs + (σ2 + γ2) = 0 (9.23)

which is equivalent to the familiar expression

s2 + 2ζωs + ω2 = 0 (9.24)

whence

ζω = σ

ω2 = σ2 + γ2 (9.25)

ζ = cos φ = σ√
σ2 + γ2

where φ is referred to as the damping angle. This information is readily interpreted
on the s-plane as shown in Fig. 9.3. The complex roots of equation (9.23) are plotted
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Figure 9.3 Typical complex roots on the s-plane.

at p, the upper half of the s-plane only being shown since the lower half containing
the complex conjugate root is a mirror image in the real axis. With reference to
equations (9.24) and (9.25), it is evident that undamped natural frequency is given by
the magnitude of the line joining the origin and the point p. Thus lines of constant
frequency are circles concentric with the origin provided that both axes have the same
scales. Care should be exercised when the scales are dissimilar, which is often the case,
as the lines of constant frequency then become ellipses. Thus, clearly, roots indicating
low frequency dynamics are near to the origin and vice versa. Whenever possible, it is
good practice to draw s-plane plots and root locus plots on axes having the same scales
to facilitate the easy interpretation of frequency. With reference to equations (9.25), it
is evident that radial lines drawn through the origin are lines of constant damping. The
imaginary axis then becomes a line of zero damping and the real axis becomes a line of
critical damping where the damping ratio is unity and the roots become real. The upper
left quadrant of the s-plane shown on Fig. 9.3 contains the stable region of positive
damping ratio in the range 0 ≤ ζ ≤ 1 and is therefore the region of critical interest
in most practical applications. Thus roots indicating stable well damped dynamics
are seen towards the left of the region and vice versa. Thus, information about the
dynamic behaviour of a system is instantly available on inspection of the roots of
its characteristic equation on the s-plane. The interpretation of the stability of an
aeroplane on the s-plane becomes especially useful for the assessment of stability
augmentation systems on the root locus plot as described in Chapter 11.

Example 9.4

The Boeing B-747 is typical of a large classical transport aircraft and the following
characteristics were obtained from Heffley and Jewell (1972). The flight case chosen
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is representative of typical cruising flight at Mach 0.65 at an altitude of 20,000 ft. The
longitudinal characteristic equation is

Δ(s)long = s4 + 1.1955s3 + 1.5960s2 + 0.0106s + 0.00676 (9.26)

with roots

s = −0.001725 ± 0.0653j
(9.27)

s = −0.596 ± 1.1101j

describing stability mode characteristics

ωp = 0.065 rad/s ζp = 0.0264

ωs = 1.260 rad/s ζs = 0.4730
(9.28)

The corresponding lateral characteristic equation is

Δ(s)long = s4 + 1.0999s3 + 1.3175s2 + 1.0594s + 0.01129 (9.29)

with roots

s = −0.0108

s = −0.9130 (9.30)

s = −0.0881 ± 1.0664j

describing stability mode characteristics

Ts = 92.6 s

Tr = 1.10 s (9.31)

ωd = 1.070 rad/s ζd = 0.082

The longitudinal roots given by equations (9.27) and the lateral roots given by equa-
tions (9.30) are mapped on to the s-plane as shown in Fig. 9.4. The plot is absolutely
typical for a large number of aeroplanes and shows the stability modes, represented
by their corresponding roots, on regions of the s-plane normally associated with the
modes. For example, the slow modes, the phugoid and spiral mode, are clustered
around the origin whereas the faster modes are further out in the plane. Since the vast
majority of aeroplanes have longitudinal and lateral–directional control bandwidths
of less than 10 rad/s, then the scales of the s-plane plot would normally lie in the range
−10 rad/s < real < 0 rad/s and −10 rad/s < imaginary < 10 rad/s. Clearly, the control
bandwidth of the B-747 at the chosen flight condition is a little over 1 rad/s as might
be expected for such a large aeroplane. The important observation to be made from
this illustration is the relative locations of the stability mode roots on the s-plane since
they are quite typical of many aeroplanes.
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PROBLEMS

1. By applying the Routh–Hurwitz stability criterion to the longitudinal character-
istic equation show that the minimum condition for stability, assuming a conven-
tional aircraft, is E > 0 and R > 0, where the Routh discriminant R is given by

R = (BC − AD)D − B2E

Using these conditions test the longitudinal stability of the aircraft whose
dimensional characteristics equation is

s4 + 5.08s3 + 13.2s2 + 0.72s + 0.52 = 0

Verify your findings by obtaining the approximate solution of the equation.
Describe in detail the characteristic longitudinal modes of the aircraft.

(CU 1982)
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2. The Republic F-105B Thunderchief aircraft, data for which is given in Teper
(1969), has a wing span of 10.6 m and is flying at a speed of 518 kts at an altitude
where the lateral relative density parameter is μ2 = 221.46. The dimensionless
controls fixed lateral–directional stability quartic is

λ4 + 29.3λ3 + 1052.7λ2 + 14913.5λ − 1154.6 = 0

Using the Routh–Hurwitz stability criterion, test the lateral–directional stability
of the aircraft.

Given that the time constant of the spiral mode is Ts = 115 s and the time
constant of the roll subsidence mode is Tr = 0.5 s calculate the characteristics
of the remaining mode. Determine the time to half or double amplitude of the
non-oscillatory modes and hence, describe the physical characteristics of the
lateral–directional modes of motion of the aircraft. (CU 1982)

3. The longitudinal characteristic equation for an aircraft may be written

As4 + Bs3 + Cs2 + Ds + E = 0

It may be assumed that it describes the usual short-period pitching oscillation
and phugoid. State the Routh–Hurwitz stability criterion and hence show that
for a conventional aircraft the conditions for stability are, B > 0, D > 0, E > 0
and R > 0, where Routh’s discriminant R is given by

R = BCD − AD2 − B2E

Describe the significance of the coefficient E on the stability of the aircraft by
considering the form of the roots of the quartic when E is positive, negative
or zero. (CU 1985)

4. Explain the Routh–Hurwitz stability criterion as it might apply to the following
typical aircraft stability quartic

As4 + Bs3 + Cs2 + Ds + E = 0

What is Routh’s discriminant R? Explain the special significance of R and of the
coefficient E in the context of the lateral–directional stability characteristics of
an aircraft.

The coefficients of the lateral–directional stability quartic of an aircraft are

A = 1 B = 9.42 C = 9.48 + Nv D = 10.29 + 8.4Nv

E = 2.24 − 0.39Nv

Find the range of values of Nv for which the aircraft will be both statically and
dynamically stable. What do the limits on Nv mean in terms of the dynamic
stability characteristics of the aircraft, and on what do they depend?

(CU 1987)
5. An unstable fly-by-wire combat aircraft has longitudinal characteristic equation,

s4 + 36.87s3 − 4.73s2 + 1.09s − 0.13 = 0

Test its stability using the Routh–Hurwitz criterion.
The roots of the characteristic equation are, s = 0.0035 ± 0.1697j, s = 0.122

and s = − 37.0. Describe the longitudinal stability modes of the aircraft.
(CU 1989)



Ch10-H6927.tex 20/6/2007 16: 37 Page 240

Chapter 10

Flying and Handling Qualities

10.1 INTRODUCTION

Some general concepts describing the meaning of flying and handling qualities of
aeroplanes are introduced in Chapter 1 and are not repeated in full here. However,
it is useful to recall that the flying and handling qualities of an aeroplane are those
properties which govern the ease and precision with which it responds to pilot com-
mands in the execution of the flight task. Although these rather intangible properties
are described qualitatively and are formulated in terms of pilot opinion, it becomes
necessary to find alternative quantitative descriptions for more formal analytical pur-
poses. Now, as described previously, the flying and handling qualities of an aeroplane
are, in part, intimately dependent on its stability and control characteristics, includ-
ing the effects of a flight control system when one is installed. It has been shown
in previous chapters how the stability and control parameters of an aeroplane may
be quantified, and these are commonly used as indicators and measures of the flying
and handling qualities. So, the object here is to introduce, at an introductory level,
the way in which stability and control parameters are used to quantify the flying and
handling qualities of an aeroplane.

10.1.1 Stability

A stable aeroplane is an aeroplane that can be established in an equilibrium flight
condition where it will remain showing no tendency to diverge. Therefore, a stable
aeroplane is in general a safe aeroplane. However, it has already been established that
too much stability can be as hazardous as too little stability. The degree of stability
determines the magnitude of the control action, measured in terms of control displace-
ment and force, required to manoeuvre about a given flight path. Thus controllability is
concerned with the correct harmonisation of control power with the degrees of static,
manoeuvre and dynamic stability of the airframe. Because of the interdependence of
the various aspects of stability and control, the provision of well harmonised control
characteristics by entirely aerodynamic means over the entire flight envelope of an
aeroplane may well be difficult, if not impossible, to achieve. This is especially so in
many modern aeroplanes which are required to operate over extended flight envelopes
and in aerodynamically difficult flight regimes. The solution to this problem is found
in the installation of a control and stability augmentation system (CSAS) where the
object is to restore good flying qualities by artificial non-aerodynamic means.

Aircraft handling is generally concerned with two relatively distinct aspects of
response to controls, the short term, or transient, response and the rather longer term

240
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response. Short term handling is very much concerned with the short period dynamic
modes and their critical influence on manoeuvrability. The ability of a pilot to handle
the short term dynamics of an aeroplane satisfactorily is critically dependent on the
speed and stability of response. In other words, the bandwidth of the human pilot and
the control bandwidth of the aeroplane must be compatible and the stability margins
of the dynamic modes must be adequate. An aeroplane with poor, or inadequate short
term dynamic stability and control characteristics is simply not acceptable. Thus the
provision of good short term handling tends to be the main consideration in flying
and handling qualities studies.

Longer term handling is concerned with the establishment and maintenance of a
steady flight condition, or trimmed equilibrium, which is determined by static stability
in particular and is influenced by the long period dynamic modes. The dynamic modes
associated with long term handling tend to be slow and the frequencies involved are
relatively low. Thus their control is well within the bandwidth and capabilities of
the average human pilot even when the modes are marginally unstable. As a result
the requirements for the stability of the low frequency dynamics are more relaxed.
However, those aspects of control which are dependent on static and manoeuvre
stability parameters are very important and result in well defined boundaries for the
static and manoeuvre margins.

10.2 SHORT TERM DYNAMIC MODELS

As explained above, the critical aspects of aircraft handling qualities are mainly
concerned with the dynamics of the initial, or transient, response to controls. Thus
since the short term dynamics are of greatest interest it is common practice to conduct
handling qualities studies using reduced order dynamic models derived from the full
order equations of motion. The advantage of this approach is that it gives maximum
functional visibility to the motion drivers of greatest significance. It is therefore easier
to interpret and understand the role of the fundamental aerodynamic and dynamic
properties of the aeroplane in the determination of its handling qualities. It also goes
without saying that the reduced order models are much easier to work with as they
are algebraically simpler.

10.2.1 Controlled motion and motion cues

Reduced to the simplest interpretation, when a pilot applies a control input to his
aeroplane he is simply commanding a change in flight path. The change might be
temporary, such as manoeuvring about the flight path to return to the original flight
path on completion of the manoeuvre. Alternatively, the change might be permanent,
such as manoeuvring to effect a change in trim state involving a change of flight path
direction. Whatever the ultimate objective, the method of control is much the same.
Normal manoeuvring involves rotating the airframe in roll, pitch and yaw to point the
lift vector in the desired direction and by operating the pitch control the angle of attack
is adjusted to produce the lift force required to generate the acceleration to manoeuvre.
Thus the pilot’s perception of the handling qualities of his aeroplane is concerned with
the precise way in which it responds to his commands, sensed predominantly as the
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change in normal acceleration. Indeed, the human pilot is extremely sensitive to even
the smallest changes in acceleration in all three axes. Clearly then, short term normal
acceleration dynamics provide a vitally important cue in aircraft handling qualities
considerations and are most easily modelled with the reduced order equations of
motion. Obviously other motion cues are equally important to the pilot such as,
attitude, angular rate and angular acceleration although these variables have not, in
the past, been regarded with the same level of importance as normal acceleration.
Thus, in the analysis of aircraft handling qualities by far the greatest emphasis is
placed on the longitudinal short term dynamic response to controls.

10.2.2 The longitudinal reduced order model

The reduced order longitudinal state equation describing short term dynamics only is
given by equation (6.1) in terms of concise derivatives and may be written

[
α̇

q̇

]
=
[

zw 1
mw mq

][
α

q

]
+
[ zη

Ue
mη

]
η (10.1)

since zq ∼= Ue and w is replaced by α. Solution of equation (10.1) gives the two short
term response transfer functions

α(s)

η(s)
=

zη

Ue

(
s + Ue

mη

zη

)

(s2 − (mq + zw)s + (mqzw − mwUe))
≡ kα(s + (1/Tα))

(s2 + 2ζsωss + ω2
s )

(10.2)

q(s)

η(s)
= mη(s − zw)

(s2 − (mq + zw)s + (mqzw − mwUe))
≡ kq(s + (1/Tθ2 ))

(s2 + 2ζsωss + ω2
s )

(10.3)

Equations (10.2) and (10.3) compare directly with equations (6.17) and (6.18)
respectively. The short term response transfer function describing pitch attitude
response to elevator follows directly from equation (10.3)

θ(s)

η(s)
= kq(s + (1/Tθ2 ))

s(s2 + 2ζsωss + ω2
s )

(10.4)

With reference to Section 5.5 the short term response transfer function describing,
approximately, the normal acceleration response to elevator may be derived from
equations (10.2) and (10.3)

az(s)

η(s)
= mηzwUe

(s2 − (mq + zw)s + (mqzw − mwUe))
≡ kaz

(s2 + 2ζsωss + ω2
s )

(10.5)

In the derivation it is assumed that zη/Ue is insignificantly small. With reference
to Section 5.7.3 the short term response transfer function describing flight path angle
response to elevator is also readily derived from equations (10.2) and (10.4)

γ(s)

η(s)
= −mηzw

s(s2 − (mq + zw)s + (mqzw − mwUe))
≡ kγ

s(s2 + 2ζsωss + ω2
s )

(10.6)
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and again, it is assumed that zη/Ue is insignificantly small. By dividing equation
(10.6) by equation (10.4) it may be shown that

γ(s)

θ(s)
= 1

(1 + sTθ2 )
(10.7)

which gives the important result that, in the short term, flight path angle response
lags pitch attitude response by Tθ2 , sometimes referred to as incidence lag.

For the purpose of longitudinal short term handling analysis the responsiveness
or manoeuvrability of the aeroplane is quantified by the derivative parameter normal
load factor per unit angle of attack, denoted nα. Since this parameter relates to the
aerodynamic lift generated per unit angle of attack at a given flight condition it is
proportional to the lift curve slope and the square of the velocity. An expression for
nα is easily derived from the above short term transfer functions. Assuming a unit step
input to the elevator such that η(s) = 1/s then the Laplace transform of the incidence
response follows from equation (10.2)

α(s) =
zη

Ue

(
s + Ue

mη

zη

)

(s2 − (mq + zw)s + (mqzw − mwUe))

1

s
(10.8)

Applying the final value theorem, equation (5.33), to equation (10.8) the resultant
steady value of incidence may be obtained

α(t)|ss = mη

(mqzw − mwUe)
(10.9)

In a similar way the corresponding resultant steady value of normal acceleration may
be derived from equation (10.5)

az(t)|ss = mηzwUe

(mqzw − mwUe)
(10.10)

Now the normal load factor per unit angle of attack is given by

nα = nz(t)

α(t)

∣∣∣∣
ss

≡ − 1

g

az(t)

α(t)

∣∣∣∣
ss

(10.11)

Thus, substituting equations (10.9) and (10.10) into equation (10.11) the important
result is obtained

nα = − zwUe

g
≡ Ue

gTθ2

(10.12)

since, approximately, Tθ2 = −1/zw.
The transfer functions given by equations (10.2)–(10.7) above describe the classical

longitudinal short term response to elevator and represent the foundation on which
most modern handling qualities ideas are based; see, for example, Gibson (1995). For
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the classical aeroplane the response characteristics are determined by the aerodynamic
properties of the airframe which are usually linear, bounded and predictable. It is also
clear that the short term dynamics are those of a linear second order system and
aeroplanes which possess similar dynamic behaviour are said to have second order
like response characteristics. The response properties of all real aeroplanes diverge
from these very simple and rather idealised models to some extent. Actual response is
coloured by longer term dynamics, non-linear aerodynamic airframe characteristics
and, of course, the influence of a stability augmentation system when fitted. However,
whatever the degree of complexity of the aeroplane and its operating conditions a
sound design objective would be to achieve second order like dynamic response
properties.

Example 10.1

The classical second order like response characteristics are most easily seen in simple
light aircraft having a limited subsonic flight envelope and whose flying qualities are
determined entirely by aerodynamic design. Such an aeroplane is the Navion Aircraft
Corporation, Navion/H and the equations of motion for the aeroplane were obtained
from Teper (1969). The flight condition corresponds with a cruising speed of 176 ft/s
at sea level. The longitudinal reduced order state equation is

[
α̇

q̇

]
=
[−0.0115 1
−0.0395 −2.9857

][
α

q

]
+
[ −0.1601
−11.0437

]
η (10.13)

And the reduced order longitudinal response transfer functions are

α(s)

η(s)
= −0.1601(s + 71.9844)

(s2 + 5.0101s + 12.9988)
(10.14)

q(s)

η(s)
= −11.0437(s + 1.9236)

(s2 + 5.0101s + 12.9988)
1/s (10.15)

θ(s)

η(s)
= −11.0437(s + 1.9236)

s(s2 + 5.0101s + 12.9988)
(10.16)

az(s)

η(s)
= −28.1700(s − 10.1241)(s + 13.1099)

(s2 + 5.0101s + 12.9988)
ft/s2/rad (10.17)

γ(s)

η(s)
= 0.1601(s − 10.1241)(s + 13.1099)

s(s2 + 5.0101s + 12.9988)
(10.18)

The first 5 s of the longitudinal response of the Navion to a one degree elevator step
input, as defined by equations (10.14)–(10.18), is shown in Fig. 10.1. The response
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Figure 10.1 Longitudinal short term response to elevator step input.

plots shown are absolutely typical of the second order like characteristics of a classical
aeroplane.

The key parameters defining the general response shapes are

Shortperiod undamped natural frequency ωs = 3.61 rad/s
Short period damping ratio ζs = 0.7

Incidence lag Tθ2 = 1

1.9236
= 0.52 s

These parameters may be obtained directly from inspection of the appropriate
transfer functions above.

It will be observed that the normal acceleration response transfer functions given
by equations (10.5) and (10.17) have different numerators, and similarly for the flight
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path angle response transfer functions given by equations (10.6) and (10.18). This
is due to the fact that the algebraic forms are based on a number of simplifying
approximations, whereas the numerical forms were obtained from an exact solution of
the state equation (10.8) without approximation. However, with reference to Fig. 10.1
both equations (10.17) and (10.18) may be approximated by transfer functions having
constant numerators in the style of equations (10.5) and (10.6) respectively, and in
both cases the response shapes are essentially identical. Equations (10.17) and (10.18)
may be approximated by

az(s)

η(s)
= 3738.89

(s2 + 5.0101s + 12.9988)
ft/s2/rad (10.19)

γ(s)

η(s)
= −1.6347

s(s2 + 5.0101s + 12.9988)
(10.20)

With reference to Fig. 10.1 it is clear that following a steady step elevator input
the short term response, after the short period transient has damped out, results
in steady normal acceleration az , steady incidence α and steady pitch rate q. The
corresponding pitch attitude θ and flight path angle γ responses increase linearly
with time, the aeroplane behaving like a simple integrator in this respect. It is evident
from the latter response plots that flight path angle γ lags pitch attitude θ by about
0.5 s, see equation (10.7), which corresponds with the exact value of Tθ2 very well.
These response characteristics are quite typical and do not change significantly with
flight condition since the Navion has a very limited flight envelope.

Now operation of the elevator causes tailplane camber change which results in
instantaneous change in tailplane lift. This in turn generates a pitching moment caus-
ing the aeroplane to respond in pitch. Thus, as a result of his control action the pilot
sees a change in pitch attitude as the primary response. Or, for a steady step input the
response is a steady pitch rate, at least for the first few seconds. For this reason the
nature of control is referred to as a rate command characteristic, which is typical of
all three control axes since the aerodynamic mechanism of control is similar. With
reference to Fig. 10.1, the pitch rate response couples with forward speed to produce
the incidence response which in turn results in the normal acceleration response. This
explains why a steady pitch rate is accompanied by steady incidence and normal
acceleration responses. In an actual aeroplane these simple relationships are modi-
fied by the influence of the longer term phugoid dynamics. In particular the pitch rate
and normal acceleration response tend to decay with the damped phugoid motion.
However, incidence tends to remain more nearly constant at its trim value throughout.
Thus, viewed more broadly the nature of longitudinal control is sometimes referred
to alternatively as an incidence command characteristic. These ideas may be more
easily appreciated by referring to Examples 6.1 and 6.2.

Since the traditional longitudinal motion cue has always focused on normal accel-
eration, and since in the short term approximation this is represented by a transfer
function with a constant numerator, equation (10.19), the only parameters defining
the response shape are short period mode damping ratio and undamped natural fre-
quency. Similarly, it is evident that incidence dynamics are governed by the same
parameters. Pitch rate response is similar in shape to both normal acceleration and
incidence responses with the exception of the peak overshoot, which is governed by
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the value of the numerator term 1/Tθ2 . However, Tθ2 is determined largely by the
value of the wing lift curve slope which, for a simple aeroplane like the Navion, is
essentially constant throughout the flight envelope. So for a classical aeroplane with
second order like response characteristics it is concluded that the short term dynamics
are predictable and that the transient is governed predominantly by short period mode
dynamics. It is not surprising therefore, that the main emphasis in the specification
of the flying qualities of aeroplanes has been on the correct design of the damping
and frequency of the short term stability modes, in particular the longitudinal short
period mode.

10.2.3 The “thumb print” criterion

For the reasons outlined above, the traditional indicators of the short term longitudinal
handling qualities of an aeroplane were securely linked to the damping ratio and
undamped natural frequency of the short period mode. As experience grew over
the years of evolutionary development of aeroplanes so the short period dynamics
which resulted in good handling characteristics became established fact. A tradition of
experimental flight test using variable stability aeroplanes was established in the early
years after World War II for the specific purpose of investigating flying and handling
qualities. In particular, much of this early experimental work was concerned with
longitudinal short term handling qualities. This research has enabled the definition of
many handling qualities criteria and the production of flying qualities specification
documents. The tradition of experimental flight test for handling qualities research is
still continued today, mainly in the USA.

One of the earliest flying qualities criteria, the so-called longitudinal short period
thumb print criterion became an established tool in the 1950s; see, for example, Chalk
(1958). The thumb print criterion provides guidance for the use of aeroplane designers
and evaluators concerning the best combinations of longitudinal short period mode
damping and frequency to give good handling qualities. However, it must be remem-
bered that the information provided is empirical and is based entirely on pilot opinion.
The common form of presentation of the criterion is shown in Fig. 10.2, and the
example shown relates to typical classical aeroplanes in which the undamped short
period mode frequency is around 3 rad/s.

Although the criterion is still most applicable to the modern aeroplane, as has been
suggested above, the achievement of excellent short period mode dynamics does
not necessarily guarantee excellent longitudinal handling qualities. Indeed, many
other factors play an important part and some of these are discussed in the following
sections.

10.2.4 Incidence lag

The incidence lag Tθ2 plays a critically important part in the determination of the lon-
gitudinal handling characteristics of an aeroplane. For classical subsonic aeroplanes
Tθ2 remains near constant over the flight envelope and, consequently, the short term
pitch dynamics also remain near constant for a given short period mode damping and
frequency. Therefore the overall longitudinal handling qualities tend to remain nicely
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Figure 10.2 Longitudinal short period pilot opinion contours – the thumb print
criterion.

consistent over the flight envelope. For this reason incidence lag has not been accorded
a great deal of attention in the past. However, as aeroplanes have become larger and
their operating altitude and Mach number envelopes have been greatly extended so
the variation in lift curve slope has become significant. The result of this is that the
variation in Tθ2 over the flight envelope of typical modern high performance aero-
planes can no longer be ignored. Incidence lag has therefore become as important as
short period mode damping and frequency in the determination of longitudinal short
term handling.

Gibson (1995) suggests that typically Tθ2 may vary from less than 0.5 s at high
speed at sea level to greater than 4.0 s at low speed at high altitude. Other significant
changes might be introduced by camber control or by direct lift control as frequently
found in advanced modern aircraft of all types. To illustrate the effect of incidence
lag on short term pitch response consider the following transfer functions which are
based nominally on those of Example 10.1.

q(s)

η(s)
= −13(1 + 0.5s)

(s2 + 5s + 13)
1/s

(10.21)
θ(s)

η(s)
= −13(1 + 0.5s)

s(s2 + 5s + 13)

and clearly, ωs = 3.6 rad/s, ζs = 0.69 and Tθ2 = 0.5 s. The response to a stick pull
equivalent to a one degree elevator step input is shown in Fig. 10.3. Also shown are
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Figure 10.3 The effect of variation in incidence lag on pitch response.

the responses for an incidence lag of 1, 2 and 4 s, the short period mode parameters
being held constant throughout. In accordance with the models given by equations
(10.2), (10.5) and (10.6) the corresponding incidence, normal acceleration and flight
path angle responses would remain unchanged. However, the pitch motion cue to
the pilot may well suggest a reduction in damping in view of the significant increase
in pitch rate overshoot at larger values of Tθ2 . This is of course not the case since the
short period mode damping is 0.69 throughout. The pilot would also become aware of
the increase in lag between the pitch attitude response and acquisition of the desired
flight path.

10.3 FLYING QUALITIES REQUIREMENTS

Most countries involved in aviation have national agencies to oversee aeronautical
activity in their territories. In the UK the Civil Aviation Authority (CAA) regu-
lates all non-military aviation and the Ministry of Defence (MoD) oversees all military
aeronautical activity. Additionally, a group of European countries has agreed to coop-
erate in the development of Joint Aviation Requirements (JAR) and, where relevant,
these requirements supersede the British Civil Airworthiness Requirements (BCAR).
The Joint Aviation Authority which administers this activity comprises the Aviation
Authorities from the participating countries. Thus, for example, in the UK the JAR
documents are issued by the CAA. In the USA the corresponding agencies are the
FederalAviationAdministration (FAA) and the Department of Defense (DoD) respec-
tively. All of these agencies issue extensive documentation specifying the minimum
acceptable standards for construction, performance, operation and safety of all air
vehicles operated under their jurisdiction. In more recent years the emphasis has been
on the adoption of common standards for obvious reasons. In the absence of their
own standards many countries adopt those of the American, British or joint European
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agencies which is obviously constructively helpful in achieving very high standards
of aviation safety worldwide.

All of the above mentioned agencies issue documents which specify the minimum
acceptable standard of flying qualities in some detail, more commonly known as
flying qualities requirements. Some examples of the relevant documents are listed in
the references at the end of this chapter. In very general terms the flying qualities
requirements for civil aircraft issued by the CAA and FAA are primarily concerned
with safety and specific requirements relating to stability, control and handling are
relatively relaxed. On the other hand, the flying qualities requirements issued by
the MoD and DoD are specified in much greater detail in every respect. It is the
responsibility of the aircraft manufacturer, or supplier, to demonstrate that his aircraft
complies with the appropriate specification prior to acceptance by the operator. Thus
demonstration of compliance with the specification is the principal interest of the
regulating agencies.

Since the military flying qualities requirements in particular are relatively complex
their correct interpretation may not always be obvious. To alleviate this difficulty
the documents also include advisory information on acceptable means of compliance
to help the user to apply the requirements to his particular aeroplane. The exten-
sive programme of flight tests which most new aeroplanes undergo prior to entry
into service are, in part, used to demonstrate compliance with the flying qualities
requirements. However, it is unlikely that an aeroplane will satisfy the flying qualities
requirements completely unless it has been designed to do so from the outset. There-
fore, the flying qualities requirements documents are also vitally important to the
aircraft designer and to the flight control system designer. In this context, the spec-
ifications define the rules to which stability, control and handling must be designed
and evaluated.

The formal specification of flying and handling qualities is intended to “assure fly-
ing qualities that provide adequate mission performance and flight safety’’. Since the
most comprehensive, and hence demanding, requirements are included in the military
documents it is on these that the material in the following paragraphs is based. As the
military use all kinds of aeroplanes including small light trainers, large transports and
high performance combat aircraft, then flying qualities requirements applicable to all
types are quantified in the specification documents. Further, an aeroplane designed
to meet the military flying and handling qualities requirements would undoubtedly
also meet the civil requirements. Since most of the requirements are quantified in
terms of stability and control parameters they are most readily applied in the current
analytical context.

The object here then, is to provide a summary, or overview, of the flying qualities
requirements as set out in the military specification documents. Liberal reference has
been made to the British Defence Standard DEF-STAN 00-970 and to the American
Military Specification MIL-F-8785C which are very similar in style and which both
convey much the same information. This is not surprising since the former was
deliberately modelled on the latter in the interests of uniformity. Using an amalgam
of material from both sources no attempt is made to reproduce the requirements with
great accuracy or in great detail; for a complete appreciation the reader should consult
the references. Rather, the emphasis is on a limited review of the material relevant
to the fundamental stability and control properties of the aeroplane as described in
earlier chapters.
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Now it is important to appreciate that the requirements in both DEF-STAN 00-
970 and MIL-F-8785C are based on the dynamics of classical aeroplanes whose
short term response is essentially second order like. This is simply due to the fact
that the requirements are empirical and have evolved to capitalise on many years
of accumulated experience and pilot opinion. Although attempts have been made to
revise the requirements to allow for aeroplanes with stability augmentation this has
only had limited success.Aeroplanes with simple stability augmentation which behave
essentially like classical unaugmented aeroplanes are generally adequately catered for.
However, in recent years it has become increasingly obvious that the requirements
in both DEF-STAN 00-970 and MIL-F-8785C are unable to cope with aeroplanes
whose flying qualities are substantially dependent on a flight control system. For
example, evidence exists to suggest that some advanced technology aeroplanes have
been designed to meet the flying qualities requirements very well only to attract
adverse pilot opinion concerning their handling qualities. With the advent of the
Fly-By-Wire (FBW) aeroplane it became necessary to seek additional or alternative
methods for quantifying and specifying flying qualities requirements.

The obvious deficiencies of the earlier flying qualities requirement documents
for dealing with highly augmented aeroplanes spawned a considerable amount of
research activity from the late 1960s onward. As a result all kinds of handling quali-
ties criteria have emerged a few of which have enjoyed enduring, but limited, success.
Nevertheless understanding has improved considerably and the first serious attempt
at producing a flying qualities requirements document suitable for application to
highly augmented aeroplanes resulted in the proposal reported by Hoh et al. (1982).
This report eventually evolved into the formal American Military Standard MIL-
STD-1797A, which is not available in the public domain. However, the report by
Hoh et al. (1982) is a useful alternative and it contains some supporting explana-
tory material. These newer flying qualities requirements still include much of the
classical flying qualities material derived from the earlier specifications but with
the addition of material relating to the influence of command and stability aug-
mentation systems on handling. Although Hoh et al. (1982) and MIL-STD-1797A
provide a very useful progression from DEF-STAN 00-970 and MIL-F-8785C the
material relating to highly augmented aeroplanes takes the subject well beyond the
scope of the present book. The interested reader will find an excellent overview of
the ideas relating to the handling qualities of advanced technology aeroplanes in
Gibson (1995).

10.4 AIRCRAFT ROLE

It is essential that the characteristics of any dynamic system which is subject to
direct human control are bounded and outside these bounds the system would not be
capable of human control. However, the human is particularly adaptable such that
the variation in acceptable dynamic characteristics within the performance boundary
of the system is considerable. In terms of aeroplane dynamics this means that wide
variation in stability and control characteristics can be tolerated within the bounds
of acceptable flying qualities. However, it is important that the flying qualities are
appropriate to the type of aeroplane in question and to the task it is carrying out.
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For example, the dynamic handling qualities appropriate to a Fighter aircraft in an
air combat situation are quite inappropriate to a large civil transport aircraft on final
approach. Thus it is easy to appreciate that the stability and control characteristics
which comprise the flying qualities requirements of an aeroplane are bounded by the
limitations of the human pilot, but within those bounds the characteristics are defined
in a way which is most appropriate to the prevailing flight condition.

Thus flying qualities requirements are formulated to allow for the type, or class, of
aeroplane and for the flight task, or flight phase, in question. Further, the degree of
excellence of flying qualities is described as the level of flying qualities. Thus prior
to referring to the appropriate flying qualities requirements the aeroplane must be
classified and its flight phase defined. A designer would then design to achieve the
highest level of flying qualities whereas, an evaluator would seek to establish that
the aeroplane achieved the highest level of flying qualities in all normal operating
states.

10.4.1 Aircraft classification

Aeroplane types are classified broadly according to size and weight as follows:

Class I Small light aeroplanes.

Class II Medium weight, low to medium manoeuvrability aeroplanes.

Class III Large, heavy, low to medium manoeuvrability aeroplanes.

Class IV High manoeuvrability aeroplanes.

10.4.2 Flight phase

A sortie or mission may be completely defined as a sequence of piloting tasks. Alter-
natively, a mission may be described as a succession of flight phases. Flight phases are
grouped into three categories and each category comprises a variety of tasks requiring
similar flying qualities for their successful execution. The tasks are separately defined
in terms of flight envelopes. The flight phase categories are defined:

Category A Non-terminal flight phases that require rapid manoeuvring, preci-
sion tracking, or precise flight path control.

Category B Non-terminal flight phases that require gradual manoeuvring, less
precise tracking and accurate flight path control.

Category C Terminal flight phases that require gradual manoeuvring and
precision flight path control.

10.4.3 Levels of flying qualities

The levels of flying qualities quantify the degree of acceptability of an aeroplane in
terms of its ability to complete the mission for which it is designed. The three levels
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of flying qualities seek to indicate the severity of the pilot workload in the execution
of a mission flight phase and are defined:

Level 1 Flying qualities clearly adequate for the mission flight phase.

Level 2 Flying qualities adequate to accomplish the mission flight phase,
but with an increase in pilot workload and, or, degradation in
mission effectiveness.

Level 3 Degraded flying qualities, but such that the aeroplane can be con-
trolled, inadequate mission effectiveness and high, or, limiting,
pilot workload.

Level 1 flying qualities implies a fully functional aeroplane which is 100% capable of
achieving its mission with acceptable pilot workload at all times. Therefore, it follows
that any fault or failure occurring in airframe, engines or systems may well degrade
the level of flying qualities. Consequently the probability of such a situation arising
during a mission becomes an important issue. Thus the levels of flying qualities are
very much dependent on the aircraft failure state which, in turn, is dependent on the
reliability of the critical functional components of the aeroplane. The development
of this aspect of flying qualities assessment is a subject in its own right and is beyond
the scope of the present book.

10.4.4 Flight envelopes

The operating boundaries of altitude, Mach number and normal load factor define the
flight envelope for an aeroplane. Flight envelopes are used to describe the absolute
“never exceed’’ limits of the airframe and also to define the operating limits required
for the execution of a particular mission or flight phase.

10.4.4.1 Permissible flight envelope
The permissible flight envelopes are the limiting boundaries of flight conditions to
which an aeroplane may be flown and safely recovered without exceptional pilot skill.

10.4.4.2 Service flight envelope
The service flight envelopes define the boundaries of altitude, Mach number and
normal load factor which encompass all operational mission requirements. The ser-
vice flight envelopes denote the limits to which an aeroplane may normally be flown
without risk of exceeding the permissible flight envelopes.

10.4.4.3 Operational flight envelope
The operational flight envelopes lie within the service flight envelopes and define the
boundaries of altitude, Mach number and normal load factor for each flight phase.
It is a requirement that the aeroplane must be capable of operation to the limits
of the appropriate operational flight envelopes in the execution of its mission. The
operational flight envelopes defined in DEF-STAN 00-970 are listed in Table 10.1.
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Table 10.1 Operational flight envelopes

Flight phase category Flight phase

A Air-to-air combat
Ground attack
Weapon delivery/launch
Reconnaissance
In-flight refuel (receiver)
Terrain following
Maritime search
Aerobatics
Close formation flying

B Climb
Cruise
Loiter
In-flight refuel (tanker)
Descent
Aerial delivery

C Takeoff
Approach
Overshoot
Landing

When assessing the flying qualities of an aeroplane Table 10.1 may be used to
determine which flight phase category is appropriate for the flight condition in
question.

Example 10.2

To illustrate the altitude–Mach number flight envelopes consider the McDonnell–
Douglas A4-D Skyhawk and its possible deployment in a ground attack role. The
service flight envelope for the aircraft was obtained from Teper (1969) and is shown
in Fig. 10.4. Assuming this aircraft were to be procured by the Royal Air Force then it
would have to meet the operational flight envelope requirement for the ground attack
role as defined in DEF-STAN 00-970. The altitude–speed requirements for this role
are given as follows,

Minimum operational speed V0min = 1.4 Vstall

Maximum operational speed V0max= VMAT

Minimum operational altitude h0min = Mean sea level (MSL)
Maximum operational altitude h0max = 25, 000 ft

where VMAT is the maximum speed at maximum augmented thrust in level flight.
The operational flight envelope for the ground attack role is superimposed on the
service flight envelope for the aircraft as shown in Fig. 10.4 and the implications of
these limits are self-evident for the role in question.
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Figure 10.4 Flight envelopes for the McDonnell-Douglas A4-D Skyhawk.

Example 10.3

To illustrate the normal load factor–speed flight envelopes consider the Morane
Saulnier MS-760 Paris aircraft as registered by the CAA for operation in the UK.
The Paris is a small four seat twin jet fast liaison aircraft which first flew in the late
1950s. The aircraft is a classical “aerodynamic’’ machine, it has an unswept wing,
a T-tail and is typical of the small jet trainers of the period. The manoeuvring flight
envelopes for this aircraft were obtained from Notes for Technical Observers (1965)
and are reproduced in Fig. 10.5. Clearly the service flight envelope fully embraces the
BCAR operational flight envelope for semi-aerobatic aircraft, whereas some parts of
the BCAR operational flight envelope for fully aerobatic aircraft are excluded. Con-
sequently the aircraft is registered in the semi-aerobatic category and certain aerobatic
manoeuvres are prohibited. It is clear from this illustration that the Paris was designed
with structural normal load factor limits of +5.2g, −2g which are inadequate for fully
aerobatic manoeuvring.

10.5 PILOT OPINION RATING

Pilot opinion rating scales have been in use for a considerable time and provide a
formal procedure for the qualitative assessment of aircraft flying qualities by exper-
imental means. Since qualitative flying qualities assessment is very subjective, the
development of a formal method for the interpretation of pilot opinion has turned
a rather “imprecise art’’ into a useful tool which is routinely used in flight test pro-
grammes. The current pilot opinion rating scale was developed by Cooper and Harper
(1969) and is universally known as the Cooper–Harper rating scale.
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Figure 10.5 Flight envelopes for the Morane-Saulnier MS-760 Paris.

The Cooper–Harper rating scale is used to assess the flying qualities, or more
specifically the handling qualities, of an aeroplane in a given flight phase. The proce-
dure for conducting the flight test evaluation and the method for post flight reduction
and interpretation of pilot comments are defined. The result of the assessment is a
pilot rating between 1 and 10. A rating of 1 suggests excellent handling qualities and
low pilot workload whereas a rating of 10 suggests an aircraft with many handling
qualities deficiencies. The adoption of a common procedure for rating handling qual-
ities enables pilots to clearly state their assessment without ambiguity or the use of
misleading terminology. A summary of the Cooper–Harper handling qualities rating
scale is shown in Table 10.2.

It is usual and convenient to define an equivalence between the qualitative Cooper–
Harper handling qualities rating scale and the quantitative levels of flying qualities.
This permits easy and meaningful interpretation of flying qualities between both the
piloting and analytical domains. The equivalence is summarised in Table 10.3.

10.6 LONGITUDINAL FLYING QUALITIES REQUIREMENTS

10.6.1 Longitudinal static stability

It has been shown in Chapter 3 that longitudinal static stability determines the pitch
control displacement and force to trim. Clearly this must be of the correct magnitude
if effective control of the aeroplane is to be maintained at all flight conditions. For
this to be so the controls fixed and controls free static margins must not be too large
or too small.
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Table 10.2 The Cooper–Harper handling qualities rating scale

Adequacy for Aircraft Demands on Pilot
selected task characteristic pilot (workload) rating

Satisfactory Excellent Very low 1

Satisfactory Good Low 2

Satisfactory Fair Minimal pilot 3
compensation required

Unsatisfactory – Minor Moderate pilot 4
warrants improvements deficiencies compensation required

Unsatisfactory – Moderate Considerable pilot 5
warrants improvements deficiencies compensation required

Unsatisfactory – Tolerable Extensive pilot 6
warrants improvements deficiencies compensation required

Unacceptable – Major Adequate performance 7
requires improvements deficiencies not attainable

Unacceptable – Major Considerable pilot compensation 8
requires improvements deficiencies required for control

Unacceptable – Major Intense pilot compensation 9
requires improvements deficiencies required for control

Catastrophic – Major Loss of control likely 10
improvement mandatory deficiencies

Table 10.3 Equivalence of Cooper–Harper rating scale with levels of flying
qualities

Level of flying qualities Level 1 Level 2 Level 3 Below Level 3
Cooper–Harper rating scale 1 2 3 4 5 6 7 8 9 10

In piloting terms a change of trim is seen as a change in airspeed, or Mach number,
and involves a forward stick push to increase speed and an aft stick pull to decrease
speed when the aeroplane possesses a normal level of static stability. The requirement
states that the variation in pitch control position and force with speed is to be smooth
and the gradients at the nominal trim speed are to be stable or, at worst, neutrally
stable. In other words the static margins are to be greater than or equal to zero. The
maximum acceptable degree of static stability is not specified. However, this will be
limited by the available control power and the need to be able to lift the nose wheel
at rotation for take-off at a reasonable airspeed. Abrupt changes in gradient with
airspeed are not acceptable. Typical stable gradients are shown in Fig. 10.6 where it
is indicated that the control characteristics do not necessarily have to be linear but
the changes in gradient must be smooth. Clearly, the minimum acceptable control
characteristics correspond with neutral static stability.
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Figure 10.6 Typical pitch control force gradients.

In the transonic flight regime in particular, the static stability margins can change
significantly such that the aeroplane may become unstable for some part of its speed
envelope. The requirements recognise such conditions and permit mildly unstable
pitch control force gradients in transonic flight provided that the flight condition
is transitory. Maximum allowable unstable gradients are quantified and a typical
boundary is indicated in Fig. 10.6. Aeroplanes which may be required to operate for
prolonged periods in transonic flight conditions are not permitted to have unstable
control force gradients.

10.6.2 Longitudinal dynamic stability

10.6.2.1 Short period pitching oscillation
For the reasons explained in Section 10.2 the very important normal acceleration
motion cue and the short period dynamics are totally interdependent. The controls
fixed manoeuvre margin Hm and the short period frequency ωs are also interdependent
as explained in Section 8.5. Thus the requirements for short period mode frequency
reflect these relationships and are relatively complex, a typical illustration is shown
in Fig. 10.7.

Three similar charts are given, one for each flight phase category and that for cat-
egory A is shown in Fig. 10.7. The boundaries shown in Fig. 10.7 are equivalent to
lines of constant Control Anticipation Parameter (CAP) which is proportional to the
controls fixed manoeuvre margin. The boundaries therefore implicitly specify the con-
straint on manoeuvrability, quantified in terms of short period mode undamped natural
frequency. The meaning of CAP is explained in Section 10.7. Now the derivative
parameter nα quantifies the normal load factor per unit angle of attack, or incidence,
as defined by equation (10.11). As its value increases with speed, the lower values of
nα correlate with the lower speed characteristics of the aeroplane and vice versa. Now
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Figure 10.7 Typical short period mode frequency requirements.

as speed increases so the aerodynamic pitch stiffness of the aeroplane also increases
which in turn results in an increase in short period mode frequency. This natural
phenomenon is reflected in the requirements as the boundaries allow for increasing
frequency with increasing nα.

Acceptable limits on the stability of the short period mode are quantified in terms
of maximum and minimum values of the damping ratio as a function of flight phase
category and level of flying qualities as set out in Table 10.4.

The maximum values of short period mode damping ratio obviously imply that a
stable non-oscillatory mode is acceptable.

10.6.2.2 Phugoid
Upper and lower values for phugoid frequency are not quantified. However, it is
recommended that the phugoid and short period mode frequencies are well separated.
It is suggested that handling difficulties may become obtrusive if the frequency ratio
of the modes ωp/ωs ≤ 0.1. Generally the phugoid dynamics are acceptable provided
the mode is stable and damping ratio limits are quantified as shown in Table 10.5.



Ch10-H6927.tex 20/6/2007 16: 37 Page 260

260 Flight Dynamics Principles

Table 10.4 Short period mode damping

Level 1 Level 2 Level 3

Flight phase ζs min ζs max ζs min ζs max ζs min

CAT A 0.35 1.30 0.25 2.00 0.10
CAT B 0.30 2.00 0.20 2.00 0.10
CAT C 0.50 1.30 0.35 2.00 0.25

Table 10.5 Phugoid damping ratio

Level of flying qualities Minimum ζp

1 0.04
2 0
3 Unstable, period Tp > 55 s

10.6.3 Longitudinal manoeuvrability

The requirements for longitudinal manoeuvrability are largely concerned with
manoeuvring control force or, stick force per g. It is important that the value of
this control characteristic is not too large or too small. In other words, the controls
free manoeuvre margin must be constrained to an acceptable and appropriate range.
If the control force is too light there is a danger that the pilot may inadvertently apply
too much normal acceleration to the aircraft with the consequent possibility of struc-
tural failure. On the other hand, if the control force is too heavy then the pilot may
not be strong enough to fully utilise the manoeuvring flight envelope of the aircraft.

Thus the requirements define the permitted upper and lower limits for controls
free manoeuvre margin expressed in terms of the pitch control manoeuvring force
gradient since this is the quantifiable parameter seen by the pilot. Further, the limits
are functions of the type of control inceptor, a single stick or wheel type, and the
limiting normal load factor appropriate to the airframe in question. The rather complex
requirements are tabulated and their interpretation for an aircraft with a single stick
controller and having a limiting normal load factor of nL = 7.0 is shown in Fig. 10.8.
Again, the limits on stick force per g are expressed as a function of the flight condition
parameter nα.

10.7 CONTROL ANTICIPATION PARAMETER

It has been reported by Bihrle (1966) that, in order to make precise adjustments to the
flight path, the pilot must be able to anticipate the ultimate response of the airplane and
that angular pitching acceleration is used for this purpose. Now aeroplanes which
have good second order like short term longitudinal response properties generally
provide the pilot with good anticipatory handling cues. Clearly, this depends on the
damping and frequency of the short period pitching mode in particular. However,
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Figure 10.8 Typical pitch control manoeuvring force gradients.

Bihrle reports pilot observation that, for airplanes having high inertia or low static
stability the angular pitching acceleration accompanying small adjustments to flight
path may fall below the threshold of perception. In other words, the anticipatory
nature of the response cues may become insignificant thereby giving rise to poor
handling qualities. To deal with such cases he defines a quantifiable measure of the
anticipatory nature of the response which he called Control Anticipation Parameter
(CAP).The formal definition of CAP is, the amount of instantaneous angular pitching
acceleration per unit of steady state normal acceleration.

Now the steady normal acceleration response to a pitch control input is determined
by the aerodynamic properties of the aeroplane, the wing and tailplane in particular.
However, the transient peak magnitude of angular pitching acceleration immediately
following the control input is largely determined by the short period dynamics which,
in turn are dependent on the longitudinal static stability and moment of inertia in
pitch. Thus CAP effectively quantifies acceptable short period mode characteristics
appropriate to the aerodynamic properties and operating condition of the aeroplane.

A simple expression for CAP is easily derived from the longitudinal short term
transfer functions described in Section 10.2.2.
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The angular pitch acceleration transfer function is obtained from equation (10.3)

q̇(s)

η(s)
= mηs(s − zw)

(s2 − (mq + zw)s + (mqzw − mwUe))
(10.22)

The initial pitch acceleration may be derived by assuming a unit elevator step input
and applying the initial value theorem, equation (5.34), to equation (10.22). Whence

q̇(0) = Lim
s→∞

(
s

mηs(s − zw)

(s2 − (mq + zw)s + (mqzw − mwUe))

1

s

)
= mη (10.23)

Similarly the steady state normal acceleration may be derived by assuming a unit
elevator input and applying the final value theorem, equation (5.33), to equation
(10.5). Whence

az(∞) = Lim
s→0

(
s

mηzwUe

(s2 − 2ζsωss + ω2
s )

1

s

)
= mηzwUe

ω2
s

(10.24)

The dimensionless normal acceleration, or load factor, is given by

nz(∞) = −az(∞)

g
= −mηzwUe

gω2
s

(10.25)

and CAP is given by

CAP = q̇(0)

nz(∞)
= − gω2

s

zwUe
= gω2

s Tθ2

Ue
(10.26)

since, approximately, Tθ2 = −1/zw. With reference to equation (10.12) an alternative
and more commonly used expression for CAP follows

CAP = ω2
s

nα

(10.27)

and this is the boundary parameter shown in Fig. 10.7.
Now equation (8.45) states that

ω2
s = ½ρV 2

0 Sca

Iy
Hm (10.28)

With reference to Appendix 2 it may be shown that

zw ∼=
◦

Zw

m
= ½ρV0SZw

m
(10.29)

assuming, as is usually the case, that
◦

Zw � m. With reference to Appendix 8 it may
be determined that

Zw ∼= −∂CL

∂α
≡ −a (10.30)
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the lift curve slope. Thus substituting equations (10.28)–(10.30) into equation (10.26)
the expression for CAP reduces to the important result

CAP = mgc

Iy
Hm = gc

k2
Hm (10.31)

where k denotes the longitudinal radius of gyration. Since aircraft axes are assumed
to be wind axes throughout then Ue ≡ V0. Thus, it is shown that CAP is directly
proportional to the controls fixed manoeuvre margin Hm and that the constant of
proportionality is dependent on aircraft geometry and mass distribution.

10.8 LATERAL–DIRECTIONAL FLYING QUALITIES REQUIREMENTS

10.8.1 Steady lateral–directional control

Unlike the longitudinal flying qualities requirements the lateral–directional require-
ments do not address static stability in quite the same way. In general, the
lateral–directional static stability is independent of cg position and flight condition
and, once set by the aerodynamic design of the aeroplane, does not change signif-
icantly. The main concerns centre on the provision of adequate control power for
maintaining control in steady asymmetric flight conditions, or in otherwise poten-
tially limiting conditions in symmetric flight. Further, it is essential that the control
forces required to cope with such conditions do not exceed the physical capabilities
of the average human pilot.

General normal lateral–directional control requirements specify limits for the roll
stick and rudder pedal forces and require that the force gradients have the correct
sense and do not exceed the prescribed limits. The control requirement for trim is
addressed as is the requirement for roll–yaw control coupling which must be correctly
harmonised. In particular, it is important that the pilot can fly properly coordinated
turns with similar and acceptable degrees of control effort in both roll and yaw control.

The lateral–directional requirements relating to asymmetric, or otherwise poten-
tially difficult control conditions, are concerned with steady sideslip, flight in
crosswind conditions, steep dives and engine out conditions resulting in asymmetric
thrust. For each condition the requirements specify the maximum permissible roll
and yaw control forces necessary to maintain controlled flight up to relatively severe
adverse conditions. Since the specified conditions interrelate and also have to take
into account the aircraft class, flight phase and level of flying qualities many tables of
quantitative limits are needed to embrace all eventualities. Thus, the flying qualities
requirements relating to steady lateral–directional flight are comprehensive and of
necessity substantial.

10.8.2 Lateral–directional dynamic stability

10.8.2.1 Roll subsidence mode
Since the roll subsidence mode describes short term lateral dynamics it is critically
important in the determination of lateral handling qualities. For this reason the limiting
acceptable values of its time constant are specified precisely as listed in Table 10.6.
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Table 10.6 Roll subsidence mode time constant

Maximum value of Tr (seconds)

Aircraft class Flight phase category Level 1 Level 2 Level 3

I, IV A, C 1.0 1.4 —
II, III A, C 1.4 3.0 —
I, II, III, IV B 1.4 3.0 —

Table 10.7 Spiral mode time to double bank angle

Minimum value of T2 (seconds)

Flight Phase category Level 1 Level 2 Level 3

A, C 12 8 5
B 20 8 5

It seems that no common agreement exists as to a suitable maximum value of the
time constant for level three flying qualities. It is suggested in DEF-STAN 00-970 that
a suitable value would appear to be in the range 6 s < Tr < 8 s whereas MIL-F-8785C
quotes a value of 10 s.

10.8.2.2 Spiral mode
A stable spiral mode is acceptable irrespective of its time constant. However, since its
time constant is dependent on lateral static stability (dihedral effect) the maximum
level of stability is determined by the maximum acceptable roll control force. Because
the mode gives rise to very slow dynamic behaviour it is not too critical to handling
unless it is very unstable. For this reason minimum acceptable degrees of instability
are quantified in terms of time to double bank angle T2 in an uncontrolled departure
from straight and level flight. The limiting values are shown in Table 10.7.

For analytical work it is sometimes more convenient to express the spiral mode
requirement in terms of time constant Ts rather than time to double bank angle. If
it is assumed that the unstable mode characteristic gives rise to a purely exponential
divergence in roll then it is easily shown that the time constant and the time to double
bank angle are related by the following expression

Ts = T2

loge 2
(10.32)

Thus, alternatively the requirement may be quantified as listed in Table 10.8.

10.8.2.3 Dutch roll mode
Since the dutch roll mode is a short period mode it has an important influence
on lateral–directional handling and, as a consequence, its damping and frequency
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Table 10.8 Spiral mode time constant

Minimum value of Ts (seconds)
Flight phase
category Level 1 Level 2 Level 3

A, C 17.3 11.5 7.2
B 28.9 11.5 7.2

Table 10.9 Dutch roll frequency and damping

Minimum values

Level 1 Level 2 Level 3

Aircraft class Flight phase ζd ζdωd ωd ζd ζdωd ωd ζd ωd

I, IV CAT A 0.19 0.35 1.0 0.02 0.05 0.5 0 0.4
II, III CAT A 0.19 0.35 0.5 0.02 0.05 0.5 0 0.4
All CAT B 0.08 0.15 0.5 0.02 0.05 0.5 0 0.4
I, IV CAT C 0.08 0.15 1.0 0.02 0.05 0.5 0 0.4
II, III CAT C 0.08 0.10 0.5 0.02 0.05 0.5 0 0.4

requirements are specified in some detail. It is approximately the lateral–directional
equivalent of the longitudinal short period mode and has frequency of the same order
since pitch and yaw inertias are usually similar in magnitude. However, yaw damping
is frequently low as a result of the design conflict with the need to constrain spiral
mode instability with dihedral. Although the longitudinal short period mode and the
dutch roll mode are similar in bandwidth, the latter is not as critical to handling. In
fact, a poorly damped dutch roll is seen more as a handling irritation rather than as a
serious problem.

The acceptable minima for damping ratio, undamped natural frequency and damp-
ing ratio-frequency product are specified for various combinations of aircraft class
and flight phase category as shown in Table 10.9.

10.8.3 Lateral–directional manoeuvrability and response

The lateral–directional manoeuvrability requirements are largely concerned with lim-
iting roll oscillations, sideslip excursions and roll and yaw control forces to acceptable
levels during rolling and turning manoeuvres.

Oscillation in roll response to controls will occur whenever the dutch roll is intrusive
and poorly damped. Thus limiting the magnitude and characteristics of oscillation in
roll is effectively imposing additional constraints on the dutch roll mode when it is
intrusive. Oscillation is also possible in cases when the roll and spiral modes couple to
form a second pair of complex roots in the lateral–directional characteristic equation.
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However, the influence of this characteristic on handling is not well understood and
it is recommended that the condition should be avoided.

Sideslip excursions during lateral–directional manoeuvring are normal and
expected, especially in entry and exit to turning manoeuvres. It is required that the
rudder control displacement and force increase approximately linearly with increase
in sideslip response for sideslip of modest magnitude. It is also required that the
effect of dihedral shall not be too great otherwise excessive roll control displacement
and force may be needed to manoeuvre. Remember, that too much stability can be
as hazardous as too little stability! It would seem that the main emphasis is on the
provision of acceptable levels of roll and yaw control displacement with particular
concern for entry and exit to turning manoeuvres which, after all, is lateral–directional
manoeuvring flight.

10.9 FLYING QUALITIES REQUIREMENTS ON THE S-PLANE

In Chapter 9, the way in which the roots of the characteristic equation may be mapped
on to the s-plane was illustrated in order to facilitate the interpretation of aircraft
stability graphically. By superimposing boundaries defined by the appropriate flying
qualities requirements on to the same s-plane plots the stability characteristics of an
aeroplane may be assessed directly with respect to those requirements. This graphical
approach to the assessment of aircraft flying qualities is particularly useful for analysis
and design and is used extensively in flight control system design.

10.9.1 Longitudinal modes

Typical boundaries describing the limits on longitudinal mode frequency and damping
on the s-plane are shown in Fig. 10.9. It is not usually necessary to show more than the
upper left half of the s-plane since stable characteristics only are of primary interest
and the lower half of the s-plane is simply the mirror image of the upper half of the
s-plane reflected in the real axis.

The upper and lower short period mode frequency boundaries are described by
arcs cd and ab respectively. The frequency limits are determined from charts like
Fig. 10.7 and depend on the operating flight condition which is determined by nα.
Alternatively, the boundaries may be determined from a consideration of the limiting
CAP values, also given on charts like Fig. 10.7, at the flight condition of interest.
Note that when the s-plane is drawn to the same scale on both the x and y axes the
frequency boundaries become circular arcs about the origin. When the scales are
not the same the arcs become ellipses which can be more difficult to interpret. The
minimum short period mode damping ratio is obtained from Table 10.4 and maps
into the line bc radiating from the origin. The maximum permitted damping ratio is
greater than one which obviously means that the corresponding roots lie on the real
axis. Thus when the short period mode roots, or poles, are mapped on to the s-plane
they must lie within the region bounded by “abcd’’ and its mirror image in the real
axis. If the damping ratio is greater than one then the pair of roots must lie on the real
axis in locations bounded by the permitted maximum value of damping ratio.
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Figure 10.9 Longitudinal flying qualities requirements on the s-plane.

The minimum phugoid damping ratio is given in Table 10.5 and, for Level 1 flying
qualities maps onto the s-plane as the boundary “ef’’. Thus, when the phugoid roots,
or poles, are mapped on to the s-plane they must lie to the left of the line “ef’’ to
meet level one flying qualities requirements. The Level 3 requirement on phugoid
damping obviously allows for the case when the poles become real, one of which may
be unstable thereby giving rise to divergent motion. In this case, the limit implicitly
defines a minimum acceptable value for the corresponding time constant. This is
mapped on to the s-plane in exactly the same way as the lateral–directional spiral
mode boundary as described below.

10.9.2 Lateral–directional modes

Typical boundaries describing the limits on lateral–directional mode frequency and
damping on the s-plane are shown in Fig. 10.10. Again, the upper left half of the
s-plane is shown but with a small extension into the upper right half of the s-plane
to include the region appropriate to the unstable spiral mode. As for the longitudinal
case, interpretation implicitly includes the lower half of the s-plane which is the mirror
image of the upper half of the s-plane in the real axis.

The maximum permitted value of the roll subsidence mode time constant is given
in Table 10.6 and this maps into the boundary “e’’ since the corresponding real root is
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Figure 10.10 Lateral–directional flying qualities requirements on the s-plane.

given by the inverse of the time constant Tr . Further, since the mode must always be
stable it will always lie on the negative real axis. The precise location of the boundary
“e’’ is determined by the aircraft class, the flight phase category and the required
level of flying qualities. However, at the appropriate operating flight condition the
pole describing the roll subsidence mode must lie on the real axis to the left of the
boundary “e’’.

The location of the spiral mode boundary “f’’ is established in the same way. Since
the required limits only apply to the mode when it is unstable then the corresponding
boundary lies on the right half of the s-plane. The precise location of the boundary
may be determined from the minimum acceptable value of the time constant Ts, given
in Table 10.8 and, again, this depends on aircraft class and the required level of flying
qualities. Thus, the spiral mode pole must always lie on the real axis to the left of the
boundary “f’’.

The limiting frequency and damping requirements for the dutch roll mode are
given in Table 10.9 and are interpreted in much the same way as the requirements for
the longitudinal short period mode. The minimum permitted frequency boundary is
described by the arc “ab’’ and the minimum permitted damping ratio boundary by the
line “cd’’. The minimum permitted value of ζdωd maps into the line “bc’’ to complete
the dutch roll mode boundary and, as before, the boundary has its mirror image in the
lower half of the s-plane. Thus the dutch roll mode roots, or poles, must always lie to
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the left of the boundary “abcd’’ at the flight condition of interest. Clearly, the precise
location of the boundary is determined by the appropriate combination of aircraft
class, flight phase category and required level of flying qualities.

Example 10.4

To illustrate the application of the flying qualities requirements consider the McDon-
nell F-4 Phantom, the following data for which was obtained from Heffley and Jewell
(1972). Since the available data are limited to the equations of motion and some sup-
porting material the flying qualities assessment is limited to consideration of basic
stability and control characteristics only.

For the case selected the general flight condition parameters given are:

Altitude h 35000 ft
Mach number M 1.2
Weight mg 38925 Lb
Trim airspeed V0 1167 ft/s
Trim body incidence αe 1.6 deg
Flight path angle γe 0
Normal load factor derivative nα 22.4 g/rad
Control anticipation parameter CAP 1.31 1/s2

“Elevator’’ angle per g η/g 3.64 deg/g

Clearly the Phantom is a high performance combat aircraft thus, for the purposes
of flying qualities assessment it is described as a class IV aircraft. The flight task to
which the data relates is not stated. Therefore it may be assumed that the aircraft is
either in steady cruising flight, flight phase category B, or it is manoeuvring about
the given condition in which case flight phase category A applies. For this illustration
flight phase category A is assumed since it determines the most demanding flying
qualities requirements. It is interesting to note that the parameter “elevator’’ angle
per g is given which is, of course, a measure of the controls fixed manoeuvre margin.

Considering the longitudinal stability and control characteristics first. Sufficient
information about the stability characteristics of the basic airframe is given by the
pitch attitude response to “elevator’’ transfer function, which for the chosen flight
condition is

θ(s)

η(s)
≡ N θ

η (s)

Δ(s)
= −20.6(s + 0.0131)(s + 0.618)

(s2 + 0.0171s + 0.00203)(s2 + 1.759s + 29.49)
(10.33)

The essential longitudinal stability and control parameters may be obtained on
inspection of transfer function 10.33 as follows:

Phugoid damping ratio ζp = 0.19
Phugoid undamped natural frequency ωp = 0.045 rad/s
Short period damping ratio ζs = 0.162
Short period undamped natural frequency ωs = 5.43 rad/s
Numerator time constant Tθ1 = 1/0.0131 = 76.34 s
Numerator time constant (incidence lag) Tθ2 = 1/0.618 = 1.62 s
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Since the Phantom is an American aeroplane it would seem appropriate to assess
its basic stability characteristics against the requirements of MIL-F-8785C. However,
in practice it would be assessed against the requirements document specified by the
procuring agency.

With reference to Table 10.5, which is directly applicable, the phugoid damping
ratio is greater than 0.04 and since ωp/ωs < 0.1 the phugoid achieves level one flying
qualities and is unlikely to give rise to handling difficulties at this flight condition.

With reference to the short period mode frequency chart for flight phase category
A, which is the same as Fig. 10.7, at nα = 22.4 g/rad and for Level 1 flying qualities
it is required that

2.6 rad/s ≤ ωs ≤ 9.0 rad/s

or, equivalently

0.28 1/s2 ≤ ω2
s /nα(CAP) ≤ 3.6 1/s2

Clearly, the short period undamped natural frequency achieves Level 1 flying qualities.
Unfortunately, the short period mode damping ratio is less than desirable. A table

similar to Table 10.4 indicates that the damping only achieves Level 3 flying qualities
and to achieve Level 1 it would need to be in the range 0.35 ≤ ζs ≤ 1.3.

Considering now the lateral–directional stability and control characteristics, suffi-
cient information about the stability characteristics of the basic airframe is given, for
example, by the roll rate response to aileron transfer function, which for the chosen
flight condition is

p(s)

ξ(s)
≡ N p

ξ (s)

Δ(s)
= −10.9s(s2 + 0.572s + 13.177)

(s + 0.00187)(s + 1.4)(s2 + 0.519s + 12.745)
(10.34)

The essential lateral–directional stability and control parameters may be obtained on
inspection of transfer function 10.34 as follows:

Roll mode time constant Tr = 1/1.4 = 0.714 s
Spiral mode time constant Ts = 1/0.00187 = 535 s
Dutch roll damping ratio ζd = 0.0727
Dutch roll undamped natural frequency ωd = 3.57 rad/s
Dutch roll damping ratio-frequency product ζdωd = 0.26 rad/s

Clearly, at this flight condition the spiral mode is stable with a very long time
constant. In fact it is approaching neutral stability for all practical considerations.
Since the mode is stable it achieves Level 1 flying qualities and is most unlikely to
give rise to handling difficulties.

A table similar to Table 10.6 indicates that the roll subsidence mode damping ratio
achieves Level 1 flying qualities since Tr < 1.0 s.
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The dutch roll mode characteristics are less than desirable since its damping is
very low. A table similar to Table 10.9 indicates that the damping ratio only achieves
Level 2 flying qualities. In order to achieve the desirable Level 1 flying qualities the
mode characteristics would need to meet:

Dutch roll damping ratio ζd ≥ 0.19
Dutch roll undamped natural frequency ωd ≥ 1.0 rad/s
Dutch roll damping ratio-frequency product ζdωd ≥ 0.35 rad/s

It is therefore concluded that both the longitudinal short-period mode and the
lateral–directional dutch roll mode damping ratios are too low at the flight condi-
tion evaluated. In all other respects the aeroplane achieves Level 1 flying qualities.
The deficient aerodynamic damping of the Phantom, in common with many other
aeroplanes, is augmented artificially by the introduction of a feedback control system.

It must be emphasised that this illustration is limited to an assessment of the
basic stability properties of the airframe only. This determines the need, or other-
wise, for stability augmentation. Once the stability has been satisfactorily augmented
by an appropriate control system then, further and more far reaching assessments
of the control and handling characteristics of the augmented aeroplane would be
made. The scope of this kind of evaluation may be appreciated by reference to the
specification documents discussed above. In any event, analytical assessment would
need the addition of a simulation model developed from the linearised equations of
motion in order to properly investigate some of the dynamic control and response
properties.
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PROBLEMS

1. What are flying and handling qualities requirements?
In the context of flying and handling qualities requirements explain the

following

• Flight envelope
• Aircraft class
• Flight phase category
• Level of flying quality
• The Cooper–Harper rating scale

The pitch rate response to elevator control transfer function for the Northrop
F-5 Tiger aircraft in level flight cruise at an altitude of 30,000 ft is given by

q(s)

η(s)
= −14.6s(s + 0.0159)(s + 0.474)

(s2 + 1.027s + 7.95)(s2 + 0.0169s + 0.0031)
1/s

Evaluate the flying qualities of the aircraft at this flight condition. Note that
nα = 12.9 1/rad for this flight condition.

With the aid of MATLAB or Program CC, draw a root locus plot to show the
effect of pitch rate feedback to elevator and show both modes clearly. Draw
the flying qualities limit boundaries on the plot and hence determine a suitable
value for the feedback gain kq to ensure the aircraft meets the requirements.
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Compare the characteristics of the stability modes at this gain with those of the
unaugmented aircraft. (CU 1985)

2. Describe the service and operational flight envelope for an aircraft and explain
how they are related.

In the context of flying and handling qualities, what is meant by flight phase
category? Why are the stability requirements associated with each flight phase
category different? (CU 1986)

3. The Lockheed Jetstar is a small four engined utility transport aircraft. When
cruising at Mach 0.5 at an altitude of 40,000 ft, the roll and yaw transfer functions
are given by

N p
ξ (s) = −0.929(s − 0.0133)(s2 + 0.133s + 0.79) 1/s

N p
ξ (s) = −0.511(s + 0.36)(s + 0.098)(s + 0.579) 1/s

Δ(s) = (s − 0.0008)(s + 0.576)(s2 + 0.009s + 1.26)

Evaluate the stability modes characteristics at this flight condition against the
flying qualities requirements.

What negative feedback is required to improve the stability characteristics of
this aircraft? Illustrate your answer with a sketch of the appropriate root locus
plot(s) and state the most significant effects of the feedback with reference to
the requirements. (CU 1990)

4. Explain why the characteristics of the short term stability modes are critical to
good flying qualities. (CU 2001)
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Chapter 11

Stability Augmentation

11.1 INTRODUCTION

In the previous chapter it is shown how the stability and control characteristics of
an aeroplane may be assessed in the context of flying and handling qualities require-
ments. In the event that the aeroplane fails to meet the requirements in some way,
then it is necessary to consider remedial action. For all except perhaps the most
trivial of problems it is not usually practical to modify the aerodynamic design of
the aeroplane once its design has been finalised. Quite often the deficiencies occur
simply as a result of the requirement for the aeroplane to operate over an extended
flight envelope and not necessarily as a result of an aerodynamic design oversight.
Alternatively, this might be explained as the effects of aerodynamic non-linearity.
The preferred solution is, therefore, to artificially modify, or augment, the apparent
stability characteristics of the airframe. This is most conveniently achieved by the
introduction of negative feedback in which the output signals from motion sensors
are processed in some way and used to drive the appropriate control surfaces via
actuators. The resultant closed loop control system is similar in many respects to the
classical servo mechanism familiar to the control engineer. A significant advantage
of this approach is that the analysis of the augmented, or closed loop, aircraft makes
full use of the well-established tools of the control engineer. The systems approach
to flight dynamics analysis has already been introduced in earlier chapters where,
for example, control engineering tools have been utilised for solving the equations
of motion.

A functional block diagram of a typical flight control system (FCS) is shown in
Fig. 11.1. It is assumed that the primary flying controls are mechanical such that pilot
commands drive the control surfaces via control actuators which augment the avail-
able power to levels sufficient to overcome the aerodynamic loads on the surfaces.
The electronic flight control system (EFCS) comprises two feedback loops both of
which derive their control signals from motion sensors appropriate to the require-
ments of the control laws. The outputs from the inner and outer loop controllers are
electronically summed and the resultant signal controls the aircraft via a small servo
actuator. Typically, the servo actuator is an electro-hydraulic device which converts
low power electrical signals to mechanical signals at a power level compatible with
those originating at the pilot to which it is mechanically summed. Although only a
single control axis is indicated in Fig. 11.1, it is important to appreciate that the FCS
will, in general, include closed loop controllers operating on the roll, pitch and yaw
control axes of the aircraft simultaneously and may even extend to include closed
loop engine control as well. Thus multi-variable feedback involving many separate
control loops is implied, which is typical of many modern FCS.
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Figure 11.1 A typical flight control system.

The inner loop provides stability augmentation and is usually regarded as essential
for continued proper operation of the aircraft. The inner loop control system alone
comprises the stability augmentation system (SAS), it is usually the first part of the
FCS to be designed and together with the airframe comprises the augmented aircraft.

The outer loop provides the autopilot which, as its name suggests, enables the pilot
to fly various manoeuvres under automatic control. Although necessary for opera-
tional reasons, an autopilot is not essential for the provision of a safe well behaved
aircraft. The autopilot control modes are designed to function with the augmented air-
craft and may be selectively engaged as required to automate the piloting task. Their
use is intended to release the pilot from the monotony of flying steady conditions
manually and to fly precision manoeuvres in adverse conditions which may be at, or
beyond, the limits of human capability. Autopilot control modes vary from the very
simple, for example height hold, to the very complex, for example automatic landing.

Since, typically, for most aircraft the control law gains required to effect good
stability, control and handling vary with operating condition, it is necessary to make
provision for their continuous adjustment. The variations often arise as a result of
variations in the aerodynamic properties of the airframe over the flight envelope.
For example, at low speed the aerodynamic effectiveness of the control surfaces is
generally less than at high speed. This means that higher control gains are required
at low speeds and vice versa. It is, therefore, common practice to vary, or schedule,
gains as a function of flight condition. Commonly used flight condition variables are
dynamic pressure, Mach number, altitude and so on, information which is grouped
under the description of air data. Generally, air data information would be available
to all control laws in a FCS as indicated in Fig. 11.1.

A control panel is provided in the cockpit to enable the pilot to control and monitor
the operation of the FCS. SAS controls are usually minimal and enable the pilot to
monitor the system for correct, and hence safe, operation. In some cases he may also be
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provided with means for selectively isolating parts of the SAS. On the other hand, the
autopilot control panel is rather more substantial. Controls are provided to enable the
pilot to set up, engage and disengage the various autopilot mode functions. The control
panel also enables him to monitor progress during the automated manoeuvre selected.

In piloted phases of flight the autopilot would normally be disengaged and, as
indicated in Fig. 11.1 the pilot would derive his perception of flying and handling
qualities from the motion cues provided by the augmented aircraft. Thus the inner
loop control system provides the means by which all aspects of stability, control and
handling may be tailored in order to improve the characteristics of the basic aircraft.

11.1.1 The control law

The control law is a mathematical expression which describes the function imple-
mented by an augmentation or autopilot controller. For example, a very simple
and very commonly used control law describing an inner loop control system for
augmenting yaw damping is

ζ(s) = Kζδζ(s) − Kr

(
s

1 + sT

)
r(s) (11.1)

Equation (11.1) simply states that the control signal applied to the rudder ζ(s) com-
prises the sum of the pilot command δζ(s) and yaw rate feedback r(s). The gain Kζ is
the mechanical gearing between rudder pedals and rudder and the gain Kr is the all
important feedback gain chosen by design to optimise the damping in yaw. The sec-
ond term in equation (11.1) is negative since negative feedback is required to increase
stability in yaw. The second term also, typically, includes a washout, or high-pass,
filter with a time constant of around 1 or 2 s. The filter is included to block yaw rate
feedback in steady turning flight in order to prevent the feedback loop opposing the
pilot command once the rudder pedals are returned to centre after manoeuvre initi-
ation. However, the filter is effectively transparent during transient motion thereby
enabling the full effect of the feedback loop to quickly damp out the yaw oscillation.

11.1.2 Safety

In any aeroplane fitted with a FCS safety is the most critical issue. Since the FCS
has direct “access’’ to the control surfaces considerable care must be exercised in the
design of the system to ensure that under no circumstances can a maximum instanta-
neous uncontrolled command be applied to any control surface. For example, a sensor
failure might cause its output to saturate at its maximum possible value. This signal,
in turn, is conditioned by the control law to apply what could well be a demand of
magnitude sufficient to cause a maximum control surface displacement. The resulting
failure transient might well be some kind of hazardous divergent response. Clearly,
steps must be taken in the design of the FCS architecture to incorporate mechanisms
to protect the aircraft from partial or total system malfunction.

The design of safety critical FCS architectures, as opposed to the simpler problem of
control law design, is a substantial subject in its own right. However, at an introductory
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level, it is sufficient to appreciate that the requirements for safety can sometimes over-
ride the requirements for control, especially when relatively large control system gains
are necessary. For simple SAS of the kind exemplified by the control law, equation
(11.1), the problem may be overcome by limiting the maximum values of the control
signals, giving rise to what is referred to as a limited authority control system. In
more complex FCS where authority limiting is not acceptable for control reasons, it
may be necessary to employ control system redundancy. Redundant FCS comprise
two, or more, systems which are functionally similar and which normally operate in
parallel. In the event of a system malfunction, the faulty equipment is isolated leaving
the remaining healthy system components to continue the augmentation task. In such
systems, automatic fault containment can reduce the failure transient to an impercep-
tible level. It is then necessary to provide the pilot with information enabling him to
continuously monitor the state of health of the FCS on an appropriate cockpit display.

11.1.3 SAS architecture

The architecture of an inner loop SAS is shown in Fig. 11.2. This classical system
description assumes an aeroplane with mechanical flying controls to which the EFCS
connects via the servo actuator. The system is typical of those applied to many aero-
planes of the 1950s and 1960s. For the purpose of discussion one control axis only is
shown in Fig. 11.2 but it applies equally well to the remaining axes.

As above, the essential element of the SAS is the control law, the remaining com-
ponents of the system are the necessary by-products of its implementation. Noise
filtering is often required to remove unwanted information from sensor outputs. At
best noise can cause unnecessary actuator activity and, at worst, may even give rise
to unwanted aircraft motion. Sometimes, when the sensor is located in a region of
significant structural flexibility the “noise’’may be due to normal structure distortion,
the control demand may then exacerbate the structure bending to result in structural
divergence. Thus an unwanted unstable structural feedback loop can be inadvertently

Aircraft
dynamics

Control
actuator

Servo
actuator

Motion
sensors

Noise
filters

Control
law

Air data
sensors

p
�

�

Servo
amplifier

Limit
function

Flight control computer

Feel
system

ResponseS

Figure 11.2 A typical SAS.
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created. The cure usually involves narrow band filtering to remove information from
the sensor output signal at sensitive structural bending mode frequencies.

The fundamental role of the SAS is to minimise response transients following an
upset from equilibrium. Therefore, when the system is working correctly in non-
manoeuvring flight the response variables will have values at, or near, zero since the
action of the negative feedback loop is to drive the error to zero. Thus a SAS does not
normally require large authority control and the limit function would typically limit
the amplitude of the control demand to, say, ±10% of the total surface deflection.
The limiter may also incorporate a rate limit function to further contain transient
response by imposing a maximum actuator slew rate demand. It is important to
realise that whenever the control demand exceeds the limit the system saturates,
becomes temporarily open loop and the dynamics of the aircraft revert to those of the
unaugmented airframe. This is not usually considered to be a problem as saturation is
most likely to occur during manoeuvring flight when the pilot has very “tight’’manual
control of the aeroplane and effectively replaces the SAS control function.

The servo amplifier together with the servo actuator provide the interface between
the FCS and the mechanical flying controls. These two elements comprise a classical
position servo mechanism as indicated by the electrical feedback from a position
sensor on the servo actuator output. Mechanical amplitude limiting may well be
applied to the servo actuator as well as, or instead of, the electronic limits programmed
into the flight control computer.

Since the main power control actuator, also a classical mechanical servo mecha-
nism, breaks the direct mechanical link between the pilots controller and the control
surface, the control feel may bear little resemblance to the aerodynamic surface loads.
The feedback loop around the control actuator would normally be mechanical since it
may well need to function with the SAS inoperative. It is therefore necessary to aug-
ment the controller feel characteristics as well. The feel system may be a simple non-
linear spring but, is more commonly an electro-hydraulic device, often referred to as a
Q-feel system since its characteristics are scheduled with dynamic pressure Q. Careful
design of the feel system enables the apparent controls free manoeuvre margin of the
aircraft to be adjusted independently of the other inter-related stability parameters.

When the mechanical flying controls are dispensed with altogether and replaced
by an electrical or electronic link the resultant SAS is described as a fly-by-wire
(FBW) system. When the FCS shown in Fig. 11.2 is implemented as a FBW system
its functional structure is changed to that shown in Fig. 11.3. The SAS inner control
loop remains unchanged, the only changes relate to the primary control path and the
actuation systems.

Since the only mechanical elements in the FCS are the links between the control
actuator and the surfaces it is usual for the servo actuator and the control actuator to be
combined into one unit. Its input is then the electrical control demand from the flight
control computer and its output is the control surface deflection. An advantage of an
integrated actuation system is the facility for mechanical simplification since the feed-
back loops may be closed electrically rather than by a combination of electrical and
mechanical feedbacks. Mechanical feedback is an unnecessary complication since in
the event of a flight control computer failure the aeroplane would be uncontrollable.
Clearly, this puts a rather more demanding emphasis on the safety of the FCS.

Primary control originates at the pilots control inceptors which, since they
are not constrained by mechanical control linkages, may now take alternative forms,
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Figure 11.3 A typical FBW command and stability augmentation system.

for example, a side-stick controller. The control command signal is conditioned by
a command control law which determines the control and response characteristics
of the augmented aircraft. Since the command control law is effectively shaping the
command signal in order to achieve acceptable response characteristics, its design is
a means for augmenting handling qualities independently of stability augmentation.
For this reason, a FCS with the addition of command path augmentation is known as
a command and stability augmentation system (CSAS).

Provision is shown in Fig. 11.3 for an electrical trim function since not all aircraft
with advanced technology FCS employ mechanical trimmers. The role of the trim
function is to set the datum control signal value, and hence the control surface angle,
to that required to maintain the chosen equilibrium flight condition. The precise
trim function utilised would be application dependent and in some cases an entirely
automatic trim system might be implemented. In this latter case no pilot trimming
facility is required.

Since the pilot must have full authority control over the aircraft at all times it is
implied that the actuation system must also have full authority control. The implica-
tions for safety following a failure in any component in the primary control path is
obviously critical. As for the simple SAS the feedback control signal may be authority
limited prior to summing with the primary control commands and this will protect
the system against failures within the stability augmentation function. However, this
solution cannot be used in the primary control path. Consequently, FBW systems
must have reliability of a very high order and this usually means significant levels of
redundancy in the control system architecture together with sophisticated mechanisms
for identifying and containing the worst effects of system malfunction.

In the above brief description of a FBW system it is assumed that all control
signals are electrical and transmitted by normal electrical cables. However, since
most modern flight control computers are digital the transmission of control signals
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also involves digital technology. Digital signals can also be transmitted optically with
some advantage, especially in the demanding environment within aircraft. Today it is
common for optical signal transmission to be used in FCS if for no other reason than to
maintain electrical isolation between redundant components within the system. There
is no reason why optical signalling should not be used for primary flight control and
there are a small number of systems currently flying which are optically signalled.
Such a control system is referred to as a fly-by-light (FBL) system and the control
function is essentially the same as that of the FBW system or simple SAS it replaces.
In fact, it is most important to recognise that for a given aeroplane the stability
augmentation function required of the FCS is the same irrespective of the architecture
adopted for its implementation. In the context of stability augmentation there is
nothing special or different in a FBW or FBL system solution.

11.1.4 Scope

In the preceding paragraphs an attempt has been made to introduce and review some
of the important issues concerning FCS design in general. In particular, the role of
the SAS or CSAS and the possible limitation of the control function imposed by the
broader concerns of system structure has been emphasised. The temptation now is
to embark on a discussion of FCS design but, unfortunately, such a vast subject is
beyond the scope of the present book.

Rather, the remainder of this chapter is concerned with the very fundamental, and
sometimes subtle, way in which feedback may be used to augment the dynamics of
the basic aircraft. It is very important that the flight dynamicist understands the way in
which his chosen control system design augments the stability and control properties
of the airframe. It is not good enough to treat the aircraft like an arbitrary plant and to
design a controller to meet a predefined set of performance requirements, an approach
much favoured by control system designers. It is vital that the FCS designer retains
a complete understanding of the implications of his design decisions throughout the
design process. In the interests of functional visibility, and hence of safety, it is
important that FCS are made as simple as possible. This is often only achievable
when the designer has a complete and intimate understanding of the design process.

11.2 AUGMENTATION SYSTEM DESIGN

The most critical aspect of FCS design is concerned with the design of the inner loop
control law. The design objective being to endow the aircraft with good stability, con-
trol and handling characteristics throughout its flight envelope. Today, a FBW system
gives the designer the greatest freedom of choice as to how he might allocate the con-
trol law functions for “optimum’’ performance. The main CSAS control functions are
indicated in the rather over simplified representation shown in Fig. 11.4. The problem
confronting the FCS designer is to design suitable functions for the command, feed
forward and feedback paths of the CSAS and obviously, it is necessary to appreciate
the role of each path in the overall context of aircraft stability augmentation.

The feedback path comprises the classical inner loop SAS whose primary role is
to augment static and dynamic stability. It generally improves flying and handling
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Figure 11.5 Inner loop transfer function representation.

qualities but may not necessarily lead to ideal handling qualities since it has
insufficient direct control over response shaping.

The feed forward path is also within the closed loop and its function augments
stability in exactly the same way as the feedback path. However, it has a direct
influence on command signals as well and by careful design its function may also be
used to exercise some degree of response shaping. Its use in this role is limited since
the stability augmentation function must take priority.

The command path control function provides the principal means for response
shaping, it has no influence on stability since it is outside the closed loop. This
assumes, of course, that the augmented aircraft may be represented as a linear system.
The command path indicated in Fig. 11.4 assumes entirely electronic signalling as
appropriate to a FBW system. However, there is no reason why the command and feed
forward paths should not comprise a combination of parallel electrical and mechanical
paths, an architecture commonly employed in aircraft of the 1960s and 1970s. In such
systems it is only really practical to incorporate all, other than very simple, signal
shaping into the electrical signal paths.

Further analysis of the simple CSAS structure may be made if it is represented by
its transfer function equivalent as shown in Fig. 11.5.

With reference to Fig. 11.5 the control error signal ε(s) is given by

ε(s) = C(s)δ(s) − H (s)r(s) (11.2)
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where, δ(s) and r(s) are the command and response signals respectively and, C(s) and
H (s) are the command path and feedback path transfer functions respectively. The
output response r(s) is given by

r(s) = F(s)G(s)ε(s) (11.3)

where, F(s) is the feed forward path transfer function and G(s) is the all important
transfer function representing the basic airframe. Combining equations (11.2) and
(11.3) to eliminate the error signal, the closed loop transfer function is obtained

r(s)

δ(s)
= C(s)

(
F(s)G(s)

1 + F(s)G(s)H (s)

)
(11.4)

Thus the transfer function given by equation (11.4) is that of the augmented aircraft
and replaces that of the unaugmented aircraft G(s). Clearly, by appropriate choice of
C(s), F(s) and H (s) the FCS designer has considerable scope for tailoring the stability,
control and handling characteristics of the augmented aircraft. The characteristic
equation of the augmented aircraft is given by

Δ(s)aug = 1 + F(s)G(s)H (s) = 0 (11.5)

Note that the command path transfer function C(s) does not appear in the characteristic
equation therefore, as noted above, it cannot influence stability in any way.

Let the aircraft transfer function be denoted by its numerator and denominator in
the usual way,

G(s) = N (s)

Δ(s)
(11.6)

Let the feed forward transfer function be a simple proportional gain

F(s) = K (11.7)

and let the feedback transfer function be represented by a typical lead–lag function,

H (s) =
(

1 + sT1

1 + sT2

)
(11.8)

Then the transfer function of the augmented aircraft, equation (11.4), may be written,

r(s)

δ(s)
= C(s)

(
KN (s)(1 + sT2)

Δ(s)(1 + sT2) + KN (s)(1 + sT1)

)
(11.9)

Now let the roles of F(s) and H (s) be reversed, whence,

F(s) =
(

1 + sT1

1 + sT2

)
H (s) = K (11.10)



Ch11-H6927.tex 20/6/2007 16: 37 Page 283

Stability Augmentation 283

In this case the transfer function of the augmented aircraft, equation (11.4), may be
written

r(s)

δ(s)
= C(s)

(
KN (s)(1 + sT1)

Δ(s)(1 + sT2) + KN (s)(1 + sT1)

)
(11.11)

Comparing the closed loop transfer functions, equations (11.9) and (11.11), it is
clear that the stability of the augmented aircraft is unchanged since the denominators
are the same. However, the numerators are different implying a difference in the
response to control and this difference can be exploited to some advantage in some
FCS applications.

Now if the gains in the control system transfer functions F(s) and H (s) are
deliberately made large such that at all frequencies over the bandwidth of the aeroplane

F(s)G(s)H (s) � 1 (11.12)

then, the closed loop transfer function, equation (11.4), is given approximately by

r(s)

δ(s)
∼= C(s)

H (s)
(11.13)

This demonstrates the important result that in highly augmented aircraft the stability
and control characteristics may become substantially independent of the dynamics
of the basic airframe. In other words, the stability, control and handling characteris-
tics are largely determined by the design of the CSAS, in particular the design of the
transfer functions C(s) and H (s). In practice, this situation is only likely to be encoun-
tered when the basic airframe is significantly unstable. This illustration implies that
augmentation would be provided by a FBW system and ignores the often intrusive
effects of the dynamics of the FCS components.

11.3 CLOSED LOOP SYSTEM ANALYSIS

For the purpose of illustrating how motion feedback augments basic airframe stability
consider the very simple example in which pitch attitude is fed back to elevator. The
most basic essential features of the control system are shown in Fig. 11.6. In this
example the controller comprises a simple gain constant Kθ in the feedback path.

�

�

Demand ResponseAircraft
dynamics

G(s)

Feedback
gain Kq

Elevator angle

dh(s) h (s) q (s)
S

Figure 11.6 A simple pitch attitude feedback system.
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The control law is given by

η(t) = δη(t) − Kθθ(t) (11.14)

and the appropriate aircraft transfer function is

θ(s)

η(s)
= G(s) = N θ

η (s)

Δ(s)
(11.15)

Therefore, the closed loop transfer function of the augmented aircraft is

θ(s)

δη(s)
= N θ

η (s)

Δ(s) + KθN θ
η (s)

(11.16)

and the augmented characteristic equation is

Δ(s)aug = Δ(s) + KθN θ
η (s) = 0 (11.17)

Thus, for a given aircraft transfer function its stability may be augmented by selecting
a suitable value of feedback gain Kθ . Clearly when Kθ is zero there is no feedback, the
aircraft is said to be open loop and its stability characteristics are un-modified. As the
value of Kθ is increased so the degree of augmentation is increased and the stability
modes increasingly diverge from those of the open loop aircraft. Note that the open
and closed loop transfer function numerators, equations (11.15) and (11.16), are the
same in accordance with the findings of Section 11.2.

Alternatively, the closed loop equations of motion may be obtained by incor-
porating the control law into the open loop equations of motion. The open loop
equations of motion in state space form and referred to a body axis system are given
by equation (4.67),

⎡
⎢⎢⎣

u̇
ẇ
q̇

θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xu xw xq xθ

zu zw zq zθ

mu mw mq mθ

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

xη xτ

zη zτ

mη mτ

0 0

⎤
⎥⎥⎦
[
η

τ

]
(11.18)

substitute the control law expression for η, equation (11.14), into equation (11.18)
and rearrange to obtain the closed loop state equation,

⎡
⎢⎢⎣

u̇
ẇ
q̇

θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xu xw xq xθ − Kθxη

zu zw zq zθ − Kθzη

mu mw mq mθ − Kθmη

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

xη xτ

zη zτ

mη mτ

0 0

⎤
⎥⎥⎦
[
δη

τ

]
(11.19)

Clearly, the effect of θ feedback is to modify, or augment the derivatives xθ , zθ and
mθ . For a given value of the feedback gain Kθ equation (11.19) may be solved in the
usual way to obtain all of the closed loop longitudinal response transfer functions,

u(s)

δη(s)
= N u

η (s)

Δ(s)aug

w(s)

δη(s)
= N w

η (s)

Δ(s)aug

q(s)

δη(s)
= N q

η (s)

Δ(s)aug

θ(s)

δη(s)
= N θ

η (s)

Δ(s)aug
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and

u(s)

τ(s)
= N u

τ (s)

Δ(s)aug

w(s)

τ(s)
= N w

τ (s)

Δ(s)aug

q(s)

τ(s)
= N q

τ (s)

Δ(s)aug

θ(s)

τ(s)
= N θ

τ (s)

Δ(s)aug

where, Δ(s)aug is given by equation (11.17).
An obvious problem with this analytical approach is the need to solve equa-

tion (11.19) repetitively for a range of values of Kθ in order to determine the value
which gives the desired stability characteristics. Fortunately, the root locus plot pro-
vides an extremely effective graphical tool for the determination of feedback gain
without the need for repetitive computation.

Example 11.1

The pitch attitude response to elevator transfer function for the Lockheed F-104
Starfighter in a take-off configuration was obtained from Teper (1969) and may be
written in factorised form,

θ(s)

η(s)
= −4.66(s + 0.133)(s + 0.269)

(s2 + 0.015s + 0.021)(s2 + 0.911s + 4.884)
(11.20)

Inspection of the denominator of equation (11.20) enables the stability mode
characteristics to be written down

Phugoid damping ratio ζp = 0.0532

Phugoid undamped natural frequency ωp = 0.145 rad/s

Short period damping ratio ζs = 0.206

Short period undamped natural frequency ωs = 2.21 rad/s

The values of these characteristics suggests that the short period mode damping ratio is
unacceptably low, the remainder being acceptable. Therefore, stability augmentation
is required to increase the short period damping ratio.

In the first instance, assume a SAS in which pitch attitude is fed back to eleva-
tor through a constant gain Kθ in the feedback path. The SAS is then exactly the
same as that shown in Fig. 11.6 and as before, the control law is given by equation
(11.14). However, since the aircraft transfer function, equation (11.20), is negative
a negative feedback loop effectively results in overall positive feedback which is, of
course, destabilising. This situation arises frequently in aircraft control and, when-
ever a negative open loop transfer function is encountered it is necessary to assume a
positive feedback loop, or equivalently a negative value of the feedback gain, in order
to obtain a stabilising control system. Care must always be exercised in this context.
Therefore, in this particular example, when the negative sign of the open loop transfer
function is taken into account the closed loop transfer function, equation (11.16), of
the augmented aircraft may be written,

θ(s)

δη(s)
= N θ

η (s)

Δ(s) − KθN θ
η (s)

(11.21)
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Substitute the open loop numerator and denominator polynomials from equation
(11.20) into equation (11.21) and rearrange to obtain the closed loop transfer function

θ(s)

δη(s)
= −4.66(s + 0.133)(s + 0.269)

s4 + 0.926s3 + (4.919 + 4.66Kθ)s2 + (0.095 + 1.873Kθ)s
+ (0.103 + 0.167Kθ)

(11.22)

Thus, the augmented characteristic equation is

Δ(s)aug = s4 + 0.927s3 + (4.919 + 4.66Kθ)s2 + (0.095 + 1.873Kθ)s

+ (0.103 + 0.167Kθ) = 0 (11.23)

The effect of the feedback gain Kθ on the longitudinal stability modes of the F-104
can only be established by repeatedly solving equation (11.23) for a range of suitable
gain values. However, a reasonable appreciation of the effect of Kθ on the stability
modes can be obtained from the approximate solution of equation (11.23). Writing
equation (11.23),

As4 + Bs3 + Cs2 + Ds + E = 0 (11.24)

then an approximate solution is given by equation (6.13).
Thus the characteristics of the short period mode are given approximately by

s2 + B

A
s + C

A
= s2 + 0.927s + (4.919 + 4.66Kθ) = 0 (11.25)

Whence,

ωs = √
(4.919 + 4.66Kθ)

2ζsωs = 0.927 rad/s (11.26)

It is therefore easy to see how the mode characteristics change as the feedback gain
is increased from zero to a large value. Or, more generally, as Kθ → ∞ so

ωs → ∞
ζs → 0 (11.27)

Similarly, with reference to equation (6.13), the characteristics of the phugoid mode
are given approximately by

s2 + (CD − BE)

C2
s + E

C
= s2 +

(
8.728K2

θ + 9.499Kθ + 0.369

21.716K2
θ + 45.845Kθ + 24.197

)
s

+
(

0.103 + 0.167Kθ

4.919 + 4.66Kθ

)
= 0 (11.28)



Ch11-H6927.tex 20/6/2007 16: 37 Page 287

Stability Augmentation 287

Thus, again, as Kθ → ∞ so

ωp →
√

0.167

4.66
= 0.184 rad/s

2ζpωp → 8.728

21.716
= 0.402 rad/s (11.29)

and allowing for rounding errors,

ζp → 1.0 (11.30)

The conclusion is then, that negative pitch attitude feedback to elevator tends to
destabilise the short period mode and increase its frequency whereas its effect on
the phugoid mode is more beneficial. The phugoid stability is increased whilst its
frequency also tends to increase a little but is bounded by an acceptable maximum
value. For all practical purposes the frequency is assumed to be approximately con-
stant. This result is, perhaps, not too surprising since pitch attitude is a dominant
motion variable in phugoid dynamics and is less significant in short period pitching
motion. It is quite clear that pitch attitude feedback to elevator is not the correct way
to augment the longitudinal stability of the F-104.

What this approximate analysis does not show is the relative sensitivity of each
mode to the feedback gain. This can only be evaluated by solving the characteristic
equation repeatedly for a range of values of Kθ from zero to a suitably large value. A
typical practical range of values might be 0 ≤ Kθ ≤ 2 rad/rad, for example. This kind
of analysis is most conveniently achieved with the aid of a root locus plot.

11.4 THE ROOT LOCUS PLOT

The root locus plot is a relatively simple tool for determining, by graphical means,
detailed information about the stability of a closed loop system knowing only the
open loop transfer function. The plot shows the roots, or poles, of the closed loop
system characteristic equation for every value of a single loop variable, typically the
feedback gain. It is therefore not necessary to calculate the roots of the closed loop
characteristic equation for every single value of the chosen loop variable. As its name
implies, the root locus plot shows loci on the s-plane of all the roots of the closed
loop transfer function denominator as a function of the single loop gain variable.

The root locus plot was proposed by Evans (1954) and from its first appearance
rapidly gained in importance as an essential control systems design tool. Conse-
quently, it is described in most books concerned with linear control systems theory,
for example it is described by Friedland (1987). Because of the relative mathematical
complexity of the underlying theory, Evans (1954) main contribution was the develop-
ment of an approximate asymptotic procedure for manually “sketching’’ closed loop
root loci on the s-plane without recourse to extensive calculation. This was achieved
with the aid of a set of “rules’’ which resulted in a plot of sufficient accuracy for
most design purposes. It was therefore essential that control system designers were
familiar with the rules. Today, the root locus plot is universally produced by compu-
tational means. It is no longer necessary for the designer to know the rules although
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he must still know how to interpret the plot correctly and, of course, he must know
its limitations.

In aeronautical applications it is vital to understand the correct interpretation of the
root locus plot. This is especially so when it is being used to evaluate augmentation
schemes for the precise control of the stability characteristics of an aircraft over the
flight envelope. In the opinion of the author, this can only be done from the position
of strength which comes with a secure knowledge of the rules for plotting a root
locus by hand. For this reason the rules are set out in Appendix 11. However, it is
not advocated that root locus plots should be drawn by hand, this is unnecessary
when computational tools such as MATLAB and Program CC are readily available.
The processes involved in the construction of a root locus plot are best illustrated by
example as follows.

Example 11.2

Consider the use of the root locus plot to evaluate the effect of pitch attitude feed-
back to elevator on the F-104 aircraft at the same flight condition as discussed in
Example 11.1. The closed loop system block diagram applying is that shown in Fig.
11.6. The open loop system transfer function is, from equation (11.20),

θ(s)

η(s)
= −4.66Kθ(s + 0.133)(s + 0.269)

(s2 + 0.015s + 0.021)(s2 + 0.911s + 4.884)
rad/rad (11.31)

with poles and zeros,

p1 = −0.0077 + 0.1448j
p2 = −0.0077 − 0.1448j
p3 = −0.4553 + 2.1626j whence Number of poles np = 4
p4 = −0.4553 − 2.1626j Number of zeros nz = 2
z1 = −0.133
z2 = −0.269

The open loop poles and zeros are mapped on to the s-plane as shown in Fig. 11.7.
The loci of the closed loop poles are then plotted as the feedback gain Kθ is allowed
to increase from zero to a large value. In this example the loci were obtained
computationally and are discussed in the context of the rules set out in Appendix 11.

Rule 1 locates the poles and zeros on the s-plane and determines that, since there are
two more poles than zeros, four loci commence at the poles, two of which terminate
at the zeros and two of which go off to infinity as Kθ → ∞.

Rule 2 determines that the real axis between the two zeros is part of a locus.

Rule 3 determines that the two loci which go off to infinity do so asymptotically to
lines at 90◦ and at 270◦ to the real axis.

Rule 4 determines that the asymptotes radiate from the cg of the plot located at −0.262
on the real axis.

Rule 5 determines the point on the real axis at which two loci break-in to the locus
between the two zeros. Method 1, the approximate method, determines the break-in
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Figure 11.7 Example of root locus plot construction.

point at −0.2. Method 2, the exact method, determines the break-in point at −0.186.
Either value is satisfactory for all practical purposes.

Rule 6 simply states that the two loci branching into the real axis do so at ±90◦ to
the real axis.

Rule 7 determines the angle of departure of the loci from the poles and the angles
of arrival at the zeros. This is rather more difficult to calculate by hand and to do so,
the entire s-plane plot is required. The angles given by the computer program used to
plot the loci are as follows:

angle of departure from p1, 194◦
angle of departure from p2, −194◦
angle of departure from p3, 280◦
angle of departure from p4, −280◦
angle of arrival at z1, 180◦
angle of arrival at z2, 0◦

Note that these values compare well with those calculated by hand from measurements
made on the s-plane using a protractor.

Rule 8 enables the total loop gain to be evaluated at any point on the loci. To do
this by hand is particularly tedious, it requires a plot showing the entire s-plane
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and it is not always very accurate, especially if the plot is drawn to a small scale.
However, since this is the primary reason for plotting root loci in the first instance all
computer programs designed to plot root loci provide a means for obtaining values
of the feedback gain at test points on the loci. Not all root locus plotting programs
provide the information given by rules 4, 5 and 7. In this example the feedback gain
at test point a is Kθ = −1.6 and at test point b, the break-in point, Kθ = −12.2. Note
that, in this example, the feedback gain has units ◦/◦ or, equivalently rad/rad. When
all test points of interest have been investigated the root locus plot is complete.

One of the more powerful features of the root locus plot is that it gives explicit
information about the relative sensitivity of the stability modes to the feedback in
question. In this example, the open loop aircraft stability characteristics are

Phugoid damping ratio ζp = 0.0532

Phugoid undamped natural frequency ωp = 0.145 rad/s

Short period damping ratio ζs = 0.206

Short period undamped natural frequency ωs = 2.21 rad/s

and at test point a, where Kθ = −1.6, the closed loop stability characteristics are

Phugoid damping ratio ζp = 0.72

Phugoid undamped natural frequency ωp = 0.17 rad/s

Short period damping ratio ζs = 0.10

Short period undamped natural frequency ωs = 3.49 rad/s

Thus the phugoid damping is increased by about 14 times and its frequency
remains nearly constant. In fact, the oscillatory phugoid frequency can never exceed
0.186 rad/s. The short period mode damping is approximately halved whilst its fre-
quency is increased by about 50%. Obviously the phugoid damping is the parameter
which is most sensitive to the feedback gain by a substantial margin. A modest feed-
back gain of say, Kθ = −0.1 rad/rad would result in a very useful increase in phugoid
damping whilst causing only very small changes in the other stability parameters.
However, the fact remains that pitch attitude feedback to elevator destabilises the
short period mode by reducing the damping ratio from its open loop value. This then,
is not the cure for the poor short period mode stability exhibited by the open loop
F-104 aircraft at this flight condition. All of these conclusions support the findings
of Example 11.1 but, clearly, very much greater analytical detail is directly available
from inspection of the root locus plot.

Additional important points relating to the application of the root locus plot to
aircraft stability augmentation include the following:

• Since the plot is symmetric about the real axis it is not necessary to show the
lower half of the s-plane, unless the plot is constructed by hand. All of the relevant
information provided by the plot is available in the upper half of the s-plane.

• At typical scales it is frequently necessary to obtain a plot of the origin area at
enlarged scale in order to resolve the essential detail. This is usually very easy
to achieve with most computational tools.
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Figure 11.8 A simple pitch rate feedback system.

• As has been mentioned previously, it is essential to be aware of the sign of the
open loop aircraft transfer function. Most root locus plotting computer programs
assume the standard positive transfer function with negative feedback. A negative
transfer function will result in an incorrect locus. The easy solution to this
problem is to enter the transfer function with a positive sign and to change the
sign of the feedback gains given by the program. However, it is important to
remember the changes made when assessing the result of the investigation.

Example 11.3

In Examples 11.1 and 11.2 it is shown that pitch attitude feedback to elevator is not
the most appropriate means for augmenting the deficient short period mode damping
of the F-104. The correct solution is to augment pitch damping by implementing pitch
rate feedback to elevator, velocity feedback in servo mechanism terms. The control
system functional block diagram is shown in Fig. 11.8.

For the same flight condition, a take-off configuration, as in the previous examples,
the pitch rate response to elevator transfer function for the Lockheed F-104 Starfighter
was obtained from Teper (1969) and may be written in factorised form,

q(s)

η(s)
= −4.66s(s + 0.133)(s + 0.269)

(s2 + 0.015s + 0.021)(s2 + 0.911s + 4.884)
rad/s/rad (11.32)

As before, the stability modes of the open loop aircraft are,

Phugoid damping ratio ζp = 0.0532

Phugoid undamped natural frequency ωp = 0.145 rad/s

Short period damping ratio ζs = 0.206

Short period undamped natural frequency ωs = 2.21 rad/s

With reference to MIL-F-8785C (1980), defining the F-104 as a class IV aircraft,
operating in flight phase category C and assuming Level 1 flying qualities are desired
then, the following constraints on the stability modes may be determined:

Phugoid damping ratio ζp ≥ 0.04

Short period damping ratio ζs ≥ 0.5

Short period undamped natural frequency 0.8 ≤ ωs ≤ 3.0 rad/s
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Figure 11.9 Root locus plot showing pitch rate feedback to elevator.

The upper limit on short period mode damping ratio is ignored since it is greater
than one. Additionally, the closed loop phugoid frequency should ideally conform to
ωp ≤ 0.1 ωs where, here ωs is the closed loop short period mode frequency. Clearly,
the unaugmented aircraft meets these flying qualities requirements with the exception
of the short period mode damping ratio which is much too low.

The root locus plot constructed from the transfer function, equation (11.32), is
shown in Fig. 11.9. Also shown on the same s-plane plot are the flying qualities short
period mode boundaries according to the limits determined from MIL-F-8785C and
quoted above.

Clearly, pitch rate feedback to elevator is ideal since it causes the damping of both
the phugoid and short period modes to be increased although the short period mode
is most sensitive to feedback gain. Further, the frequency of the short period mode
remains more-or-less constant through the usable range of values of feedback gain
Kq. For the same range of feedback gains the frequency of the phugoid mode is
reduced thereby increasing the separation between the frequencies of the two modes.
At test point a Kq = −0.3 rad/rad/s which is the smallest feedback gain required to
bring the closed loop short period mode into agreement with the flying qualities
boundaries. Allowing for a reasonable margin of error and uncertainty a practical
choice of feedback gain might be Kq = −0.5 rad/rad/s. The stability augmentation
control law would then be

η = δη + 0.5q (11.33)

This augmentation system is the classical pitch damper used on many aeroplanes from
the same period as the Lockheed F-104 and typical feedback gains would be in the
range – 0.1 ≤ Kq ≤ −1.0 rad/rad/s. It is not known what value of feedback gain is used
in the F-104 at this flight condition but the published description of the longitudinal
augmentation system structure is the same as that shown in Fig. 11.8.
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Substituting the control law, equation (11.33), into the open loop longitudinal
equations of motion as described in Section 11.3 enables the closed loop equations
of motion to be derived. Solution of the equations in the usual way gives the response
transfer functions for the augmented aircraft. Solution of the closed loop characteris-
tic equation determines that at Kq = −0.5 rad/rad/s the longitudinal modes have the
following characteristics:

Phugoid damping ratio ζp = 0.079

Phugoid undamped natural frequency ωp = 0.133 rad/s

Short period damping ratio ζs = 0.68

Short period undamped natural frequency ωs = 2.41 rad/s

Clearly, at this value of feedback gain the flying qualities requirements are met com-
pletely with margins sufficient to allow for uncertainty. The closed loop system thus
defined provides the basis for further analytical studies concerning the implementa-
tion architecture and safety issues. The pitch rate response of the aircraft before and
after the addition of the augmentation loop is illustrated in Fig. 11.10. The first 10 s
of the response to a unit elevator step input is shown to emphasise the considerable
improvement in short period mode stability. The longer term response is not shown
since this is not changed significantly by the augmentation and, in any event, the
phugoid dynamics are acceptable.

11.5 LONGITUDINAL STABILITY AUGMENTATION

In Examples 11.2 and 11.3 it has been shown how negative feedback using a single
variable can be used to selectively augment the stability characteristics of an aeroplane.
It has also been shown how the effect of single variable feedback may readily be
evaluated with the aid of a root locus plot. Now clearly, the choice of feedback variable
is important in determining the nature of the change in the stability characteristics
of the aeroplane since each variable results in a unique combination of changes.
Provided that the aircraft is equipped with the appropriate motion sensors various
feedback control schemes are possible and it then becomes necessary to choose the
feedback variable(s) best suited to augment the deficiencies of the basic airframe. It is
also useful to appreciate what effect each feedback variable has on the stability modes
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Figure 11.11 Longitudinal feedback options.

when assessing a FCS design. However complex the functional structure of the system
the basic augmentation effect of each feedback variable does not change. Feedback
is also used for reasons other than stability augmentation, for example, in autopilot
functions. In such cases augmentation will also occur and it may not be desirable,
in which case a thorough understanding of the effects of the most commonly used
feedback variables is invaluable.

In order to evaluate the effect of feedback utilising a particular response variable
it is instructive to conduct a survey of all the single loop feedback options. In every
case the feedback loop is reduced to a simple gain component only. By this means
the possible intrusive effects of other loop components, such as noise filters, phase
compensation filters, sensor and actuator dynamics, are prevented from masking
the true augmentation effects. The longitudinal stability augmentation options are
summarised in Fig. 11.11 in which it is implied that a negative feedback loop may
be closed between any of the motion variables and the elevator. Other loops could of
course be closed between the motion variables and alternative longitudinal control
motivators, or engine thrust control, for example, but these are not considered here.

The survey is conducted by taking each motion variable in turn and evaluating its
influence on the closed loop stability characteristics as a function of the loop gain K .
The root locus plot is an especially useful tool for this purpose since it enables the
relative influence on, and the relative sensitivity of, each of the stability modes to be
assessed simultaneously. As the detailed effect of feedback depends on the aircraft
and flight condition of interest it is not easy to generalise and is best illustrated by
example. Consequently the following survey, Example 11.4, is based on a typical
aircraft operating at a typical flight condition and the observations may be applied
loosely to the longitudinal stability augmentation of most aircraft.

Example 11.4

Transfer function data for the McDonnell Douglas A-4D Skyhawk aircraft was
obtained from Teper (1969). The flight condition chosen corresponds with an all
up weight of 17,578 lb at an altitude of 35,000 ft at Mach 0.6. In factorised form the
longitudinal characteristic equation is

Δ(s) = (s2 + 0.014s + 0.0068)(s2 + 1.009s + 5.56) = 0 (11.34)
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and the longitudinal stability mode characteristics are

Phugoid damping ratio ζp = 0.086

Phugoid undamped natural frequency ωp = 0.082 rad/s

Short period damping ratio ζs = 0.214

Short period undamped natural frequency ωs = 2.358 rad/s

These stability mode characteristics would normally be considered acceptable with
the exception of the short period mode damping ratio which is too low. The Skyhawk
is typical of combat aeroplanes of the 1960s in which modest degrees of augmentation
only are required to rectify the stability deficiencies of the basic airframe. This, in
turn, implies that modest feedback gains only are required in the range say, typically,
0 ≤ K ≤ 2.0. In modern FBW aircraft having unstable airframes rather larger gain
values would be required to achieve the same levels of augmentation. In general, the
greater the required change in the stability characteristics the greater the feedback
gains needed to effect the change. In the following catalogue of root locus plots each
plot illustrates the effect of a single feedback loop closure as a function of increasing
feedback gain K .

(i) Pitch attitude feedback to elevator
The open loop aircraft transfer function is

θ(s)

η(s)
≡ N θ

η (s)

Δ(s)
= −8.096(s − 0.0006)(s + 0.3591)

(s2 + 0.014s + 0.0068)(s2 + 1.009s + 5.56)
rad/rad

(11.35)

and the corresponding root locus plot is shown in Fig. 11.12.
As Kθ is increased the phugoid damping increases rapidly whilst the frequency

remains nearly constant. Whereas, as Kθ is increased the short period mode fre-
quency increases whilst the damping decreases, both characteristics changing
relatively slowly. Thus, as might be expected since pitch attitude is a dominant
variable in the phugoid mode, this mode is considerably more sensitive to the
loop gain than the short period mode. Since this feedback option further desta-
bilises the short period mode its usefulness in a SAS is very limited indeed. How-
ever, it does improve phugoid stability, the mode becoming critically damped at a
gain of Kθ = −0.37 rad/rad. A practical gain value might be Kθ = −0.1 rad/rad
which would result in a good level of closed loop phugoid stability without
reducing the short period mode stability too much. These observations are, of
course, in good agreement with the findings of Example 11.2.

(ii) Pitch rate feedback to elevator
The open loop aircraft transfer function is

q(s)

η(s)
≡ N q

η (s)

Δ(s)
= −8.096s(s − 0.0006)(s + 0.3591)

(s2 + 0.014s + 0.0068)(s2 + 1.009s + 5.56)
rad/s/rad

(11.36)

and the corresponding root locus plot is shown in Fig. 11.13.
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Figure 11.13 Root locus plot – pitch rate feedback to elevator.

As Kq is increased the short period mode damping increases rapidly whilst the
frequency remains nearly constant. Whereas, as Kq is increased the phugoid fre-
quency and damping decrease relatively slowly. More typically, a slow increase
in phugoid damping would be seen. Thus, as might be expected since pitch
rate is a dominant variable in the short period mode, this mode is considerably
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Figure 11.14 Root locus plot – velocity feedback to elevator.

more sensitive to the loop gain than the phugoid mode. As discussed in Exam-
ple 11.3 this feedback option describes the classical pitch damper and is found
on many aeroplanes. It also exactly describes the longitudinal stability aug-
mentation solution used on the Skyhawk. Its dominant effect is to artificially
increase the magnitude of the derivative mq, it also increases the magnitude of
the derivatives xq and zq but to a lesser degree. The short period mode becomes
critically damped at a gain of Kq = −0.53 rad/rad/s. A practical gain value might
be Kq = −0.3 rad/rad/s which would result in an adequate level of closed loop
short period mode stability whilst simultaneously increasing the frequency sep-
aration between the two modes. However, at this value of feedback gain the
changes in the phugoid characteristics would be almost insignificant. As before,
these observations are in good agreement with the findings of Example 11.3.

(iii) Velocity feedback to elevator
The open loop aircraft transfer function is

u(s)

η(s)
≡ N u

η (s)

Δ(s)
= 6.293(s2 + 0.615s + 0.129)(s + 115.28)

(s2 + 0.014s + 0.0068)(s2 + 1.009s + 5.56)
ft/s/rad

(11.37)

and the corresponding root locus plot is shown in Fig. 11.14.
As Ku is increased the short period mode frequency increases quite rapidly

whilst, initially, the damping decreases. However, at very large gain values the
damping commences to increase again to eventually become critical. Whereas,
as Ku is increased both the frequency and damping of the phugoid mode increase
relatively rapidly. Thus, at this flight condition both modes appear to have sim-
ilar sensitivity to feedback gain. The stabilising influence on the phugoid mode
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Figure 11.15 Root locus plot – incidence feedback to elevator.

is much as might be expected since velocity is the dominant variable in the
mode dynamics. The dominant effect of the feedback is therefore to artificially
increase the magnitude of the derivative mu and since mu is usually small it is
not surprising that even modest values of feedback gain have a significant effect
on phugoid stability. It also increases the magnitude of the derivatives xu and zu

but to a lesser degree. A practical gain value might be Ku = 0.001 rad/ft/s which
would result in a significant improvement in closed loop phugoid mode sta-
bility whilst simultaneously decreasing the stability of the short period mode
by a small amount. However, such values of feedback gain are quite impracti-
cally small and in any event this feedback option would not find much useful
application in a conventional longitudinal SAS.

(iv) Incidence angle feedback to elevator
The open loop aircraft transfer function is

α(s)

η(s)
≡ Nα

η (s)

Δ(s)
= −0.04(s2 − 0.0027s + 0.0031)(s + 203.34)

(s2 + 0.014s + 0.0068)(s2 + 1.009s + 5.56)
rad/rad

(11.38)

and the corresponding root locus plot is shown in Fig. 11.15.
As Kα is increased the short period mode frequency increases very rapidly

whilst, initially, the damping decreases slowly. However, as the gain increases
further the damping slowly starts to increase to eventually become critical at
an impractically large value of feedback gain. At all practical gain values the
damping remains more-or-less constant. As Kα is increased both the frequency
and damping of the phugoid are reduced, the mode becoming unstable at a gain
of Kα = −3.5 rad/rad in this example. Incidence feedback to elevator is a pow-
erful method for augmenting the longitudinal static stability of an aeroplane and
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Figure 11.16 Root locus plot – normal acceleration feedback to elevator.

finds extensive application in unstable FBW aircraft. The effect of the feedback
is equivalent to increasing the pitch stiffness of the aircraft which artificially
increases the magnitude of the derivative mw (∂Cm/∂α) and to a lesser degree it
also increases the magnitude of the derivatives xw and zw. Thus the increase
in short period mode frequency together with the less significant influence on
damping is entirely consistent with the augmentation option. Since phugoid
dynamics are typically very nearly incidence constant, the expected effect of
the feedback on the mode is negligible. This is not the case in this example, prob-
ably due to aerodynamic effects at the relatively high subsonic Mach number.
This is confirmed by the fact that the phugoid roots do not even approximately
cancel with the complex pair of numerator roots, which might normally be
expected. It would therefore be expected to see some incidence variation in the
phugoid dynamics.

(v) Normal acceleration feedback to elevator
The open loop aircraft transfer function is

az(s)

η(s)
≡ N az(s)

η

Δ(s)

= −23.037(s − 0.018)(s − 0.0003)(s + 8.717)(s − 8.203)

(s2 + 0.014s + 0.0068)(s2 + 1.009s + 5.56)
ft/s2/rad

(11.39)

and the corresponding root locus plot is shown in Fig. 11.16. Since the transfer
function is not proper care must be exercised in the production of the root locus
plot and in its interpretation. However, at typically small values of feedback
gain its interpretation seems quite straightforward.
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Since an accelerometer is rather more robust than an incidence sensor, normal
acceleration feedback to elevator is commonly used instead of, or to complement,
incidence feedback. Both feedback variables have a similar effect on the phugoid
and short period stability mode at practical values of feedback gain. However, both
modes are rather more sensitive to feedback gain since very small values result in
significant changes to the mode characteristics. As Kaz is increased the short period
mode frequency increases very rapidly whilst, initially, the damping decreases slowly.
However, as the gain increases further the damping slowly starts to increase to even-
tually become critical at an impractically large value of feedback gain. At all practical
gain values the damping remains more-or-less constant. The full short period mode
branch of the locus is not shown in Fig. 11.16 since the gain range required exceeded
the capability of the computational software used to produce the plots. As Kaz is
increased both the frequency and damping of the phugoid are reduced, the mode
becoming unstable at a gain of Kaz = 0.0026 rad/ft/sec2 in this example. Since the
normal acceleration variable comprises a mix of incidence, velocity and pitch rate
(see Section 5.5) then the augmentation it provides in a feedback control system may
be regarded as equivalent to the sum of the effects of feedback of the separate vari-
ables. Thus at moderate gains the increase in pitch stiffness is significant and results in
a rapid increase in short period mode frequency. The corresponding increase in short
period mode damping is rather greater than that achieved with incidence feedback
alone due to the effect of implicit pitch rate feedback. Since the incidence depen-
dent term dominates the determination of normal acceleration it is not surprising that
normal acceleration feedback behaves like incidence feedback. It is approximately
equivalent to artificially increasing the magnitude of the derivative mw and to a lesser
degree it also increases the magnitude of the derivatives xw and zw.

11.6 LATERAL–DIRECTIONAL STABILITY AUGMENTATION

As for the longitudinal stability augmentation options described in Section 11.5, it is
also instructive to conduct a survey of all the lateral–directional single loop feedback
options. The lateral–directional stability augmentation options are summarised in
Fig. 11.17 in which it is implied that a negative feedback loop may be closed between
any of the motion variables and either the ailerons or rudder. Other loops could
be closed between the motion variables and alternative lateral–directional control
motivators but, again, these are not considered here.

As before, the survey is conducted by taking each motion variable in turn and eval-
uating its influence on the closed loop stability characteristics as a function of the loop
gain K . The detailed effects of the lateral–directional feedback options are much more
dependent on the aircraft and flight condition than the longitudinal feedback options.
Therefore, it is more difficult, and probably less appropriate, to generalise and the
effects are also best illustrated by example. The following survey, Example 11.5,
is based on a typical aircraft operating at a typical flight condition and the obser-
vations may be interpreted as being applicable to the lateral–directional stability
augmentation of most aircraft. However, care must be exercised when applying the
observations to other aircraft and every new application should be evaluated in its
own right.
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Example 11.5

Transfer function data for the Northrop T-38 Talon aircraft was also obtained
from Teper (1969). The flight condition chosen corresponds with an all up weight
of 10,000 lb at Mach 0.8 at sea level. In factorised form the lateral–directional
characteristic equation is

Δ(s) = (s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44) = 0 (11.40)

and the lateral–directional stability mode characteristics are

Spiral mode time constant Ts = −714 s

Roll mode time constant Tr = 0.24 s

Dutch roll damping ratio ζd = 0.133

Dutch roll undamped natural frequency ωd = 6.2 rad/s

Clearly, the spiral mode is unstable, which is quite typical, and the time constant is suf-
ficiently large that it is most unlikely to give rise to handling problems. In fact, all of the
stability characteristics are better than the minimum acceptable for Level 1 flying qual-
ities. However, the aircraft is fitted with a simple yaw damper to improve the lateral–
directional flying and handling qualities at all flight conditions, including some where
the minimum standards are not met. In the following catalogue of root locus plots each
plot illustrates the effect of a single feedback loop closure as a function of increasing
feedback gain K . It should be noted that in the original data source the sign convention
for aileron angle is opposite to that adopted in this book. In the following illustrations
the aileron sign convention is changed to be consistent with the British notation.

(i) Sideslip angle feedback to aileron
The open loop transfer function is

β(s)

ξ(s)
≡ Nβ

ξ (s)

Δ(s)
= 1.3235(s − 0.0832)(s + 7.43)

(s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44)
rad/rad

(11.41)
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Figure 11.18 Root locus plot – sideslip angle feedback to aileron.

and the corresponding root locus plot is shown in Fig. 11.18.
As Kβ is increased so the spiral mode pole moves further to the right on the

s-plane and its instability is worsened as its time constant is reduced. The roll
mode stability is increased as the gain Kβ is increased since its pole moves to
the left on the s-plane. As Kβ is increased the dutch roll frequency is increased
whilst its damping is decreased and it eventually becomes unstable at a gain
of approximately Kβ = 50 rad/rad. All three modes are relatively insensitive
to the feedback since large gains are required to achieve modest changes
in the mode characteristics although the spiral mode is the most sensitive.
Negative feedback of sideslip angle to aileron is equivalent to an increase
in dihedral effect. In particular, for this example, it augments the magnitude
of the stability derivatives lv and nv and the degree of augmentation of each
derivative depends on the value of Kβ and the aileron control derivatives lξ
and nξ respectively. Clearly, the effect is to artificially increase the lateral
stiffness of the aeroplane resulting in an increase in dutch roll frequency and
a corresponding increase in roll damping. It is unlikely that sideslip angle
feedback to aileron alone would find much use in a SAS.

(ii) Roll rate feedback to aileron
The open loop transfer function is

p(s)

ξ(s)
≡ N p

ξ (s)

Δ(s)
= −27.75(s − 0.0005)(s2 + 1.55s + 41.91)

(s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44)
rad/s/rad

(11.42)

and the corresponding root locus plot is shown in Fig. 11.19. Note that both
the spiral mode pole and the dutch roll poles are approximately cancelled
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Figure 11.19 Root locus plot – roll rate feedback to aileron.

by the numerator zeros. This means that both modes are insensitive to this
feedback option.

As Kp is increased so the spiral mode pole moves to the left on the s-plane
and its instability is reduced as its time constant is increased. However, the
spiral mode remains unstable at all values of Kp although roll rate feedback
to aileron generally improves the handling qualities associated with the spiral
mode. The roll mode stability increases rapidly as the gain Kp is increased
since its pole moves to the left on the s-plane. The roll mode is most sensitive
to this feedback option and, in fact, roll rate feedback to aileron describes
the classical roll damper and is used in many aeroplanes. Whatever the value
of Kp the effect on the stability characteristics of the dutch roll mode is
insignificant as stated above. At all levels of feedback gain the dutch roll mode
poles remain in a very small localised area on the s-plane. Negative roll rate
feedback to aileron is equivalent to an increase in the roll damping properties
of the wing. In particular it augments the magnitude of the stability derivative
lp and, to a lesser extent, np As before, the degree of augmentation of each
derivative depends on the value of Kp and the aileron control derivatives lξ
and nξ respectively.

(iii) Yaw rate feedback to aileron
The open loop transfer function is

r(s)

ξ(s)
≡ N r

ξ (s)

Δ(s)
= −1.712(s + 5.405)(s2 + 1.788s + 4.465)

(s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44)
rad/s/rad

(11.43)

and the corresponding root locus plot is shown in Fig. 11.20.
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Figure 11.20 Root locus plot – yaw rate feedback to aileron.

As Kr is increased so the spiral mode pole moves to the left on the
s-plane to become stable at a small value of gain. At a gain of approxi-
mately Kr = 6.0 rad/rad/s, which is somewhat greater than a practical value,
the spiral and roll modes couple to form a stable low frequency oscillatory
characteristic. The roll mode stability decreases as the gain Kr is increased
since its pole moves to the right on the s-plane before coupling with the spiral
mode. The dutch roll mode is the most sensitive mode and as Kr is increased
the damping increases rapidly whilst the frequency increases rather more
slowly. At practical levels of feedback gain the most useful improvements
would be to stabilise the spiral mode and to improve dutch roll damping whilst
degrading roll mode stability only slightly. However, yaw rate feedback to
aileron cross couples both the roll and yaw control axes of the aeroplane
and is not so desirable for safety reasons. The feedback is equivalent to an
increase in the yaw damping properties of the wing. In particular it augments
the magnitude of the stability derivatives lr and nr .

(iv) Roll attitude feedback to aileron
The open loop transfer function is

φ(s)

ξ(s)
≡ Nφ

ξ (s)

Δ(s)
= −27.75(s2 + 1.55s + 41.91)

(s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44)
rad/rad

(11.44)

and the corresponding root locus plot is shown in Fig. 11.21. Note that the
dutch roll poles are approximately cancelled by the numerator zeros which
implies that the mode is insensitive to this feedback option.
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Figure 11.21 Root locus plot – roll attitude feedback to aileron.

As Kφ is increased the spiral mode pole moves to the left on the s-plane and
its stability increases very rapidly, a very small value of gain being sufficient
to place the pole on the left half of the s-plane. At a slightly larger value
of gain, Kφ = −0.14 rad/rad, the spiral and roll modes couple to form a low
frequency oscillatory characteristic as in the previous illustration. Therefore,
roll mode stability decreases rapidly as the gain Kφ is increased until its pole
couples with that of the spiral mode. Clearly, both the roll and spiral modes
are most sensitive to this feedback option. As expected, for all values of Kφ

the effect on the stability characteristics of the dutch roll mode is insignifi-
cant. At all levels of feedback gain the dutch roll mode poles remain in a very
small localised area on the s-plane and the minimum damping corresponds
with a feedback gain of Kφ = −1.7 rad/rad. Negative roll attitude feedback to
aileron is, very approximately, equivalent to an increase in roll stiffness and
at quite small feedback gain values manifests itself as the coupled roll–spiral
oscillatory mode which may be regarded as a kind of lateral pendulum mode.

(v) Yaw attitude feedback to aileron
The open loop transfer function is

ψ(s)

ξ(s)
≡ Nψ

ξ (s)

Δ(s)
= −1.712(s + 5.405)(s2 + 1.788s + 4.465)

s(s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44)
rad/rad

(11.45)

and the corresponding root locus plot is shown in Fig. 11.22.
As Kψ is increased the spiral mode pole moves to the left on the s-plane,

towards the pole at the origin, to which it couples at a very small value of gain
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Figure 11.22 Root locus plot – yaw attitude feedback to aileron.

indeed to form a low frequency unstable oscillatory characteristic. At a gain
of approximately Kψ = −0.017 rad/rad the low frequency oscillatory charac-
teristic becomes stable. The roll mode stability increases very slowly as the
gain Kψ is increased since its pole moves to the left on the s-plane towards the
zero at −5.404. As Kψ is increased the dutch roll mode frequency increases
whilst the damping decreases, both characteristics changing rather slowly.
The dutch roll mode eventually becomes unstable at a gain of approximately
Kψ = −30.0 rad/rad. At practical levels of feedback gain the effect on the
roll and dutch roll modes is almost insignificant. On the other hand the effect
of the feedback on the spiral mode is most significant, even at very low val-
ues of gain. As in (iii), yaw attitude feedback to aileron cross couples both
the roll and yaw control axes of the aeroplane and is not so desirable for
safety reasons. The feedback is equivalent to an increase in the yaw stiffness
properties of the wing.

(vi) Sideslip angle feedback to rudder
The open loop transfer function is

β(s)

ζ(s)
≡ Nβ

ζ (s)

Δ(s)
= 0.10(s − 0.0015)(s + 4.07)(s + 113.4)

(s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44)
rad/rad

(11.46)

and the corresponding root locus plot is shown in Fig. 11.23. Note that both
the spiral and roll mode poles are very nearly cancelled by numerator zeros.
It may therefore be expected that negative sideslip angle feedback to rudder
will only significantly augment the dutch roll mode.

As expected, as Kβ is increased both the spiral mode pole and the roll
mode pole move to the right on the s-plane but the reduction in stability
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Figure 11.23 Root locus plot – sideslip angle feedback to rudder.

really is insignificant. As Kβ is increased both the dutch roll frequency and
damping are increased, the mode eventually becoming critically damped at
the absurdly high frequency of ωd = 226 rad/s at a gain of approximately
Kβ = 4500 rad/rad! Negative feedback of sideslip angle to rudder is equiva-
lent to an increase in the weathercock effect of the fin, or yaw stiffness. In
particular, for this example, it very effectively augments the magnitude of
the stability derivative nv and to lesser extent lv. The degree of augmenta-
tion of each derivative depends on the value of Kβ and the rudder control
derivatives nζ and lζ respectively. Clearly, the effect is to artificially increase
the directional stiffness of the aeroplane resulting in an increase in dutch
roll frequency and a corresponding, but much slower, increase in roll damp-
ing. At all practical values of feedback gain the dutch roll damping remains
more-or-less constant at its open loop value.

(vii) Roll rate feedback to rudder
The open loop transfer function is

p(s)

ζ(s)
≡ N p

ζ (s)

Δ(s)
= 16.65(s − 0.0006)(s − 0.79)(s + 1.09)

(s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44)
rad/s/rad

(11.47)

and the corresponding root locus plot is shown in Fig. 11.24. Note that the spi-
ral mode pole is very approximately cancelled by a numerator zero. It is there-
fore expected that the spiral mode will be insensitive to this feedback option.

As expected the effect on the spiral mode of this feedback option is insignif-
icant. The roll mode stability increases rapidly as the gain Kp is increased
since its pole moves to the left on the s-plane. The roll mode is quite sensitive
to this feedback option, which is not surprising since roll rate is the dominant
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Figure 11.24 Root locus plot – roll rate feedback to rudder.

motion variable in the aircraft dynamics associated with the mode. The dutch
roll mode is also very sensitive to this feedback option. As Kp is increased
the dutch roll damping increases rapidly whilst the frequency is reduced. For
values of the feedback gain Kp ≥ 8.9 rad/rad/s the dutch roll mode is critically
damped and is therefore non-oscillatory. Negative roll rate feedback to rudder
is equivalent to an increase in the yaw damping properties of the wing. In par-
ticular it augments the magnitude of the stability derivative np and, to a lesser
extent, lp. As before, the degree of augmentation of each derivative depends
on the value of Kp and the rudder control derivatives nζ and lζ respectively.

(viii) Yaw rate feedback to rudder
The open loop transfer function is

r(s)

ζ(s)
≡ N r

ζ (s)

Δ(s)
= −11.01(s + 0.302)(s + 0.366)(s + 4.11)

(s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44)
rad/s/rad

(11.48)

and the corresponding root locus plot is shown in Fig. 11.25. Note that the
roll mode pole is almost exactly cancelled by a numerator zero. It is therefore
expected that the roll mode will be insensitive to this feedback option.

The spiral mode stability increases rapidly as the gain Kr is increased since
its pole moves to the left on the s-plane. The spiral mode is very sensitive
to this feedback option and becomes stable at a gain of Kr = −0.4 rad/rad/s.
As expected the effect of this feedback option on the roll mode is insignif-
icant. The branching of the loci around the roll mode simply indicates that
the pole-zero cancellation is not exact. The dutch roll mode is also very
sensitive to this feedback option. As Kr is increased the dutch roll damping
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Figure 11.25 Root locus plot – yaw rate feedback to rudder.

increases rapidly whilst the frequency remains almost constant. For values
of the feedback gain Kr ≤ −1.2 rad/rad/s the dutch roll mode becomes crit-
ically damped. Practical values of feedback gain would, typically, be in the
range 0 ≥ Kr ≥ −0.7 rad/rad/s. The dutch roll mode damping is most sensi-
tive to this feedback option and yaw rate feedback to rudder describes the
classical yaw damper, which is probably the most common augmentation
system. However, its use brings a bonus since it also improves the spiral
mode stability significantly. Negative yaw rate feedback to rudder is equiv-
alent to an increase in the yaw damping properties of the aeroplane or, to an
increase in the effectiveness of the fin as a damper. In particular it augments
the magnitude of the stability derivative nr and, to a lesser extent, lr .

(ix) Roll attitude feedback to rudder
The open loop transfer function is

φ(s)

ζ(s)
≡ Nφ

ζ (s)

Δ(s)
= 16.5(s − 0.825)(s + 1.08)

(s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44)
rad/rad

(11.49)

and the corresponding root locus plot is shown in Fig. 11.26.
As Kφ is increased the spiral mode pole moves to the right on the s-plane and

its stability decreases slowly. The roll mode stability also decreases slowly as
the gain Kφ is increased, a gain of Kφ

∼= 4.0 rad/rad being required to double
the time constant, for example. As Kφ is increased the dutch roll mode fre-
quency increases relatively quickly. The damping ratio also increases a little
initially but, as the gain is increased further the damping decreases steadily
to zero at infinite feedback gain. Negative roll attitude feedback to rud-
der is, very approximately, equivalent to an increase in directional stiffness



Ch11-H6927.tex 20/6/2007 16: 37 Page 310

310 Flight Dynamics Principles

Real (w )

�6 �5 �4 �3 �2 �1 0

Im
ag

in
ar

y 
(

jw
)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

X

X X

Dutch roll
mode locus

Roll mode
locus Kf

2.00.5

s-plane

1.0

Kf

4.0

0.5
1.0

2.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

X

Spiral mode
locus

Kf1.0 4.0

X – Open loop poles

– Open loop zeros

– Gain test points

Graph scales – rad/s

Figure 11.26 Root locus plot – roll attitude feedback to rudder.

and is not commonly used in autostabilisation systems since it introduces
cross-coupling between the roll and yaw control axes.

(x) Yaw attitude feedback to rudder
The open loop transfer function is

ψ(s)

ζ(s)
≡ Nψ

ζ (s)

Δ(s)
= −11.01(s + 0.0302)(s + 0.367)(s + 4.11)

s(s − 0.0014)(s + 4.145)(s2 + 1.649s + 38.44)
rad/rad

(11.50)

and the corresponding root locus plot is shown in Fig. 11.27. Note that the
roll mode pole is almost exactly cancelled by a numerator zero indicating
that the mode is not sensitive to this feedback option.

As Kψ is increased the spiral mode pole moves to the left on the s-plane,
towards the pole at the origin, to which it couples at a very small value of
gain to form a stable low frequency oscillatory characteristic at all practi-
cal small values of gain. At a gain of approximately Kψ = −1.5 rad/rad the
low frequency oscillatory characteristic becomes critically damped. Since
the frequency of this mode is so low, and when stable it is reasonably well
damped, it is unlikely to give rise to handling problems. As expected the roll
mode stability remains effectively unchanged by this feedback option. As
Kψ is increased the dutch roll mode frequency increases whilst the damp-
ing decreases, both characteristics changing relatively slowly. The dutch roll
mode eventually becomes neutrally stable at infinite feedback gain. At prac-
tical levels of feedback gain the effect on the dutch roll mode is to increase
the frequency with only a very small reduction in damping. Negative yaw
attitude feedback to rudder is equivalent to an increase in directional stiffness
and is not commonly used in autostabilisation systems.
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Figure 11.27 Root locus plot – yaw attitude feedback to rudder.

11.7 THE POLE PLACEMENT METHOD

An alternative and very powerful method for designing feedback gains for autostabili-
sation systems is the pole placement method. The method is based on the manipulation
of the equations of motion in state space form and makes full use of the appropriate
computational tools in the analytical process. Practical application of the method to
aeroplanes is limited since it assumes that all state, or motion, variables are available
for use in an augmentation system, which is not usually the case. However, regardless
of the limitations of the method, it can be very useful to the FCS designer in the initial
stages of assessment of augmentation system structure.

The state and output matrix equations describing the unaugmented, or open loop,
aircraft, equations (5.48), are written

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (11.51)

Assuming that augmentation is achieved by negative feedback of the state vector x(t)
to the input vector u(t) then the control law may be written

u(t) = v(t) − Kx(t) (11.52)

where, v(t) is a vector of input demand variables and K is a matrix of feedback gains.
Note that equation (11.52) is the general multi-variable equivalent of equation (11.14).
The closed loop state and output equations describing the augmented aircraft are
obtained by substituting equation (11.52) into equations (11.51)

ẋ(t) = [A − BK]x(t) + Bv(t)

y(t) = [C − DK]x(t) + Dv(t) (11.53)
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or, more simply,

ẋ(t) = Aaugx(t) + Bv(t)

y(t) = Caugx(t) + Dv(t) (11.54)

Equations (11.54) are solved in exactly the same way as those of the open loop aircraft,
equations (11.51), to obtain the response transfer functions for the augmented aircraft.
Note that (as discussed in Section 5.6) for typical aircraft applications the direct matrix
D = 0, the output matrix C = I, the identity matrix, and equations (11.51) to (11.54)
simplify accordingly.

Now the characteristic equation of the augmented aircraft is given by

Δaug(s) = |sI − Aaug | ≡ |sI − A + BK| = 0 (11.55)

and the roots of equation (11.55), or equivalently the eigenvalues of Aaug , describe
the stability characteristics of the augmented aircraft.

Subject to the constraint that the open loop state equations (11.51) describes a
controllable system, which an aircraft is, then a feedback matrix K exists such that
the eigenvalues of the closed loop system may be completely specified. Thus if the
required stability and control characteristics of the augmented aircraft are specified,
the roots of equation (11.55) may be calculated and knowing the open loop state and
input matrices, A and B, respectively, then equation (11.55) may be solved to find K.
Thus this method enables the stability characteristics of the augmented aircraft to be
designed completely and exactly as required. Equivalently, this therefore means that
the poles of the closed loop aircraft may be placed on the s-plane exactly as required.
However, full state feedback is essential if all of the closed loop poles are to be placed
on the s-plane as required.

When the controlled system is single input then the feedback matrix K is unique
and only one set of feedback gains will provide the required stability characteristics.
When the controlled system is multi-input then an infinite number of gain matrices K
may be found which will provide the required stability characteristics. Consequently,
most control system design problems involving the use of the pole placement method
are solved by arranging the open loop system as a single input system. This is most
easily done when dealing with aircraft stability augmentation since the inputs naturally
separate into elevator, ailerons, rudder and thrust at the most basic level. It is a simple
matter to arrange the state equation to include only one input variable and then to apply
the pole placement method to design an augmentation system feedback structure.

Example 11.6

The longitudinal equations of motion for the McDonnell Douglas F-4C Phantom air-
craft were obtained from Heffley and Jewell (1972). At the chosen flight condition the
weight is 38,925 lb and the aircraft is flying at Mach 1.1 at sea level. The state equations
(11.51) were derived for the unaugmented aircraft from the data provided to give,

A =

⎡
⎢⎢⎣

−0.068 −0.011 0 −9.81
0.023 −2.10 375 0
0.011 −0.160 −2.20 0
0 0 1 0

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

−0.41 1.00
−77.0 −0.09
−61.0 −0.11

0 0

⎤
⎥⎥⎦
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with state vector, xT = [u w q θ] and input vector, uT = [η τ]. Note that two input
variables are given in the model, elevator angle η and thrust τ. Using Program CC
the equations of motion were solved and the open loop characteristic polynomial was
found,

Δ(s) = (s2 + 4.3s + 64.6)(s2 + 0.07s + 0.003) (11.56)

and the corresponding longitudinal stability mode characteristics are

Phugoid damping ratio ζp = 0.646

Phugoid undamped natural frequency ωp = 0.054 rad/s

Short period damping ratio ζs = 0.267

Short period undamped natural frequency ωs = 8.038 rad/s

Referring to the flying qualities requirements in MIL-F-8785C (1980) it was found
that for a class IV aeroplane in the most demanding category A flight phase the Phan-
tom comfortably meets Level 1 requirements with the exception of short period mode
damping, which is too low. Clearly, some augmentation is required to improve the
pitch damping in particular.

The design decision was made to increase the short period mode damping ratio to
0.7 whilst retaining the remaining stability characteristics at the nominal values of the
basic unaugmented airframe. A short period mode damping ratio of 0.7 was chosen
since this gives a good margin of stability and results in the shortest mode settling
time after a disturbance. However, the exact value chosen is not important provided
that the margin of stability is adequate to allow for uncertainty in the modelling.
Therefore, the pole placement method is to be used to give the augmented aircraft the
following longitudinal stability characteristics

Phugoid damping ratio ζp = 0.65

Phugoid undamped natural frequency ωp = 0.054 rad/s

Short period damping ratio ζs = 0.7

Short period undamped natural frequency ωs = 8.0 rad/s

Thus the required closed loop characteristic polynomial is

Δaug(s) = (s2 + 11.2s + 64.0)(s2 + 0.07s + 0.003) (11.57)

Since a single input control system is required, the input being elevator angle, the open
loop state equation is modified accordingly, simply by removing the thrust terms. The
open loop state equation may then be written,

⎡
⎢⎢⎣

u̇
ẇ
q̇

θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.068 −0.011 0 −9.81
0.023 −2.10 375 0
0.011 −0.160 −2.20 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

−0.41
−77.0
−61.0

0

⎤
⎥⎥⎦ η (11.58)
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Figure 11.28 Longitudinal full state feedback to elevator.

With the aid of the pole placement tool in Program CC the feedback gain matrix
required to give the augmented aircraft the characteristic polynomial (equation
(11.57)) was determined,

K = [Ku Kw Kq Kθ]

= [−7.7 × 10−6 5.99 × 10−4 −0.114 −1.96 × 10−4] (11.59)

Care is required in order to maintain the correct units of the elements in the feedback
matrix. The SAS control law is obtained by substituting for K in equation (11.52)
whence,

η = δη − Kuu − Kww − Kqq − Kθθ (11.60)

The corresponding closed loop control system structure follows and is shown in
Fig. 11.28.

Now clearly, the choice of closed loop stability characteristics has resulted in a
gain matrix in which the gains Ku, Kw and Kθ are impractically and insignificantly
small. This is simply due to the fact that the only significant change between the open
and closed loop stability characteristics is the increase in short period mode damping
and, as has already been established in Examples 11.3 and 11.4, the pole placement
method confirms that this can be achieved with pitch rate feedback to elevator alone. If
additional changes in the stability characteristics were required then the gains Ku, Kw

and Kθ would, of course, not necessarily be insignificant. Let the feedback gain matrix
be simplified to include only practical gain values and equation (11.59) may be written,

K = [0 0 −0.12 0] (11.61)

The closed loop state equation (11.53), may then be calculated by writing,

K =
[

0 0 −0.12 0
0 0 0 0

]
(11.62)
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where the second row describes the feedback to the second, thrust, input, which is
not used in this example for the reason given above. [A − BK] is easily calculated
with the aid of Program CC for example and the closed loop state equation, written
to include both input variables, is

⎡
⎢⎢⎣

u̇

ẇ
q̇

θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.068 −0.011 −0.049 −9.81
0.023 −2.10 366 0
0.011 −0.160 −9.52 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

−0.41 1.00
−77.0 −0.09
−61.0 −0.11

0 0

⎤
⎥⎥⎦
[
η

τ

]
(11.63)

Comparison of the open loop equation (11.58) and the closed loop equation (11.63)
indicates, as expected, that the only changes occur in the third column of the state
matrix, the column associated with the variable q. The augmented state equation
(11.63) is readily solved to obtain the closed loop transfer function matrix,

⎡
⎢⎢⎣

u(s)
w(s)
q(s)
θ(s)

⎤
⎥⎥⎦ = G(s)

[
η(s)
τ(s)

]
= N(s)

Δaug(s)

[
η(s)
τ(s)

]
(11.64)

where the numerator matrix is given by

N(s) =

⎡
⎢⎢⎣

−0.41(s + 1.36)(s − 44.45)(s + 45.31) 1.0(s + 0.027)(s2 + 11.60s + 79.75)
−77.0(s − 0.003)(s + 0.071)(s + 299.3) −0.09(s + 0.008)(s − 0.044)(s + 456.4)

−61.0s(s + 0.068)(s + 1.90) −0.11s(s − 0.022)(s + 1.96)
−61.0(s + 0.068)(s + 1.90) −0.11(s − 0.022)(s + 1.96)

⎤
⎥⎥⎦

(11.65)

and the closed loop characteristic polynomial is

Δaug(s) = (s2 + 11.62s + 78.49)(s2 + 0.07s + 0.002) (11.66)

The corresponding longitudinal stability mode characteristics are

Phugoid damping ratio ζp = 0.71

Phugoid undamped natural frequency ωp = 0.049 rad/s

Short period damping ratio ζs = 0.656

Short period undamped natural frequency ωs = 8.86 rad/s

Thus by simplifying the feedback gain matrix to an approximate equivalent it is not
surprising that the specified stability characteristics (defined by equation (11.57))
have also only been achieved approximately. However, the differences are small and
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are quite acceptable. The main objective, to increase the short period mode damping
to a reasonable level has been achieved comfortably. The changes in the stability char-
acteristics caused by the feedback are in complete agreement with the observations
made in Examples 11.3 and 11.4.

Note that the numerators of the closed loop transfer functions describing response
to elevator, given in the first column of the numerator matrix in equation (11.65),
are unchanged by the feedback which is also in accordance with earlier findings
concerning the effect of feedback. However, the numerators of the closed loop transfer
functions describing response to thrust, given in the second column of the numerator
matrix in equation (11.65), include some changes. The numerators N u

τ (s) and N w
τ (s)

are both changed a little by the effect of feedback whereas, the numerators N q
τ (s) and

N θ
τ (s) remain unchanged.
It will be noted that the longitudinal stability augmentation for the F-4A could just

as easily have been “designed’’ with the aid of a single input–single output root locus
plot as described in Example 11.3. However, the subsequent calculation of the closed
loop response transfer functions would have been rather more laborious. The pole
placement method is undoubtedly a very powerful design tool, especially for the
preliminary assessment of the feedback gains needed to achieve a specified level of
closed loop stability. Once the gains required to achieve a given set of augmented
stability characteristics have been determined their values will not be significantly
changed by subsequent increases in FCS complexity. The main disadvantage of the
method, especially in aircraft applications, is that it assumes all motion variables are
sensed and are available for use in a control system. This is not often the case. Then it
is necessary to simplify the feedback structure, making use of the understanding pro-
vided by Examples 11.4 and 11.5, to achieve a reasonable performance compromise –
much as illustrated by this example. It is also good practice to minimise the demands
on the augmentation system by limiting the required changes to the stability charac-
teristics. Remember that small changes result in small feedback gains, again, much
as illustrated by this example.
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PROBLEMS

1. Discuss and illustrate why, in a simple SAS is it sometimes necessary to vary
the feedback gain with flight condition. (CU 1986)



Ch11-H6927.tex 20/6/2007 16: 37 Page 317

Stability Augmentation 317

2. The damping of the longitudinal short period mode may be augmented with
pitch rate feedback to elevator. Write the reduced order longitudinal equations
of motion in matrix form to include the feedback term. It may be assumed that
the derivative Zq is negligibly small. From the closed loop equations of motion
obtain an expression for the characteristic equation. Hence, show that when the
derivative Mẇ is assumed to be negligibly small, the value of feedback gain Kq

required to double the damping ratio of the short period mode is given by

Kq = −
⎛
⎝ Iy

m

◦
Zw
◦

Mη

+
◦

Mq
◦

Mη

⎞
⎠

Using the following aerodynamic data for the Republic F-105 Thunderchief
aircraft, calculate a value of Kq and comment on the practicality of using such
a value. (CU 1986)

Flight condition Dimensionless derivatives

Altitude h 35,000 ft Xu −0.0599 Mu 0
Flight path angle γ 0◦ Xw 0.0714 Mw −0.8021
Body incidence αe 0◦ Xq 0 Mẇ −0.8718
Airspeed V0 270 m/s Xη 0 Mq −4.1303
Mass m 18,680 kg Zu −0.1427 Mη −1.365
Pitch inertia Iy 189,812 kgm2 Zw −4.1188
Air density ρ 0.3798 kg/m3 Zq 0
Wing area S 36.45 m2 Zη −0.7672
mac c 3.54 m

3. The open loop yaw rate response to rudder transfer function for the Republic
F-105 Thunderchief aircraft flying at Mach 0.9 at an altitude of 35,000 ft is
given by

r(s)

ζ(s)
= −4.71(s + 1.848)(s2 + 0.053s + 0.067)

(s − 0.0087)(s + 2.13)(s2 + 1.211s + 10.82)
1/s

Draw a root locus plot to show the effect of yaw rate feedback to rudder with
feedback gain Kr .

(i) With the aid of the root locus plot, explain how it may be used to evaluate
the effect of feedback on the characteristics modes of motion.

(ii) How does yaw rate feedback to rudder improve lateral–directional flying
qualities?

(iii) What value of gain Kr is required to increase the dutch roll mode damping
ratio to 0.25? For this value of Kr obtain values for the roots of the closed
loop characteristic equation and compare the characteristics of the three
modes with those of the unaugmented aircraft. (CU 1986)

4. Assuming the lateral response to aileron control comprises pure rolling motion
only, derive the reduced order roll rate response to aileron control transfer
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function for an aircraft. When the lateral stability of the aircraft is augmented
by feeding back roll rate to aileron via the gain Kp, show that the augmented
roll damping derivative is given by

◦
Lpaug = ◦

Lp − Kp
◦

Lξ

where,
◦

Lp is the rolling moment due to roll rate and
◦

Lξ is the rolling moment
due to aileron for the unaugmented aircraft.

Using the simple lateral model, assess the roll subsidence mode of the
Northrop T-38 Talon aircraft. Data for the aircraft are tabulated below. What is
the minimum value of Kp for which the aircraft will meet the flying qualities
requirements?

Flight condition Dimensionless derivatives

Altitude h 25,000 ft Yv −1.260 Nv 0.240
Flight path angle γ 0◦ Yp 0 Np 0.0430
Body incidence αe 0◦ Yr 0 Nr −0.170
Airspeed V0 123.7 m/s Yξ 0 Nξ 0.007
Mass m 4540 kg Yζ 0.160 Nζ −0.103
Roll inertia Ix 5965 kgm2

Yaw inertia Iz 46097 kgm2 Lv −0.097
Inertia product Ixz 0 kgm2 Lp −0.110
Air density ρ 0.549 kg/m3 Lr 0.078
Wing area S 15.79 m2 Lξ 0.040
Wing span b 7.69 m Lζ 0.017

(CU 1987)
5. Longitudinal flight condition and aerodynamic derivative data are given in the

following table for a canard configured FBW combat aircraft.

Flight condition Dimensionless derivatives

Altitude h Sea level Xu 0.050 Mu 0.003
Flight path angle γ 0◦ Xw 0.260 Mw 0.280
Body incidence αe 0◦ Xq 0 Mẇ 0.380
Airspeed V0 100 m/s Xη 0 Mq −0.500
Mass m 12,500 kg Zu −1.200 Mη 0.160
Pitch inertia Iy 105,592 kgm2 Zw −2.800
Air density ρ 1.225 kg/m3 Zẇ −0.700
Wing area S 50.0 m2 Zq −1.200
mac c 5.7 m Zη −0.040
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(i) Write down the reduced order longitudinal equations of motion appropri-
ate to the aircraft. Hence, show that the short period mode characteristic
equation is given approximately in terms of concise derivatives by

s2 − (zw + mq + mẇUe)s − (mwUe − zwmq) = 0

State all assumptions made.
(ii) Since the aircraft is unstable it is augmented with a control law of form,

η = δη − Kqq − Kαα

What values of the feedback gains Kq and Kα are required to produce an
augmented short period mode with natural frequency 5 rad/s and damping
ratio 0.5? (CU 1989)

6. Explain why the dutch roll mode characteristics are often unacceptable in large
civil transport aircraft.

The yaw control transfer function for a large civil transport aircraft cruising
at 33,000 ft is given by

N r
ζ (s)

Δ(s)
= −1.17(s + 1.28)(s2 − 0.04s + 0.10)

(s + 0.004)(s + 1.25)(s2 + 0.20s + 2.25)
1/s

Evaluate the stability modes characteristics and assess these for Level 1 flying
qualities.

The aircraft is fitted with a yaw damper to improve the dutch roll characteris-
tics. Draw a root locus plot showing the effect of yaw rate feedback to rudder via
gain Kr . Draw mode limit boundaries on the root locus plot corresponding with
Level 1 flying qualities and suggest a suitable value for Kr . Evaluate all three
modes for the chosen value of feedback gain and comment on the comparison
with those of the unaugmented aircraft. (CU 1989)

7. Explain why the stability characteristics of the short term stability modes
are critical to good flying qualities. Explain and illustrate how they may be
augmented when those of the basic airframe are inadequate. (CU 2001)
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Chapter 12

Aerodynamic Modelling

12.1 INTRODUCTION

Probably the most difficult task confronting the flight dynamicist is the identification
and quantification of the aerodynamic description of the aeroplane for use in the
equations of motion. Aerodynamic modelling is concerned with the development
of mathematical models to describe the aerodynamic forces and moments acting
on the airframe. As the flow conditions around the airframe are generally complex
any attempt to describe the aerodynamic phenomena mathematically must result in
compromise. Obviously, the most desirable objective is to devise the most accurate
mathematical description of the airframe aerodynamics as can possibly be achieved.
Unfortunately, even if accurate mathematical models can be devised they are often
difficult to handle in an analytical context and do not, in general, lend themselves
to application to the linearised equations of motion. Therefore, the solution to the
problem is to seek simpler approximate aerodynamic models which can be used in the
equations of motion and which represent the aerodynamic properties of the airframe
with an acceptable degree of accuracy. A consequence of this is that the aerodynamic
models are only valid for a small range of operating conditions and, therefore, the
solution of the equations of motion is also only valid for the same limited range of
conditions. By repeating this procedure at many points within the flight envelope
of the aeroplane an acceptable “picture’’ of its dynamic properties can be built up,
subject of course to the limitations of the modelling techniques used.

In the present context aerodynamic stability and control derivatives are used to
model the aerodynamic properties of the aeroplane. The concept of the aerodynamic
derivative as a means for describing aerodynamic force and moment characteristics
is introduced and described in Chapter 4, Section 4.2. The use of the aerodynamic
derivative as a means for explaining the dependence of the more important dynamic
characteristics of the aeroplane on its dominant aerodynamic properties is discussed
in Chapters 6 and 7. In the illustrations only those derivatives associated with the
dominant aerodynamic effects have been discussed. Clearly, if the most important
aerodynamic properties ascribed to every derivative are known then a more subtle
and expansive interpretation of aircraft dynamics may be made in the analysis of
the response transfer functions. Thus a good understanding of the origin, meaning
and limitation of the aerodynamic derivatives provides the means by which the flight
dynamicist may achieve very considerable insight into the subtleties of aircraft dynam-
ics and into its flying and handling qualities. In the author’s opinion this knowledge
is also essential for the designer of stability augmentation systems for the reasons
illustrated in Chapter 11.

Thus, this chapter is concerned with a preliminary review of, and introduction to
aerodynamic stability and control derivatives at the simplest level consistent with the

320
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foregoing material. However, it must be remembered that alternative methods for
aerodynamic modelling are commonly in use when rather greater detail is required in
the equations of motion. For example, in continuous simulation models, the equations
of motion may well be non-linear and the aerodynamic models are correspondingly
rather more complex. Or, today, it is common practice to investigate analytically the
dynamic behaviour of combat aircraft at very high angles of incidence, conditions
which may be grossly non-linear and for which the aerodynamic derivative would be
incapable of providing an adequate description of the aerodynamics. For such appli-
cations experimental or semi-empirical sources of aerodynamic information would be
more appropriate. Whatever, the source of the aerodynamic models, simple or com-
plex, the best that can be achieved is an estimate of the aerodynamic properties. This
immediately prompts the question, how good is the estimate? This question is not easy
to answer and depends ultimately on the confidence in the aerodynamic modelling
process and the fidelity of the aircraft dynamics derived from the aerodynamic model.

12.2 QUASI-STATIC DERIVATIVES

In order to appreciate the “meaning’’ of the aerodynamic derivative consider, for
example, the derivative which quantifies normal force due to rate of pitch denoted

◦
Zq = ∂Z

∂q
(12.1)

The component of normal force experienced by the aircraft resulting from a pitch
velocity perturbation is therefore given by

Z = ◦
Zqq (12.2)

Now, in general, the disturbance giving rise to the pitch rate perturbation will also
include perturbations in the other motion variables which will give rise to additional
components of normal force as indicated by the appropriate terms in the aerody-
namic normal force model included in equations (4.37). However, when considering

the derivative
◦

Zq it is usual to consider its effect in isolation, as if the perturbation
comprised only pitch rate. Similarly, the effects of all the other derivatives are also
considered in isolation by assuming the perturbation to comprise only the motion
appropriate to the derivative in question.

By definition, the equations of motion, equations (4.37), in which the derivatives
appear, describe small perturbation motion about a steady trimmed equilibrium flight
condition. Thus, for example, in the undisturbed state the component of normal
force Z given by equation (12.2) will be zero since the perturbation variable q is
zero. Similarly, all the aerodynamic force and moment components in all of the
small perturbation equations of motion will be zero at the trim condition. The point
of this perhaps obvious statement is to emphasise that, in the present context, the
aerodynamic derivatives only play a part in determining the motion of the aeroplane
when it is in a state of “dynamic upset’’ with respect to its initial trim condition. As
described in earlier chapters, the state of dynamic upset is referred to equivalently
as a perturbation about the equilibrium condition and is usually transient in nature.



Ch12-H6927.tex 20/6/2007 16: 38 Page 322

322 Flight Dynamics Principles

Velocity (V)

D
ra

g 
(D

) p

Vstall Vmin drag

V0 � u V0 � u

V0

Figure 12.1 A typical aerodynamic drag–velocity characteristic.

Thus to be strictly applicable to the dynamic conditions they describe, the derivatives
should be expressed in terms of the non-steady aerodynamic conditions they attempt
to quantify – clearly a difficult demand!

Since the motion of interest is limited, by definition, to small perturbations about
equilibrium then, in the limit the perturbations tend to zero and the dynamic condition
becomes coincident with the equilibrium flight condition. It is therefore common prac-
tice to evaluate the aerodynamic derivatives at the steady equilibrium condition and
to assume that they are applicable to the small perturbation motion about that equilib-
rium. This procedure gives rise to the so called quasi-static aerodynamic derivatives,
quantities based on, and derived from, static aerodynamic conditions but which are
used in the description of dynamically varying aerodynamic conditions. Aerodynamic
derivatives obtained by this means seem to be quite adequate for studies of small per-
turbation dynamics but, not surprisingly, become increasingly inappropriate as the
magnitude of the perturbation is increased. As suggested above, studies of large ampli-
tude dynamics require rather more sophisticated methods of aerodynamic modelling.

To illustrate the concept of the quasi-static derivative consider the contribution
of aerodynamic drag D to the axial force X acting on the aircraft in a disturbance.
Assuming that the aircraft axes are wind axes then,

X = −D (12.3)

A typical aerodynamic drag–velocity plot is shown in Fig. 12.1. Let the steady equi-
librium velocity be V0 at the flight condition of interest which defines the operating
point p on the plot. Now let the aeroplane be subjected to a disturbance giving rise to a
small velocity perturbation ±u about the operating point as indicated. The derivative
axial force due to velocity is defined

◦
Xu = ∂X

∂U
≡ ∂X

∂V
(12.4)
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where the total perturbation velocity component along the x axis is given by

U = Ue + u ≡ V0 + u ≡ V (12.5)

Whence,

◦
Xu = −∂D

∂V
(12.6)

and the slope of the drag–velocity plot at p gives the quasi-static value of the derivative
◦

Xu at the flight condition corresponding with the trimmed velocity V0. Some further
simple analysis is possible since the drag is given by

D = 1
2ρV 2SCD (12.7)

and assuming the air density ρ remains constant, since the perturbation is small, then,

∂D

∂V
= 1

2ρVS

(
2CD + V

∂CD

∂V

)
(12.8)

To define the derivative
◦

Xu at the flight condition of interest, let the perturbation
become vanishingly small such that u → 0 and hence V → V0. Then, from equations
(12.6) and (12.8),

◦
Xu = − 1

2ρV0S

(
2CD + V0

∂CD

∂V

)
(12.9)

where CD and ∂CD/∂V are evaluated at velocity V0. Thus in order to evaluate the
derivative the governing aerodynamic properties are linearised about the operating
point of interest, which is a direct consequence of the assumption that the perturbation
is small. A similar procedure enables all of the aerodynamic stability and control
derivatives to be evaluated although the governing aerodynamic properties may not
always lend themselves to such simple interpretation.

It is important to note that in the above illustration the derivative
◦

Xu varies with
velocity. In general most derivatives vary with velocity, or Mach number, altitude and
incidence. In fact many derivatives demonstrate significant and sometimes abrupt
changes over the flight envelope, especially in the transonic region.

12.3 DERIVATIVE ESTIMATION

A number of methods are used to evaluate the aerodynamic derivatives. However,
whichever method is used the resulting evaluations can, at best, only be regarded as
estimates of the exact values. The degree of confidence associated with the derivative
estimates is dependent on the quality of the aerodynamic source material and the
method of evaluation used. It is generally possible to obtain estimates of the longitu-
dinal aerodynamic derivatives with a greater degree of confidence than can usually
be ascribed to estimates of the lateral–directional aerodynamic derivatives.



Ch12-H6927.tex 20/6/2007 16: 38 Page 324

324 Flight Dynamics Principles

12.3.1 Calculation

The calculation of derivatives from first principles using approximate mathematical
models of the aerodynamic properties of the airframe is probably the simplest and
least accurate method of estimation. In particular, it can provide estimates of ques-
tionable validity, especially for the lateral–directional derivatives. However, since the
approximate aerodynamic models used are based on an understanding of the physical
phenomena involved, simple calculation confers significant advantage as a means
for gaining insight into the dominant aerodynamic properties driving the airframe
dynamics. Whence, an appreciation of the theoretical methods of estimating aero-
dynamic derivatives provides a sound foundation on which to build most analytical
flight dynamics studies.

In order to improve on the often poor derivative estimates obtained by calculation,
semi-empirical methods of estimation have evolved in the light of experience gained
from the earliest days of aviation to the present. Semi-empirical methods are based
on simple theoretical calculation modified with the addition of generalised aerody-
namic data obtained from experimental sources and accumulated over many years.
Semi-empirical methods are generally made available in various series of reference
documents and, today, many are also available as interactive computer programs. In
the UK the Engineering Sciences Data Unit (ESDU) publishes a number of volumes
on aerodynamics of which some are specifically concerned with aerodynamic deriva-
tive estimation. Similar source material is also published in the USA (DATCOM) and
elsewhere.

Use of the semi-empirical data items requires some limited information about the
geometry and aerodynamics of the subject aeroplane at the outset. The investigator
then works through the estimation process, which involves calculation and frequent
reference to graphical data and nomograms, to arrive at an estimate of the value of
the derivative at the flight condition of interest. Such is the state of development of
these methods that it is now possible to obtain derivative estimates of good accuracy,
at least for aeroplanes having conventional configurations.

Because of the recurring need to estimate aircraft stability and control derivatives a
number of authors have written computer programs to calculate derivatives with vary-
ing degrees of success. Indeed, a number of the ESDU data items are now available as
computer software. The program by Mitchell (1973) and its subsequent modification
by Ross and Benger (1975) has enjoyed some popularity, especially for preliminary
estimates of the stability and control characteristics of new aircraft configurations.
The text by Smetana (1984) also includes listings for a number of useful computer
programs concerned with aircraft performance and stability.

12.3.2 Wind tunnel measurement

The classical wind tunnel test is one in which a reduced scale model of the aircraft
is attached to a balance and the six components of force and moment are measured
for various combinations of wind velocity, incidence angle, sideslip angle and con-
trol surface angle. The essential feature of such tests is that the conditions are static
when the measurements are made. Provided the experiments are carefully designed
and executed wind tunnel tests can give good estimates of the force–velocity and
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moment–velocity derivatives in particular. Scale effects can give rise to accuracy
problems, especially when difficult full scale flight conditions are simulated, and
although some derivatives can be estimated with good accuracy it may be very diffi-
cult to devise experiments to measure other derivatives adequately. However, despite
the limitations of the experimental methods, measurements are made for real aero-
dynamic flow conditions and in principle it is possible to obtain derivative estimates
of greater fidelity than is likely by calculation.

Dynamic, or non-stationary, experiments can be conducted from which estimates
for the force–rotary and moment–rotary derivatives can be made. The simplest of
these requires a special rig in which to mount the model and which enables the model
to undergo a single degree of freedom free or forced oscillation in either roll, pitch
or yaw. Analysis of the oscillatory time response obtained in such an experiment
enables estimates to be made of the relevant damping and stiffness derivatives. For

example, an oscillatory pitch experiment enables estimates to be made of
◦

Mq and
◦

Mw. More complex multi-degree of freedom test rigs become necessary when it is
intended to measure the motion coupling derivatives, for example, derivatives like

yawing moment due to roll rate
◦

Np. As the experimental complexity is increased
so the complexity of the analysis required to calculate the derivative estimates from
the measurements is also increased and, consequently, it becomes more difficult to
guarantee the accuracy of the derivatives thus obtained.

12.3.3 Flight test measurement

The estimation of aerodynamic derivatives from flight test measurements is an estab-
lished and well developed experimental process. However, derivative estimates are
usually obtained indirectly since it is not possible to measure the aerodynamic compo-
nents of force and moment acting on the airframe directly. Also, since the aircraft has
six degrees of freedom it is not always possible to perturb the single motion variable
of interest without perturbing some, or all, of the others as well. However, as in wind
tunnel testing, some derivatives are easily estimated from flight test experiment with
a good degree of confidence, whereas others can be notoriously difficult to estimate.

Although it is relatively easy to set up approximately steady conditions in flight
from which direct estimates of some derivatives can be made, for example a steady

sideslip for the estimation of
◦

Yv,
◦

Lv and
◦

Nv, the technique often produces results of
indifferent accuracy and has limited usefulness. Today parameter identification tech-
niques are commonly used in which measurements are made following the deliberate
excitation of multi-variable dynamic conditions. Complex multi-variable response
analysis then follows from which it is possible to derive a complete estimate of the
mathematical model of the aircraft corresponding with the flight condition at which
the measurements were made. Parameter identification is an analytical process in
which full use is made of state space computational tools in order to estimate the air-
craft state description that best matches the input–output response measured in flight.
It is essentially a multi-variable curve fitting procedure and the computational output
is the coefficients in the aircraft state equation from which estimates of the aerody-
namic stability and control derivatives may be obtained. The method is complex and
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success depends, to a considerable extent, on the correct choice of computational
algorithm appropriate to the experiment.

A simple diagram containing the essential functions of the parameter identification
procedure is shown in Fig. 12.2. A flight test exercise is flown in the fully instrumented
subject aircraft and the pilot applies control inputs designed to excite the dynamic
response of interest. The control inputs and the full complement of dynamic response
variables are recorded in situ or, may be telemetered directly to a ground station for
on-line analysis. The parameter identification process is entirely computational and
is based on a mathematical model of the aeroplane which is deliberately structured to
include the terms appropriate to the flight experiment. The object then is to identify
the coefficients in the aircraft model which give the best match with the dynamics of
the experimental response. The recorded control inputs are applied to the model of the
aircraft and its multi-variable response is compared with the recorded response made
in the flight experiment. Response matching errors are then used to adjust the coef-
ficients in the aircraft model according to the parameter identification algorithm and
the process is repeated iteratively until the response matching errors are minimised.

All of the recorded signals contain noise, measurement errors and uncertainties
of various kinds to a greater or lesser extent. The complexity of the identification
process is therefore magnified considerably since statistical analysis methods play
an essential part in all modern algorithms. For example, Kalman filtering techniques
are frequently used to first obtain consistent, and essentially error free, estimates of
the state variables for subsequent use in the identification process. Typical commonly
encountered parameter identification algorithms include the Equation Error method,
the Maximum Likelihood method and various methods based on Statistical Regression
techniques. The development of parameter identification methods for application to
aeronautical problems has been the subject of considerable research over the last
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Figure 12.2 The parameter identification process.
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25 years or so and a vast wealth of published material is available. A more detailed
discussion of the subject is well beyond the scope of this book.

Until recently few books have been published which are concerned with aircraft
parameter identification, see Klein and Morelli (2006), for example. Most of the
available material appears to be contained in research papers. However, the interested
reader will find a useful collection of aircraft related papers in AGARD (1979). It is
rare to find published listings of parameter identification computer programs which
makes the work by Ross and Foster (1976) especially useful, if somewhat dated.
Probably two of the more useful sources of information on current developments
in aircraft parameter identification are the proceedings of the AIAA annual Flight
Mechanics and bi-annual Flight Test conferences.

The main disadvantages of parameter identification methods includes the require-
ment for substantial computational “power’’ and the essential need for recorded flight
data of the very highest quality. Despite these constraints, the process is now used
routinely by many of the leading flight test organisations. Given adequate resources
the advantages of parameter identification methods are significant. All of the aerody-
namic stability and control derivatives can be estimated in one pass and the dynamic
conditions to which they relate do not necessarily have to be linear. For example,
it is now routinely possible to identify aircraft models in extreme manoeuvring
conditions such as the stall, the spin and at very high angles of attack when the
aerodynamics are substantially non-linear. It is interesting to note that the method
can also be used for estimating aerodynamic derivatives from “dynamic’’wind tunnel
experiments.

12.4 THE EFFECTS OF COMPRESSIBILITY

The onset of compressible flow conditions gives rise to changes in the aerodynamic
properties of the aeroplane which, in general, leads to corresponding changes in the
stability and control characteristics. Clearly this means a change in the flying and han-
dling qualities of the aeroplane as the Mach number envelope is traversed. Typically,
compressibility effects begin to become apparent at a Mach number of approximately
0.3 although changes in the stability and control characteristics may not become sig-
nificant until the Mach number reaches 0.6 or more. As Mach number is increased the
changes due to compressibility are continuous and gradual. However, in the transonic
flow regime changes can be dramatic and abrupt. When appropriate, it is therefore
important that the aerodynamic changes arising from the effects of compressibility
are allowed for in even the simplest and most approximate aerodynamic derivative
estimation procedure.

An interesting chapter on the effects of compressibility on aircraft stability, control
and handling may be found in Hilton (1952). However, it must be remembered that
at the time the book was written the problems were very clearly recognised but the
mathematical models used to describe the phenomena were, in most cases, at an early
stage of development. Today, sophisticated computational tools are commonly used
to deal with the problems of modelling compressible aerodynamics. However, the
simpler models described by Hilton (1952) are still applicable, as will be shown in
the following pages, provided their limitations are appreciated.
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12.4.1 Some useful definitions

Mach number M is defined as the ratio of the local flow velocity V to the local speed
of sound a whence,

M = V

a
(12.10)

Subsonic flight commonly refers to local aerodynamic flow conditions where
M < 1.0. Practically, this means that the free stream Mach number is less than
approximately 0.8.

Transonic flight usually refers to generally subsonic flight but where the local flow
Mach number M ≥ 1.0. Practically, transonic flight conditions are assumed when the
free stream Mach number lies in the range 0.8 < M0 < 1.2. The greatest degree of
aerodynamic unpredictability is associated with this Mach number range.

Supersonic flight commonly refers to aerodynamic flow conditions when M > 1.0
everywhere in the local flow field. Practically, supersonic flow conditions are assumed
when the free stream Mach number is greater than approximately 1.2.

The critical Mach number Mcrit is the free stream Mach number at which the
local flow Mach number just reaches unity at some point on the airframe. In general,
Mcrit ≤ 1.0 and is typically in the order of 0.9.

A shock wave is a compression wave front which occurs in the supersonic flow
field around an airframe. A shock wave originating at a point on the airframe, such
as the nose of the aeroplane, is initially a plane wave front normal to the direction of
the flow. As the flow Mach number is increased so the shock wave becomes a conical
wave front, or Mach cone, the apex angle of which decreases with increasing Mach
number. As the air flow traverses the shock wave it experiences an abrupt increase
in pressure, density and temperature and the energy associated with these changes
is extracted from the total flow energy to result in reduced velocity behind the wave
front. Collectively, these changes are seen as an abrupt increase in drag in particular
and may be accompanied by significant changes in trim and in the stability and control
characteristics of the aeroplane.

The shock stall is sometimes used to describe the abrupt aerodynamic changes
experienced when an aeroplane accelerating through the transonic flight regime first
reaches the critical Mach number. At the critical Mach number shock waves begin
to form at various places on the airframe and are accompanied by abrupt reduction
in local lift, abrupt increase in local drag and some associated change in pitching
moment. Since the effect of these aerodynamic changes is not unlike that of the
classical low speed stall it is referred to as the shock stall. However, unlike the
classical low speed stall, the aeroplane continues to fly through the condition.

12.4.2 Aerodynamic models

Because of the aerodynamic complexity of the conditions applying to an aeroplane in
a compressible flow field it is difficult to derive other than the very simplest mathemat-
ical models to describe those conditions. Thus for analytical application, as required
in aerodynamic derivative estimation, mathematical modelling is usually limited to
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an approximate description of the effects of compressibility on the lifting surfaces of
the aeroplane only. In particular, the ease with which the aerodynamic properties of
a wing in compressible flow can be estimated is dependent, to a large extent, on the
leading edge flow conditions.

As flow Mach number is increased to unity a shock wave forms a small distance
ahead of the leading edge of a typical wing and the shock wave is said to be detached.
As the Mach number is increased further so the shock wave moves nearer to the leading
edge of the wing and eventually moves on to the wing when it is said to be attached.
Since the flow velocity behind the shock wave is lower than the free stream value, when
the shock wave is detached the leading edge of the wing would typically be in subsonic
flow. In this condition the pressure distribution on the wing, in particular the leading
edge suction peak, would be subsonic in nature and the aerodynamic characteristics
of the wing would be quite straightforward to estimate. However, when the shock
wave is attached the leading edge of the wing would typically be in supersonic flow
conditions and the aerodynamic properties, in particular the drag rise, would be much
less straightforward to estimate. Since the incident flow velocity direction is always
considered perpendicular to the leading edge of the wing, it will always be lower
on a swept wing as it is equivalent to the free stream velocity resolved through the
leading edge sweep angle. Further, since wing sweep will bring more, or more likely
all, of the wing within the Mach cone the high drag associated with a supersonic
leading edge will be reduced or avoided altogether for a larger range of supersonic
Mach number.

12.4.3 Subsonic lift, drag and pitching moment

The theoretical maximum value of lift curve slope for a rectangular flat plate wing of
infinite span in incompressible flow is given by

a∞ = 2π cos Λle 1/rad (12.11)

where, Λle is the leading edge sweep angle. For a wing of finite thickness this value of
lift curve slope is reduced and Houghton and Carpenter (1993) give an approximate
empirical expression which is a function of geometric thickness to chord ratio t/c
such that equation (2.11) becomes

a∞ = 1.8π

(
1 + 0.8

t

c

)
cos Λle 1/rad (12.12)

For a wing of finite span the lift curve slope is reduced further as a function of aspect
ratio A and is given by the expression,

a = a∞(
1 + a∞

πA

) (12.13)

For Mach numbers below Mcrit , but when the effects of compressibility are evident
the Prandtl–Glauert rule provides a means for estimating the lifting properties of a
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wing. For an infinite span wing with leading edge sweep angle �le the lift curve slope
a∞c in the presence of compressibility effects is given by,

a∞c = a∞i√
1 − M2 cos2 Λle

(12.14)

where, a∞i is the corresponding incompressible lift curve slope given, for example,
by equation (2.12). An equivalent expression for a wing of finite span and having an
aspect ratio A is quoted in Babister (1961) and is given by,

ac = (A + 2 cos Λle)a∞i

2 cos Λle + A
√

1 − M2 cos2 Λle

(12.15)

For Mach numbers below Mcrit the zero lift drag coefficient CD0 remains at its nominal
incompressible value and the changes in drag due to the effects of compressibility
are due mainly to the induced drag contribution. Thus the classical expression for the
drag coefficient applies,

CDc = CD0 + kC2
Lc

= CD0 + ka2
cα

2 (12.16)

In general the effect of compressibility on pitching moment coefficient in subsonic
flight is small and is often disregarded. However, in common with lift and drag
coefficient, such changes in pitching moment coefficient as may be evident increase
as the Mach number approaches unity. Further, the changes in pitching moment
coefficient are more pronounced in aircraft with a large wing sweep angle and result
from a progressive aft shift in aerodynamic centre. Since the effect is dependent on
the inverse of

√
1 − M2 cos2 Λle, or its equivalent for a wing of finite span, it does

not become significant until, approximately, M ≥ 0.6.
It is important to appreciate that the Prandtl–Glauert rule only applies to subsonic

flight in the presence of the effects of compressibility. The models given above become
increasingly inaccurate at Mach numbers approaching and exceeding unity. In other
words, the Prandtl–Glauert rule is not applicable to transonic flight conditions.

12.4.4 Supersonic lift, drag and pitching moment

The derivation of simple approximate aerodynamic models to describe lift, drag and
pitching moment characteristics in supersonic flow conditions is very much more
difficult. Such models as are available are dependent on the location of the shocks
on the principal lifting surfaces and in particular, on whether the leading edge of
the wing is subsonic or supersonic. In every case the aerodynamic models require
a reasonable knowledge of the geometry of the wing including the aerofoil section.
The three commonly used theoretical tools are, in order of increasing complexity, the
linearised Ackeret theory, the second order Busemann theory and the shock expansion
method. A full discussion of the theories is not appropriate here and only the simplest
linear models are summarised below. The material is included in most aerodynamics
texts for example, in Bertin and Smith (1989) and in Houghton and Carpenter (1993).
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The lift curve slope of an infinite span swept wing in supersonic flow, which implies
a supersonic leading edge condition, is given by,

a∞c = 4 cos Λle√
M2 cos2 Λle − 1

(12.17)

Clearly, the expression given by equation (12.17) is only valid for Mach numbers
M > sec Λle, at lower Mach numbers the leading edge is subsonic since it is within
the Mach cone. For a wing of finite span the expression given by equation (12.17) is
“corrected’’ for aspect ratio,

ac = a∞c

(
1 − 1

2A
√

M2 cos2 Λle − 1

)
(12.18)

and the parameter A
√

M2 cos2 Λle − 1 is termed the effective aspect ratio by
Liepmann and Roshko (1957).

The drag of an aeroplane in supersonic flight is probably one of the most difficult
aerodynamic parameters to estimate with any degree of accuracy. The drag of a wing
with a supersonic leading edge comprises three components, the drag due to lift, wave
drag and skin friction drag. The drag due to lift, sometimes known as wave drag due
to lift, is equivalent to the induced drag in subsonic flight. Wave drag, also known
as form drag or pressure drag, only occurs in compressible flow conditions and is a
function of aerofoil section geometry. Skin friction drag is the same as the familiar
zero lift drag in subsonic flight which is a function of wetted surface area.

A simple approximate expression for the drag coefficient of an infinite span swept
wing in supersonic flight is given by,

CD∞ = 4α2 cos Λle√
M2 cos2 Λle − 1

+ k
( t

c

)2
cos3 Λle√

M2 cos2 Λle − 1
+ CD0 (12.19)

where the first term is the drag coefficient due to lift, the second term is the wave drag
coefficient and the third term is the zero lift drag coefficient. Here, in the interests of
simplicity, the wave drag is shown to be dependent on the aerofoil section thickness to
chord ratio t/c only, which implies that the section is symmetrical. When the section
has camber the wave drag includes a second term which is dependent on the square of
the local angle of attack with respect to the mean camber line. The camber term is not
included in equation (12.19) since many practical supersonic aerofoils are symmetric
or near symmetric. The constant k is also a function of the aerofoil section geometry
and is 2/3 for bi-convex or typical modified double wedge sections, both of which
are symmetric.

For a finite span wing with aspect ratio A the drag coefficient is given very
approximately by

CD∞ =
(

4α2 cos Λle√
M2 cos2 Λle − 1

+ k
( t

c

)2
cos3 Λle√

M2 cos2 Λle − 1

)

×
(

1 − 1

2A
√

M2 cos2 Λle − 1

)
+ CD0 (12.20)
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It is assumed that the wing to which equation (12.20) relates is of constant thick-
ness with span and that it has a rectangular planform, which is most unlikely for a
real practical wing. Alternative and rather more complex expressions can be derived
which are specifically dependent on wing geometry to a much greater extent. How-
ever, there is no guarantee that the estimated drag coefficient will be more accurate
since it remains necessary to make significant assumptions about the aerodynamic
operating conditions of the wing.

It is also difficult to obtain a simple and meaningful expression for pitching moment
coefficient in supersonic flight conditions. However, it is relatively straightforward to
show that for an infinite span flat plate wing the aerodynamic centre moves aft to the
half chord point in supersonic flow. This results in an increase in nose down pitching
moment together with an increase in the longitudinal static stability margins with
corresponding changes in the longitudinal trim, stability and control characteristics
of the aeroplane. An increase in thickness and a reduction in aspect ratio of the wing
causes the aerodynamic centre to move forward from the half chord point with a
corresponding reduction in stability margins. Theoretical prediction of these changes
for anything other than a simple rectangular wing is not generally practical.

12.4.5 Summary

It is most important to realise that the aerodynamic models outlined in Sections 12.4.3
and 12.4.4 describe, approximately, the properties of the main lifting wing of the aero-
plane only. Since the wing provides most of the lift, with perhaps smaller contributions
from the fuselage and tailplane, or fore plane, then it is expected that equations (12.15)
and (12.18) would give a reasonable indication of the lift curve slope of a complete
aeroplane. However, this would not necessarily be expected of the drag estimates
given by equations (12.16) and (12.20). The drag contributions from the fuselage and
tailplane, or fore plane, may well be a large fraction of the total. Therefore, estimates
obtained with equations (12.16) and (12.20) should be treated accordingly. It is sug-
gested that the main usefulness of the material given in Sections 12.4.3 and 12.4.4 is
to provide an appreciation of the main aerodynamic effects of compressibility as they
relate to stability and control and to provide a means for checking the plausibility of
estimates obtained by other means, especially computational means. Little mention
has been made of the transonic flight regime for the simple reason that analytical
models suitable for the estimation of aerodynamic stability and control properties
at the present level of interest are just not available. Considerable research has been
undertaken in recent years into transonic aerodynamics but the analysis remains com-
plex and has found greatest use in computational methods for flow prediction. When
estimates of the aerodynamic properties of a complete aeroplane configuration in
compressible flow conditions are required it is preferable to refer to source material
such as the ESDU data items.

Today increasing use is made of computational methods for the estimation of the
aerodynamic properties of complete aeroplane configurations and at all flight con-
ditions. Provided the geometry of the airframe can be described in sufficient detail
then computational methods, such as the vortex lattice method or the panel method,
can be used to obtain estimates of aerodynamic characteristics at acceptable levels
of accuracy. By such means aerodynamic information can be obtained for conditions
which would otherwise be impossible using analytical methods.
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Example 12.1

A substantial data base comprising aerodynamic, stability and control parameters for
the McDonnell–Douglas F-4C Phantom aircraft is given in Heffley and Jewell (1972).
Data are given for altitudes from sea level to 55,000 ft and for Mach numbers from
0.2 to 2.2 and the aircraft shows most of the classical effects of translation from
subsonic to supersonic flight. Some limited additional information was obtained
from Jane’s (1969–1970). The main geometric parameters of the aircraft used in the
example are,

Wing area (reference area) S = 530 ft2

Wing span b = 38.67 ft
Mean geometric chord (reference chord) c = 16.04 ft
Average thickness–chord ratio t/c = 0.051
Aspect ratio A = 2.82
Leading edge sweep angle Λle = 50◦
Centre of gravity position h = 0.289

The lift, drag and pitching moment characteristics are summarised in Fig. 12.3 as a
function of Mach number for two altitudes, 15,000 ft and 35,000 ft, since the data for
these two altitudes extends over the entire Mach number envelope.

Lifting properties are represented by the plot of lift curve slope a as a function of
Mach number. The effect of compressibility becomes obvious at Mach 0.8 at the onset
of the transonic flow regime. The lift curve slope reaches a maximum at Mach 1.0
and its gentle reduction thereafter is almost linear with Mach number. The Prandtl–
Glauert rule approximation, as given by equation (12.15) is shown for comparison
in the subsonic Mach number range. The approximation assumes a 2D lift curve
slope calculated according to equation (2.12) and shows the correct trend but gives
an overestimate of total lift curve slope. The linear supersonic approximation for lift
curve slope, as given by equation (12.18) is also shown for completeness. In this
case the 2D lift curve slope was calculated using equation (12.17). Again, the trend
matches reasonably well but the model gives a significant underestimate. It is prudent
to recall at this juncture that both models describe the lift curve slope of a finite wing
only whereas, the F-4C data describes the entire airframe characteristic.

The drag properties are represented by the trim drag coefficient, plotted on a log-
arithmic scale, as a function of Mach number. The use of a logarithmic scale helps
to emphasise the abrupt drag rise at Mach 1.0. In the subsonic Mach number range
the drag coefficient reduces with increasing Mach number, the classical characteris-
tic, which implies that it is dominated by the induced drag contribution as might be
expected. However, in supersonic flight the drag coefficient remains almost constant,
the contribution due to lift will be small as both CL and α are both small and the
main contributions will be due to wave drag and skin friction. Shown on the same
plot is the supersonic drag coefficient calculated according to equation (12.19) and
clearly, the match is poor. The trend is correct but the magnitude is about half the
actual airframe value. Once again, it should be remembered that equation (12.19)
relates to a finite wing and not to a complete airframe. It is reasonably easy to appre-
ciate that the fuselage and tail surfaces will make a significant contribution to the
overall drag of the aeroplane. Careful scrutiny of the aerodynamic data for 35,000 ft
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Figure 12.3 Lift, drag and pitching moment variation with Mach number.

enabled the expression for the subsonic drag coefficient, equation (12.16), to be
estimated as,

CD = CD0 + kC2
L = 0.017 + 0.216C2

L (12.21)

This expression gave a good fit to the actual data and the value of CD0 was used in
the evaluation of the supersonic drag coefficient, equation (12.19).

The final plot in Fig.12.3 represents the effect of Mach number on pitching moment
and shows the variation in the slope, denoted Cmα , of the Cm-α curve as a function
of Mach number. Since Cmα is proportional to the controls fixed static margin it
becomes more negative as the aerodynamic centre moves aft. This is clearly seen in
the plot and the increase in stability margin commences at a Mach number of 0.8.
Now, the relationship between controls fixed stability margin, neutral point and centre
of gravity locations is given by equation (3.17),

Kn = hn − h (12.22)
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Figure 12.4 Variation of controls fixed neutral point position with Mach number.

With reference to Appendix 8 the expression for the derivative Mw is given by,

Mw = ∂Cm

∂α
= −aKn (12.23)

Thus from equations (12.22) and (12.23) an expression for the location of the controls
fixed neutral point is easily calculated,

hn = h − 1

a

∂Cm

∂α
≡ h − 1

a
Cmα (12.24)

Using equation (12.24) with the F-4C data for an altitude of 15,000 ft the variation in
neutral point position as a function of Mach number was calculated and the result is
shown in Fig. 12.4.

Since the neutral point corresponds with the centre of pressure for the whole aero-
plane its aft shift with Mach number agrees well with the predictions given by “simple’’
aerofoil theory. Over the transonic Mach number range the neutral point moves back
to the midpoint of the mean aerodynamic chord and then moves forward a little at
higher Mach numbers. It is interesting to note that at subsonic Mach numbers the
neutral point remains more-or-less stationary at around 0.37 ¯̄c which is quite typical
for many aeroplanes.

12.5 LIMITATIONS OF AERODYNAMIC MODELLING

Simple expressions for the aerodynamic stability and control derivatives may be
developed from first principles based on the analysis of the aerodynamic conditions
following an upset from equilibrium. The cause of the upset may be external, as the
result of a gust for example, or internal as the result of a pilot control action. It is
important to appreciate that in either event the disturbance is of short duration and
that the controls remain fixed at their initial settings for the duration of the response.
As explained in Section 12.2, the derivatives are then evaluated by linearizing the
aerodynamics about the nominal operating, or trim, condition. The aerodynamic
models thus derived are limited in their application to small perturbation motion about
the trim condition only. The simplest possible analytical models for the aerodynamic
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stability and control derivatives are developed, subject to the limitations outlined in
this chapter, and described in Chapter 13.
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Chapter 13

Aerodynamic Stability and Control Derivatives

13.1 INTRODUCTION

As is usual in aerodynamic analysis, for the purpose of obtaining simple expressions
for the stability and control derivatives a wind axis reference system is assumed
throughout. The choice of wind axes is convenient since it reduces the derivatives to
their simplest possible description by retaining only the essential contributions and
hence, maximises the visibility of the physical phenomena involved. It is therefore
very important to remember that if the derivatives thus obtained are required for use
in equations of motion referred to an alternative axis system then the appropriate
axis transformation must be applied to the derivatives. Some useful transformations
are given in Appendices 9 and 10. In all cases analytical expressions are obtained
for the derivatives assuming subsonic flight conditions, it is then relatively straight
forward to develop the expressions further to allow for the effects of Mach number
as suggested in Section 12.4.

It has already been established that simple analytical expressions for the derivatives
rarely give accurate estimates. Their usefulness is significantly more important as
a means for explaining their physical origins, thereby providing the essential link
between aircraft dynamics and airframe aerodynamics. The analytical procedure for
obtaining simple derivative expressions has been well established for very many
years and the approach commonly encountered in the UK today is comprehensively
described by Babister (1961), and in less detail in Babister (1980). The following
paragraphs owe much to that work since it is unlikely that the treatment can be
bettered. For the calculation of more reliable estimates of derivative values reference
to the Engineering Sciences Data Unit (ESDU) data items is advised. The reader
requiring a more detailed aerodynamic analysis of stability and control derivatives
will find much useful material in Hancock (1995).

13.2 LONGITUDINAL AERODYNAMIC STABILITY DERIVATIVES

For convenience, a summary of the derivative expressions derived in this paragraph
is included in Table A8.1.

13.2.1 Preliminary considerations

A number of expressions are required repeatedly in the derivative analysis so, it
is convenient to assemble these expressions prior to embarking on the analysis. A

337
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Figure 13.1 Perturbed wind axes.

longitudinal small perturbation is shown in Fig. 13.1 in which the aircraft axes are
wind axes and the initial condition assumes steady symmetric level flight at velocity
V0. Although not strictly an aerodynamic force the thrust τ is shown since it may
behave like an aerodynamic variable in a perturbation. As indicated the thrust force
is tied to the aircraft x axis and moves with it.

In the perturbation the total velocity becomes V with components U and W along
the ox and oz axes respectively. Whence

V 2 = U 2 + W 2 (13.1)

and

U = Ue + u = V cos θ
(13.2)

W = We + w = V sin θ

Since wind axes are assumed the pitch attitude perturbation θ and the incidence
perturbation α are the same and are given by

tan θ ≡ tan α = W

U
(13.3)

Differentiate equation (13.1) with respect to U and W in turn to obtain the following
partial derivatives

∂V

∂U
= U

V
and

∂V

∂W
= W

V
(13.4)

and substitute for U and W from equations (13.2) to obtain

∂V

∂U
= cos θ ∼= 1 and

∂V

∂W
= sin θ ∼= 0 (13.5)

since, by definition, θ is a small angle.
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In a similar way, differentiate equation (13.3) with respect to U and W in turn and
substitute for U and W from equations (13.2) to obtain

∂θ

∂U
≡ ∂α

∂U
= −sin θ

V
∼= 0

(13.6)
∂θ

∂W
≡ ∂α

∂W
= cos θ

V
∼= 1

V

since again, by definition, θ is a small angle.
From equation (12.10)

∂

∂V
= 1

a

∂

∂M
(13.7)

which is useful for transforming from a velocity dependency to a Mach number
dependency and where, here, a is the local speed of sound.

13.2.2 Aerodynamic force and moment components

With reference to Fig. 13.1 the lift and drag forces may be resolved into the disturbed
aircraft axes to give the following components of aerodynamic force. The perturbed
axial force is

X = L sin θ − D cos θ + τ = 1

2
ρV 2S(CL sin θ − CD cos θ) + τ (13.8)

and the perturbed normal force is

Z = −L cos θ − D sin θ = −1

2
ρV 2S(CL cos θ + CD sin θ) (13.9)

In the initial steady trim condition, by definition the pitching moment M is zero.
However, in the perturbation the transient pitching moment is non-zero and is given by

M = 1

2
ρV 2ScCm (13.10)

Note that considerable care is needed in order not to confuse pitching moment M and
Mach number M.

13.2.3 Force derivatives due to velocity perturbations

◦
Xu = ∂X

∂U
Axial force due to axial velocity

Differentiating equation (13.8) to obtain

∂X

∂U
= 1

2
ρV 2S

(
∂CL

∂U
sin θ + CL cos θ

∂θ

∂U
− ∂CD

∂U
cos θ + CD sin θ

∂θ

∂U

)

+ ρVS
∂V

∂U
(CL sin θ − CD cos θ) + ∂τ

∂U
(13.11)
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Substitute for ∂V /∂U from equation (13.5) and for ∂θ/∂U from equation (13.6). As θ

is a small angle, in the limit, cos θ ∼= 1 and sin θ ∼= 0 and equation (13.11) simplifies to

∂X

∂U
= −1

2
ρV 2S

∂CD

∂U
− ρVSCD + ∂τ

∂U
(13.12)

Now

∂CD

∂U
= ∂CD

∂V

∂V

∂U
= ∂CD

∂V
(13.13)

and similarly

∂τ

∂U
= ∂τ

∂V
(13.14)

In the limit the total perturbation velocity tends to the equilibrium value and V ∼= V0.
Whence equation (13.12) may be written

◦
Xu = ∂X

∂U
= −ρV0SCD − 1

2
ρV 2

0 S
∂CD

∂V
+ ∂τ

∂V
(13.15)

With reference to Appendix 2, the dimensionless form of the derivative is given by

Xu =
◦

Xu
1
2ρV0S

= −2CD − V0
∂CD

∂V
+ 1

1
2ρV0S

∂τ

∂V
(13.16)

Alternatively, using equation (13.7), the dimensionless derivative may be expressed
in terms of Mach number rather than velocity

Xu = −2CD − M0
∂CD

∂M
+ 1

1
2ρM0Sa2

∂τ

∂M
(13.17)

Expressions for the remaining force–velocity derivatives are obtained in a similar
way as follows:

◦
Zu = ∂Z

∂U
Normal force due to axial velocity

Thus, by differentiating equation (13.9) with respect to U it is easily shown that

◦
Zu = ∂Z

∂U
= −ρVSCL − 1

2
ρV 2S

∂CL

∂U
(13.18)

Now, in the manner of equation (13.13)

∂CL

∂U
= ∂CL

∂V

∂V

∂U
= ∂CL

∂V
(13.19)
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Thus in the limit V ∼= V0 and equation (13.18) may be written

◦
Zu = −ρV0SCL − 1

2
ρV 2

0 S
∂CL

∂V
(13.20)

With reference to Appendix 2, the dimensionless form of the derivative is given by

Zu =
◦

Zu
1
2ρV0S

= −2CL − V0
∂CL

∂V
(13.21)

Or, alternatively, expressed in terms of Mach number rather than velocity

Zu = −2CL − M0
∂CL

∂M
(13.22)

◦
X w = ∂X

∂W
Axial force due to normal velocity

As before, it may be shown that by differentiating equation (13.8) with respect to W

◦
X w = ∂X

∂W
= 1

2
ρV 2S

(
1

V
CL − ∂CD

∂W

)
+ ∂τ

∂W
(13.23)

Now, with reference to equations (13.6) and noting that α = θ

∂CD

∂W
= ∂CD

∂θ

∂θ

∂W
≡ 1

V

∂CD

∂α
(13.24)

Similarly, it may be shown that

∂τ

∂W
≡ 1

V

∂τ

∂α
= 0 (13.25)

since it is assumed that thrust variation resulting from small incidence perturbations
is negligible. Thus, in the limit equation (13.23) may be written

◦
X w = 1

2
ρV0S

(
CL − ∂CD

∂α

)
(13.26)

With reference to Appendix 2, the dimensionless form of the derivative is given by

Xw =
◦

X w
1
2ρV0S

=
(

CL − ∂CD

∂α

)
(13.27)
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◦
Zw = ∂Z

∂W
Normal force due to normal velocity

As before, by differentiating equation (13.9) with respect to W and with reference to
equation (13.24) it may be shown that

◦
Zw = ∂Z

∂W
= −1

2
ρV 2S

(
∂CL

∂W
+ 1

V
CD

)
= −1

2
ρVS

(
∂CL

∂α
+ CD

)
(13.28)

In the limit equation (13.28) may be rewritten

◦
Zw = −1

2
ρV0S

(
∂CL

∂α
+ CD

)
(13.29)

With reference to Appendix 2, the dimensionless form of the derivative is given by

Zw =
◦

Zw
1
2ρV0S

= −
(

∂CL

∂α
+ CD

)
(13.30)

13.2.4 Moment derivatives due to velocity perturbations

◦
M u = ∂M

∂U
Pitching moment due to axial velocity

In a perturbation the pitching moment becomes non-zero and is given by
equation (13.10). Differentiating equation (13.10) with respect to U

∂M

∂U
= 1

2
ρV 2Sc

∂Cm

∂U
+ ρVScCm (13.31)

and with reference to equations (13.5)

∂Cm

∂U
= ∂Cm

∂V

∂V

∂U
= ∂Cm

∂V
(13.32)

Now, in the limit, as the perturbation tends to zero so the pitching moment coefficient
Cm in the second term in equation (13.31) tends to the steady equilibrium value which
is, of course, zero. Therefore, in the limit equation (13.31) simplifies to

◦
M u = ∂M

∂U
= 1

2
ρV 2

0 Sc
∂Cm

∂V
(13.33)

With reference to Appendix 2, the dimensionless form of the derivative is given by

Mu =
◦

Mu
1
2ρV0Sc

= V0
∂Cm

∂V
(13.34)
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Alternatively, using equation (13.7), the dimensionless derivative may be expressed
in terms of Mach number rather than velocity

Mu = M0
∂Cm

∂M
(13.35)

In subsonic flight the pitching moment coefficient Cm is very nearly independent of
velocity, or Mach number, whence, the derivative Mu is often assumed to be negligibly
small for those flight conditions.

◦
M w = ∂M

∂W
Pitching moment due to normal velocity

As previously, differentiating equation (13.10) with respect to W and with reference
to equation (13.24) it may be shown that

◦
M w = ∂M

∂W
= 1

2
ρV 2Sc

∂Cm

∂W
= 1

2
ρVSc

∂Cm

∂α
(13.36)

In the limit V ∼= V0 and equation (13.36) may be written

◦
M w = 1

2
ρV0Sc

∂Cm

∂α
(13.37)

and with reference to Appendix 2, the dimensionless form of the derivative is given by

Mw =
◦

M w
1
2ρV0Sc

= ∂Cm

∂α
(13.38)

Further, assuming that linear aerodynamic conditions apply, such as are typical of
subsonic flight then with reference to equation (3.17),

Mw = dCm

dα
= dCL

dα

dCm

dCL
= −aKn (13.39)

where, here, a denotes the lift curve slope and Kn is the controls fixed static margin.
As shown in Chapter 6 the derivative Mw is a measure of the pitch stiffness of the
aeroplane and plays an important part in the determination of the longitudinal short
term dynamics.

13.2.5 Derivatives due to a pitch velocity perturbation

It is usually assumed that the longitudinal aerodynamic properties of an aeroplane
are dominated by those of the wing and tailplane. However, when the disturbance is a
small perturbation in pitch rate q it is assumed that the dominating aerodynamic prop-
erties are those of the tailplane. Thus, in the first instance the resulting aerodynamic
changes contributing to the stability derivatives are assumed to arise entirely from
tailplane effects. By so doing it is acknowledged that the wing contribution may not
necessarily be small and that its omission will reduce the accuracy of the derivative
estimates. However, experience has shown that the error incurred by adopting this
assumption is usually acceptably small.
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Figure 13.2 Tailplane incidence due to pitch rate.

An aeroplane pitching through its equilibrium attitude with pitch rate perturbation
q is shown in Fig. 13.2. Since the effect of the pitch rate is to cause the tailplane to
experience a normal velocity component due to rotation about the cg the resultant
effect is a change in the local incidence αT of the tailplane. The total perturbation
velocity is V and the tailplane incidence perturbation is given by

αT ∼= tan αT = qlT
V

(13.40)

since, by definition αT is a small angle. It is important to appreciate that αT is the
change, or increment in tailplane incidence relative to its equilibrium value and, like
the pitch rate perturbation, is transient in nature. From equation (13.40) it follows that

∂αT

∂q
= lT

V
(13.41)

◦
X q = ∂X

∂q
Axial force due to pitch rate

In this instance, for the reasons given above, it is assumed that the axial force
perturbation arises from the tailplane drag perturbation only thus

X = −DT = −1

2
ρV 2ST CDT (13.42)

Assuming V to be independent of pitch rate q, differentiate equation (13.42) with
respect to the perturbation variable q

∂X

∂q
= −1

2
ρV 2ST

∂CDT

∂q
(13.43)

Now, with reference to equation (13.41) write

∂CDT

∂q
= ∂CDT

∂αT

∂αT

∂q
= lT

V

∂CDT

∂αT
(13.44)
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Substitute equation (13.44) into equation (13.43) then, in the limit V ∼= V0 and
equation (13.43) may be written

◦
X q = ∂X

∂q
= −1

2
ρV0ST lT

∂CDT

∂αT
(13.45)

and with reference to Appendix 2, the dimensionless form of the derivative is given by

Xq =
◦

X q
1
2ρV0Sc

= −V T
∂CDT

∂αT
(13.46)

where the tail volume ratio is given by

V T = ST lT

Sc
(13.47)

Since the rate of change of tailplane drag with incidence is usually small it is cus-
tomary to assume that the derivative Xq is insignificantly small and it is frequently
ignored in aircraft stability and control analysis.

◦
Zq = ∂Z

∂q
Normal force due to pitch rate

Similarly, it is assumed that in a pitch rate perturbation the change in normal force
arises from tailplane lift only thus

Z = −LT = −1

2
ρV 2ST CLT (13.48)

Differentiate equation (13.48) with respect to q and with reference to equation
(13.44) then

∂Z

∂q
= −1

2
ρVST lT

∂CLT

∂αT
= −1

2
ρVST lT a1 (13.49)

where, again, it is assumed that V is independent of pitch rate q and that, addition-
ally, the tailplane lift coefficient is a function of incidence only with lift curve slope
denoted a1. Whence, in the limit V ∼= V0 and equation (13.49) may be written

◦
Zq = ∂Z

∂q
= −1

2
ρV0ST lT a1 (13.50)

and with reference to Appendix 2, the dimensionless form of the derivative is given by

Zq =
◦
Zq

1
2ρV0Sc

= −V T a1 (13.51)
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◦
M q = ∂M

∂q
Pitching moment due to pitch rate

Again, in a pitch rate perturbation q, the pitching moment is assumed to arise entirely
from the moment of the tailplane normal force perturbation, given by equation (13.48),
about the cg. Thus, in the perturbation

M = ZlT = −1

2
ρV 2ST lT CLT (13.52)

Differentiate equation (13.52) with respect to q to obtain the relationship

◦
Mq = ∂M

∂q
= lT

∂Z

∂q
= lT

◦
Zq (13.53)

It therefore follows that

◦
Mq = −1

2
ρV0ST l2

T a1 (13.54)

and with reference to Appendix 2, the dimensionless form of the derivative is given by

Mq =
◦

Mq

1
2ρV0Sc

2 = −V T
lT

c
a1 ≡ lT

c
Zq (13.55)

It is shown in Chapter 6 that Mq is the all important pitch damping derivative. Although
this simple model illustrates the importance of the tailplane in determining the pitch
damping characteristics of the aeroplane, wing and body contributions may also be
significant. Equation (13.55) should therefore be regarded as the first estimate rather
than the definitive estimate of the derivative. However, it is often good enough for
preliminary analysis of stability and control.

13.2.6 Derivatives due to acceleration perturbations

The derivatives due to the acceleration perturbations u̇, ẇ and q̇ are not commonly
encountered in the longitudinal equations of motion since their numerical values are
usually insignificantly small. Their meaning is perhaps easier to appreciate when
the longitudinal equations of motion are written in matrix form, equation (4.65), to
include all of the acceleration derivatives. To recap, the state equation is given by

Mẋ = A′x + B′u (13.56)

with state vector, xT = [u w q θ] and input vector uT = [η τ]. The state matrix A′
and input matrix B′ remain unchanged whereas the mass matrix M is modified to
include all the additional acceleration derivatives

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
m − ◦

X u̇

)
− ◦

X ẇ − ◦
X q̇ 0

− ◦
Zu̇

(
m − ◦

Zẇ

)
− ◦

Zq̇ 0

− ◦
M u̇ − ◦

M ẇ

(
Iy − ◦

M q̇

)
0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(13.57)
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Since all of the acceleration derivatives appear in the mass matrix alongside the
normal mass and inertia terms, their effect is to change (increase) the apparent mass
and inertia properties of the aircraft. For this reason they are sometimes referred to
as apparent or virtual mass and inertia terms. Whenever the aeroplane moves some
of the surrounding displaced air mass is entrained and moves with the aircraft, and
it is the mass and inertia of this air which modifies the apparent mass and inertia
of the aeroplane. The acceleration derivatives quantify this effect. For most aircraft,
since the mass of the displaced air is a small fraction of the mass of the aircraft, the
acceleration derivatives are insignificantly small. An exception to this is the airship
for which the apparent mass and inertia can be as much as 50% larger than the actual
physical value. Other vehicles in which these effects may be non-negligible include
balloons, parachutes and underwater vehicles which operate in a much denser fluid
medium.

For many modern high performance aeroplanes the derivatives due to a rate of
change of normal velocity perturbation ẇ (α̇) may not be negligible. A rate of change
of normal velocity perturbation causes a transient disturbance in the downwash field
behind the wing which passes over the tailplane a short time later. The disturbance
to the moving air mass in the vicinity of the wing is, in itself, insignificant for the
reason given above. However, since the tailplane sees this as a transient in incidence
a short time later it responds accordingly and the effect on the airframe is not nec-
essarily insignificant. This particular characteristic is known as the downwash lag
effect.

An expression for the total incidence of the tailplane is given by equation (3.9)
which, for the present application may be written

αT (t) = αe + ηT − ε(t) (13.58)

where αe is the steady equilibrium incidence of the wing, ηT is the tailplane setting
angle and ε(t) is the downwash flow angle at the tailplane. Thus, any change in
downwash angle at the tailplane in otherwise steady conditions gives rise to a change in
tailplane incidence of equal magnitude and opposite sign. It is important to appreciate
that the perturbation at the tailplane is observed at time t and is due to an event on
the wing which took place some time earlier. For this reason the flow conditions on
the wing at time t are assumed to have recovered their steady equilibrium state.

With reference to Fig. 13.3, the point a in the flow field around the wing arrives at
point b in the flow field around the tailplane at a time lT /V0 later, referred to as the
downwash lag and where, for convenience, the mean distance travelled is assumed to
be equal to the tail moment arm lT . Thus a perturbation in ẇ(α̇) causes a perturbation
in the wing downwash field which arrives at the tailplane after the downwash lag time
interval. Therefore there is a short delay between cause and effect.

The downwash angle ε(t) at the tailplane at time t is therefore a function of the
incidence of the wing at time t = t − lT /V0 and may be expressed

ε(t) = dε

dα
α(t) = dε

dα

dα

dt

(
t − lT

V0

)

= dε

dα
αe − dε

dα

ẇlT
V 2

0

= εe − dε

dα

ẇlT
V 2

0

(13.59)
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Figure 13.3 A typical downwash field.

since

dα

dt
t = α(t) ≡ αe (13.60)

and

α ∼= tan α = w

V0
(13.61)

whence

dα

dt
= ẇ

V0
(13.62)

Thus, with reference to equations (13.58) and (13.59) the total tailplane incidence
during a downwash perturbation may be written

αTe + αT (t) = αe + ηT − εe + dε

dα

ẇlT
V 2

0

(13.63)

The perturbation in tailplane incidence due to the downwash lag effect is therefore
given by

αT (t) = dε

dα

ẇlT
V 2

0

(13.64)

◦
X ẇ = ∂X

∂ẇ
Axial force due to rate of change of normal velocity

In this instance, it is assumed that the axial force perturbation arises from the
perturbation in tailplane drag due solely to the perturbation in incidence, whence

X = −DT = −1

2
ρV 2ST CDT = −1

2
ρV 2ST

∂CDT

∂αT
αT (13.65)
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Now, by definition

X = ◦
X ẇẇ (13.66)

and in the limit V ∼= V0. Thus substitute equation (13.64) into (13.65) and apply
equation (13.66) to obtain

◦
X ẇ = −1

2
ρST lT

∂CDT

∂αT

dε

dα
(13.67)

and with reference to Appendix 2, the dimensionless form of the derivative is given by

Xẇ =
◦

X ẇ
1
2ρSc

= −V T
∂CDT

∂αT

dε

dα
≡ Xq

dε

dα
(13.68)

Since Xq is usually very small and dε/dα < 1 the derivative Xẇ is insignificantly small
and is usually omitted from the equations of motion.

◦
Zẇ = ∂Z

∂ẇ
Normal force due to rate of change of normal velocity

Again, it is assumed that the normal force perturbation arises from the perturbation
in tailplane lift due solely to the perturbation in incidence, whence,

Z = −LT = −1

2
ρV 2ST CLT = −1

2
ρV 2ST

∂CLT

∂αT
αT (13.69)

Again, by definition

Z = ◦
Zẇẇ (13.70)

and in the limit V ∼= V0. Thus substitute equation (13.64) into (13.69) and apply
equation (13.70) to obtain

◦
Zẇ = −1

2
ρST lT a1

dε

dα
(13.71)

As in Section 13.2.4, it is assumed that the tailplane lift coefficient is a function of
incidence only with lift curve slope denoted a1. With reference to Appendix 2, the
dimensionless form of the derivative is given by

Zẇ =
◦
Zẇ

1
2ρSc

= −V T a1
dε

dα
≡ Zq

dε

dα
(13.72)

Care should be exercised since Zẇ is not always insignificant.
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◦
M ẇ = ∂M

∂ẇ
Pitching moment due to rate of change of normal velocity

In this instance the pitching moment is assumed to arise entirely from the moment of
the tailplane normal force perturbation about the cg resulting from the perturbation
in incidence, given by equation (13.64). Thus, in the perturbation

M = ZlT = −1

2
ρV 2ST lT

∂CLT

∂αT
αT (13.73)

Again, by definition

M = ◦
M ẇẇ (13.74)

and in the limit V ∼= V0. Thus substitute equation (13.64) into (13.73) and apply
equation (13.74) to obtain

◦
M ẇ = −1

2
ρST l2

T a1
dε

dα
(13.75)

and with reference to Appendix 2, the dimensionless form of the derivative is given by

Mẇ =
◦

M ẇ

1
2ρSc

2 = −V T
lT

c
a1

dε

dα
≡ Mq

dε

dα
(13.76)

The derivative Mẇ is nearly always significant and makes an important contribution
to the damping of the short period pitching oscillation (see equation (6.21)).

13.3 LATERAL–DIRECTIONAL AERODYNAMIC STABILITY DERIVATIVES

For convenience, a summary of the derivative expressions derived in this paragraph
is also included in Table A8.2.

13.3.1 Preliminary considerations

Unlike the longitudinal aerodynamic stability derivatives the lateral–directional
derivatives are much more difficult to estimate with any degree of confidence. The
problem arises from the mutual aerodynamic interference between the lifting sur-
faces, fuselage, power plant, undercarriage, etc. in asymmetric flow conditions, which
makes it difficult to identify the most significant contributions to a particular derivative
with any degree of certainty. When a derivative cannot be estimated by the simplest
analysis of the often complex aerodynamics then, the use of strip theory is resorted
to which is a method of analysis which also tends to over-simplify the aerodynamic
conditions in order that progress can be made. Either way, analytical estimates of the
lateral–directional derivatives are often of poor accuracy and, for more reliable esti-
mates, use of the ESDU data items is preferable. However, the simple theories used for
the purpose do give a useful insight into the physical phenomena involved and, conse-
quently, are a considerable asset to the proper understanding of aeroplane dynamics.
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13.3.2 Derivatives due to sideslip

As seen by the pilot (and consistent with the notation), a positive sideslip is to the
right (starboard) and is defined by the small perturbation lateral velocity transient
denoted v. The nature of a free positive sideslip disturbance is such that the right
wing tends to drop and the nose tends to swing to the left of the incident wind vector
as the aeroplane slips to the right. The reaction to the disturbance is stabilising if the
aerodynamic forces and moments produced in response to the sideslip velocity tend
to restore the aeroplane to a wings level equilibrium state. The motions involved are
discussed in greater detail in the context of lateral static stability in Section 3.4, in
the context of directional static stability in Section 3.5 and in the context of dynamic
stability in Section 7.2.

◦
Yv = ∂Y

∂V
Side force due to sideslip

Side force due to sideslip arises mainly from the fuselage, the fin, the wing, especially
a wing with dihedral, and engine nacelles in aircraft with external engines. The
derivative is notoriously difficult to estimate with any degree of confidence and simple
analysis assumes the dominant contributions arise from the fuselage and fin only.

With reference to Fig. 13.4, the fuselage creates a side force YB in a sideslip, which
may be regarded as lateral drag and which is given by

YB = 1

2
ρV 2

0 SBβyB (13.77)

where SB is the projected fuselage side area and yB is a dimensionless coefficient.
Note that the product βyB is equivalent to a lateral drag coefficient for the fuselage.
Further, since the disturbance is small the sideslip angle β is given by

β ∼= tan β = v

V0
(13.78)

In a sideslip the fin is at incidence β and produces lift as indicated in Fig. 13.4. The
fin lift resolves into a side force YF given by

YF = −1

2
ρV 2

0 SF a1F β cos β ∼= −1

2
ρV 2

0 SF a1F β (13.79)

and since the sideslip angle β is small, cos β ∼= 1.
Let the total side force due to sideslip be denoted Y then, by definition,

v
◦

Yv = Y = YB + YF = 1

2
ρV 2

0 (SByB − SF a1F )β (13.80)

Substitute the expression for β given by equation (13.78) into equation (13.80) to
obtain an expression for the dimensional derivative

◦
Yv = 1

2
ρV0(SByB − SF a1F ) (13.81)
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Figure 13.4 Side force generation in a sideslip.

and with reference to Appendix 2, the dimensionless form of the derivative is given by

Yv =
◦

Yv
1
2ρV0S

=
(

SB

S
yB − SF

S
a1F

)
(13.82)

◦
Lv = ∂L

∂V
Rolling moment due to sideslip

Rolling moment due to sideslip is one of the most important lateral stability derivatives
since it quantifies the lateral static stability of the aeroplane, discussed in Section 3.4.
It is one of the most difficult derivatives to estimate with any degree of confidence
since it is numerically small and has many identifiable contributions. Preliminary
estimates are based on the most significant contributions which are usually assumed
to arise from wing dihedral, wing sweep, wing–fuselage geometry and the fin.

In many classical aeroplanes the wing dihedral makes the most significant con-
tribution to the overall value of the derivative. Indeed, dihedral is one of the most
important variables available to the aircraft designer with which to tailor the lateral
static stability of the aeroplane. The derivative is therefore frequently referred to as
dihedral effect irrespective of the magnitude of the other contributions. Since the
tendency is for the right wing to drop in a positive sideslip disturbance the associated
disturbing rolling moment is also positive. A stabilising aerodynamic reaction is one
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Figure 13.5 Incidence due to sideslip on a wing with dihedral.

in which the rolling moment due to sideslip is negative since this will tend to oppose
the disturbing rolling moment. Dihedral effect is particularly beneficial in this respect.

In a positive sideslip disturbance to the right, the effect of dihedral is to increase the
incidence of the right wing panel indicated in Fig. 13.5. The left wing panel “sees’’
a corresponding reduction in incidence. Thus the rolling moment is generated by the
differential lift across the wing span.

Referring to Fig. 13.5, the component of sideslip velocity perpendicular to the
plane of the wing panel is given by

v′ = v sin Γ ∼= vΓ (13.83)

since the dihedral angle Γ is usually small. The velocity component v′ gives rise to a
small increment in incidence α′ as shown where

α′ ∼= tan α′ = v′

V0
= vΓ

V0
(13.84)

Consider the lift due to the increment in incidence on the chordwise strip element
on the right wing panel as shown in Fig. 13.6. The strip is at spanwise coordinate
y measured from the ox axis, has elemental width dy and local chord cy. The lift
increment on the strip resolves into a normal force increment δZ given by

δZright = −1

2
ρV 2

0 cydyayα
′ cos Γ ∼= −1

2
ρV0cyayvΓ dy (13.85)

where ay is the local lift curve slope. The corresponding increment in rolling moment
δL is given by

δLright = δZrighty = −1

2
ρV0cyayvΓy dy (13.86)

The total rolling moment due to the right wing panel may be obtained by integrating
equation (13.86) from the root to the tip, whence

Lright = −1

2
ρV0v

∫ s

0
cyayΓy dy (13.87)
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Figure 13.6 A chordwise strip element on the right wing panel.

Similarly for the left hand wing panel

δLleft = −δZlefty = −y

(
1

2
ρV0cyayvΓ dy

)
(13.88)

Note that the sign of the normal force increment is reversed on the left wing panel
since the incidence is in fact a decrement and that the sign of the moment arm is also
reversed. Thus

Lleft = −1

2
ρV0v

∫ s

0
cyayΓy dy (13.89)

By definition the total rolling moment in the sideslip disturbance is given by

v
◦

Lv = Lright + Lleft = Ltotal = −ρV0v

∫ s

0
cyayΓy dy (13.90)

Whence, the contribution to the dimensional derivative due to dihedral is

◦
Lv(dihedral) = −ρV0

∫ s

0
cyayΓy dy (13.91)

and with reference to Appendix 2, the dimensionless form of the contribution is
given by

Lv(dihedral) =
◦

Lv(dihedral)

1
2ρV0Sb

= − 1

Ss

∫ s

0
cyayΓy dy (13.92)
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Figure 13.7 A swept wing in sideslip.

where b = 2s is the wing span. It is clear that for a wing with dihedral the expression
given by equation (13.92) will always be negative and hence stabilising. On the other
hand, a wing with anhedral will be destabilising.

Wing sweep also makes a significant contribution to Lv. The lift on a yawed wing is
determined by the component of velocity normal to the quarter chord line in subsonic
flight and normal to the leading edge in supersonic flight. A swept wing is therefore
treated as a yawed wing. With reference to Fig. 13.7, consider an elemental chordwise
strip on the right wing panel which is perpendicular to the quarter chord line. Subsonic
flow conditions are therefore assumed and the flow direction is parallel to the chord
line. The strip element is at spanwise distance h from the ox axis, measured along the
quarter chord line, the local chord is ch and the width of the strip is dh. In the steady
equilibrium flight condition the chordwise component of velocity is given by,

Vc = V0 cos Λ¼ (13.93)

and in the presence of a positive sideslip disturbance this becomes

V ′
c = V0

cos β
cos (Λ¼ − β) ∼= V0 cos (Λ¼ − β) (13.94)

where β is the sideslip angle which is small by definition. The increment in normal
force δZ on the chordwise strip due to the sideslip disturbance arises from the dif-
ference in lift between the steady flight condition and the perturbed condition and is
given by

δZright = −
(

1

2
ρV ′2

c chdhahα − 1

2
ρV 2

c chdhahα

)
= −1

2
ρ(V ′2

c − V 2
c )chdhahα

(13.95)
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Substitute the velocity expressions, equations (13.93) and (13.94) into equation
(13.95), rearrange and make small angle approximations where appropriate to
obtain

δZright = −1

2
ρV 2

0 (β2 sin2 Λ¼ + 2β sin Λ¼ cos Λ¼)ahαch dh (13.96)

Thus, the resulting increment in rolling moment is

δLright = h cos Λ¼δZright
(13.97)

= −1

2
ρV 2

0 cos Λ¼(β2 sin2 Λ¼ + 2β sin Λ¼ cos Λ¼)ahαchh dh

On the corresponding strip element on the left hand wing panel the chordwise velocity
in the sideslip disturbance is given by

V ′
c = V0

cos β
cos (Λ¼ + β) ∼= V0 cos (Λ¼ + β) (13.98)

It therefore follows that the resulting increment in rolling moment arising from the
left wing panel is

δLleft = −h cos Λ¼δZleft
(13.99)

= 1

2
ρV 2

0 cos Λ¼(β2 sin2 Λ¼ − 2β sin Λ¼ cos Λ¼)ahαchh dh

The total increment in rolling moment is given by the sum of the right and left
wing panel contributions, equations (13.97) and (13.99), and substituting for β from
equation (13.78) then

δLtotal = δLright + δLleft = −2ρV0v sin Λ¼ cos2 Λ¼ahαchh dh (13.100)

Thus the total rolling moment due to the sideslip disturbance is given by integrating
equation (13.100) along the quarter chord line from the root to the wing tip. By
definition the total rolling moment due to sweep is given by

v
◦

Lv(sweep) =
∫

δLtotal = −2ρV0v sin Λ¼ cos2 Λ¼

∫ s sec Λ¼

0
ahαchh dh (13.101)

or

◦
Lv(sweep) = −2ρV0 sin Λ¼ cos2 Λ¼

∫ s sec Λ¼

0
ahαchh dh (13.102)

Now it is more convenient to express the geometric variables in equation (13.102)
in terms of spanwise and chordwise parameters measured parallel to the oy and
ox axes respectively. The geometry of the wing determines that cy = ch cos Λ¼,
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dy = dh cos Λ¼, y = h cos Λ¼ and the integral limit s secΛ¼ becomes s. Equation
(13.102) may then be written

◦
Lv(sweep) = −2ρV0 tan Λ¼

∫ s

0
CLy cyy dy (13.103)

where CLy = ahα is the local lift coefficient. However, in the interests of practicality
the constant mean lift coefficient for the wing is often assumed and equation (13.103)
then simplifies to

◦
Lv(sweep) = −2ρV0CL tan Λ¼

∫ s

0
cyy dy (13.104)

and with reference to Appendix 2, the dimensionless form of the contribution is
given by

Lv(sweep) =
◦

Lv(sweep)
1
2ρV0Sb

= −2CL tan Λ¼

Ss

∫ s

0
cyy dy (13.105)

where b = 2s is the wing span. Again, it is clear that for a wing with aft sweep the
expression given by equation (13.105) will always be negative and hence stabilising.
Thus wing sweep is equivalent to dihedral as a mechanism for improving lateral
stability. On the other hand, a wing with forward sweep will be laterally destabilising.

The geometry of the wing and fuselage in combination may also make a significant
contribution to dihedral effect since in a sideslip condition the lateral cross flow in
the vicinity of the wing root gives rise to differential lift which, in turn, gives rise to
rolling moment.

As shown in Fig. 13.8 in a positive sideslip perturbation the aeroplane “sees’’ the
lateral sideslip velocity component approaching from the right, it being implied that
the right wing starts to drop at the onset of the disturbance. The lateral flow around the
fuselage is approximately as indicated thereby giving rise to small perturbations in
upwash and downwash in the vicinity of the wing root. As a consequence of the flow
condition the high wing configuration experiences a transient increase in incidence at
the right wing root and a corresponding decrease in incidence at the left wing root. The
differential lift thus created causes a negative rolling moment and since this will tend
to “pick up’’ the right wing the effect is stabilising. Clearly, as indicated, a low wing
configuration behaves in the opposite manner and the rolling moment due to sideslip
is very definitely destabilising. Thus a high wing configuration enjoys an additional
stabilising contribution to dihedral effect whereas a low wing configuration makes a
destabilising contribution.

It is not generally possible to develop simple aerodynamic expressions to quantify
the wing–fuselage geometry contribution to rolling moment due to sideslip. The
aerodynamic phenomena involved are rather too complex to be modelled simply.
It is known, for example, that the magnitude of the contribution is increased with
an increase in fuselage width or depth and with an increase in aspect ratio. Reliable
values for the contribution are best obtained by measurement or by reference to source
documents such as ESDU data items.
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Figure 13.9 Rolling moment due to fin lift in sideslip.

The fin contribution to rolling moment due to sideslip arises from the way in which
the lift developed on the fin in a sideslip perturbation acts on the airframe. The lift
acts at the aerodynamic centre of the fin which may be above or below the roll axis
thereby giving rise to a rolling moment. A typical situation is shown in Fig. 13.9.

The side force YF resulting from the lift developed by the fin in a sideslip pertur-
bation is given by equation (13.79) and if the moment arm of the aerodynamic centre
about the roll axis (ox axis) is denoted hF then, in the perturbation by definition

v
◦

Lv(fin) = L = YF hF = −1

2
ρV 2

0 SF a1F βhF (13.106)
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Substitute for β from equation (13.78) to obtain the following expression for the
dimensional contribution to the derivative

◦
Lv(fin) = −1

2
ρV0SF a1F hF (13.107)

and with reference to Appendix 2, the dimensionless form of the contribution is
given by

Lv(fin) =
◦

Lv(fin)
1
2ρV0Sb

= −SF hF

Sb
a1F = −V F

hF

lF
a1F (13.108)

where the fin volume ratio is given by

V F = SF lF
Sb

(13.109)

When the aerodynamic centre of the fin is above the roll axis hF is positive and the
expression given by equation (13.108) will be negative and hence stabilising. How-
ever, it is evident that, depending on aircraft geometry, hF may be small and may even
change sign at extreme aircraft attitude. Thus at certain flight conditions the contri-
bution to rolling moment due to sideslip arising from the fin may become positive
and hence laterally destabilising.

An estimate of the total value of the derivative Lv is obtained by summing the esti-
mates of all the contributions for which a value can be obtained. Since the value of the
derivative is usually small and negative, and hence stabilising, even small inaccuracies
in the estimated values of the contributions can lead to a very misleading conclusion.
Since the derivative is so important in the determination of the lateral stability and
control characteristics of an aeroplane the ESDU data items include a comprehensive
procedure for estimating meaningful values of the significant contributions. Although,
collectively, all the contributions probably embrace the most complex aerodynamics
of all the derivatives it is, fortunately, relatively easy to measure in both a wind tunnel
test and in a flight test.

◦
Nv = ∂N

∂V
Yawing moment due to sideslip

The weathercock or, directional static stability of an aircraft is determined by the
yawing moment due to sideslip derivative. It quantifies the tendency of the aeroplane
to turn into wind in the presence of a sideslip disturbance. Directional static stability is
also discussed in greater detail in Section 3.5. In a sideslip disturbance the resulting
lift increments arising from wing dihedral, wing sweep, wing–fuselage geometry,
etc., as described previously, also give rise to associated increments in induced drag.
The differential drag effects across the wing span give rise in turn to contributions
to yawing moment due to sideslip. However, these contributions are often regarded
as insignificant compared with that due to the fin, at least for preliminary estimates.
Note that in practice the additional contributions may well be significant and that by
ignoring them a degree of inaccuracy is implied in the derivative estimate.
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With reference to Figs. 13.4 and 13.9 consider only the fin contribution which arises
from the turning moment in yaw caused by the fin side force resulting from the
sideslip. By definition this may be quantified as follows

v
◦

Nv(fin) = −lF YF = 1

2
ρV 2

0 SF a1F βlF (13.110)

where the fin side force due to sideslip is given by equation (13.79). Substitute for β

from equation (13.78) to obtain the expression for the dimensional derivative

◦
Nv(fin) = 1

2
ρV0SF a1F lF (13.111)

and with reference to Appendix 2, the dimensionless form of the derivative is given by

Nv(fin) =
◦

Nv(fin)
1
2ρV0Sb

= V F a1F (13.112)

Note that the sign of Nv is positive which indicates that it is stabilising in effect.
In a positive sideslip the incident wind vector is offset to the right of the nose, see
Fig. 13.4, and the stabilising yawing moment due to sideslip results in a positive yaw
response to turn the aircraft to the right until the aircraft aligns directionally with the
wind vector. The yawing effect of the sideslip is thus nullified. The contribution from
the wing due to differential drag effects is also usually stabilising and may well become
the most significant contribution at high angles of attack since a large part of the fin
may become immersed in the forebody wake, with the consequent reduction in its
aerodynamic effectiveness. The contribution from the lateral drag effects on the gross
side area ahead of and behind the cg may also be significant. However, it is commonly
found that the yawing moment due to sideslip arising from the side area is often
negative, and hence destabilising. For certain classes of aircraft, such as large transport
aeroplanes, this destabilising contribution can be very significant and requires a very
large fin to ensure a reasonable degree of aerodynamic directional stability.

13.3.3 Derivatives due to rate of roll

As seen by the pilot, positive roll is to the right, is consistent with a down going
right wing and the small perturbation roll rate transient is denoted p. The nature of
a free positive roll rate disturbance is such that as the right wing tends to drop it is
accompanied by a tendency for the nose to turn to the right and for the aeroplane
to sideslip to the right. The reaction to the roll rate disturbance is stabilising if the
aerodynamic forces and moments produced in response tend to restore the aeroplane
to a wings level zero sideslip equilibrium state.

◦
Yp = ∂Y

∂p
Side force due to roll rate

The side force due to roll rate is usually considered to be negligible except for aircraft
with a large high aspect ratio fin. Even then, the effect may well be small. Thus the fin
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Figure 13.10 Fin side force generation in rolling flight.

contribution is assumed to be the only significant contribution to the derivative and
may be estimated as follows.

With reference to Fig. 13.10, consider the chordwise strip element on the fin of
width dh and at coordinate h measured upwards from the ox axis. When the aeroplane
experiences a positive roll rate disturbance p the strip element on the fin experiences a
lateral velocity component ph. The resultant total velocity transient V is at incidence
α′ to the fin and, since the incidence transient is small by definition

α′ ∼= tan α′ = ph

V0
(13.113)

The incidence transient causes a fin lift transient, which resolves into a lateral force
increment δY on the chordwise strip element and is given by

δY = −1

2
ρV 2

0 chdhahα
′ = −1

2
ρV0pahchh dh (13.114)

where ah is the local lift curve slope and ch is the local chord. The total side force
transient acting on the fin in the roll rate disturbance is given by integrating equation
(13.114) from the root to the tip of the fin and by definition

p
◦

Yp(fin) = YF = −1

2
ρV0p

∫ HF

0
ahchh dh (13.115)
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where HF is the fin span measured from the ox axis. The expression for the fin
contribution to the dimensional derivative is therefore given by

◦
Yp(fin) = −1

2
ρV0

∫ HF

0
ahchh dh (13.116)

and with reference to Appendix 2, the dimensionless form of the derivative is
given by

Yp(fin) =
◦

Yp(fin)
1
2ρV0Sb

= − 1

Sb

∫ HF

0
ahchh dh (13.117)

◦
Lp = ∂L

∂p
Rolling moment due to roll rate

Rolling moment due to roll rate arises largely from the wing with smaller contribu-
tions from the fuselage, tailplane and fin. This derivative is most important since it
quantifies the damping in roll and is therefore significant in determining the dynamic
characteristics of the roll subsidence mode, discussed in some detail in Section 7.2.
The following analysis considers the wing contribution only.

With reference to Fig. 13.11, when the right wing panel experiences a positive
perturbation in roll rate p, assuming the aircraft rolls about the ox axis, then the small
increase in incidence α′ at the chordwise strip element is given by

α′ ∼= tan α′ = py

V0
(13.118)

There is, of course, a reduction in incidence on the corresponding chordwise strip
element on the left wing panel. Denoting the total lift and drag increments in

s � b/2
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Figure 13.11 Wing incidence in rolling flight.
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the disturbance on the chordwise strip element on the right wing panel L′ and D′
respectively then

L′ = 1

2
ρV 2

0 cy dyay(αe + α′) (13.119)

and

D′ = 1

2
ρV 2

0 cy dyCDy (13.120)

The normal force increment δZ(right) acting at the chordwise strip element in the roll
rate perturbation is given by

δZ(right) = −L′ cos α′ − D′ sin α′ ∼= −L′ − D′α′ (13.121)

since α′ is a small angle. Substitute for L′, D′ and α′ from equations (13.119), (13.120)
and (13.118) respectively to obtain

δZ(right) = −1

2
ρV 2

0

(
ayαe + (ay + CDy )

py

V0

)
cy dy (13.122)

The resulting increment in rolling moment is then given by

δL(right) = yδZ(right) = −1

2
ρV 2

0

(
ayαe + (ay + CDy )

py

V0

)
cyy dy (13.123)

and the corresponding increment in rolling moment arising from the left wing panel,
where the incidence is reduced by α′ since the panel is rising with respect to the
incident air flow, is given by

δL(left) = −yδZ(left) = 1

2
ρV 2

0

(
ayαe − (ay + CDy )

py

V0

)
cyy dy (13.124)

The total rolling moment due to roll rate is obtained by summing the increments
from the right and left chordwise strips, given by equations (13.123) and (13.124)
respectively, and integrating from the root to the tip of the wing

Ltotal =
∫

span

(δL(left) + δL(right)) = −ρV0p

∫ s

0
(ay + CDy )cyy2dy (13.125)

and by definition,

p
◦

Lp = Ltotal = −ρV0p

∫ s

0
(ay + CDy )cyy2dy (13.126)

Whence, the dimensional derivative expression is given by

◦
Lp = −ρV0

∫ s

0
(ay + CDy )cyy2dy (13.127)
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and with reference to Appendix 2, the dimensionless form of the derivative is given by

Lp =
◦

Lp
1
2ρV0Sb2

= − 1

2Ss2

∫ s

0
(ay + CDy )cyy2dy (13.128)

where b = 2s is the wing span.

◦
Np = ∂N

∂p
Yawing moment due to roll rate

Yawing moment due to roll rate is almost entirely determined by the wing contribu-
tion, although in some aircraft a large fin may give rise to a significant additional
contribution. Only the wing contribution is considered here.

It is shown in Fig. 13.11 that in a roll rate perturbation the chordwise strip element
on the right (down going) wing experiences an incremental increase in lift and induced
drag, given by equations (13.119) and (13.120), whilst there is an equal decrease in
lift and induced drag on the corresponding strip on the left (up going) wing. The
differential drag thereby produced gives rise to the yawing moment perturbation.

With reference to Fig. 13.11, the longitudinal axial force increment acting on the
chordwise strip element on the right wing panel is given by

δX(right) = L′ sin α′ − D′ cos α′ ∼= L′α′ − D′ (13.129)

Substitute for L′ and D′ from equations (13.119) and (13.120) respectively and write

CDy = dCD

dαy
(αe + α′) (13.130)

to obtain

δX(right) = 1

2
ρV 2

0

(
ayα

′ − dCD

dαy

)
(αe + α′)cydy (13.131)

The incremental axial force gives rise to a negative increment in yawing moment
given by

δN(right) = −yδX(right) = −1

2
ρV 2

0

(
ayα

′ − dCD

dαy

)
(αe + α′)cyy dy (13.132)

The reduction in incidence due to roll rate on the corresponding chordwise strip
element on the left wing panel gives rise to a positive increment in yawing moment
and, in a similar way, it may be shown that

δN(left) = yδX(left) = −1

2
ρV 2

0

(
ayα

′ + dCD

dαy

)
(αe − α′)cyy dy (13.133)

The total yawing moment increment due to roll rate is given by summing equations
(13.132) and (13.135) and substituting for α′ from equation (13.118)

δNtotal = δN(left) + δN(right) = −ρV0p

(
ayαe − dCD

dαy

)
cyy2 dy (13.134)
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By definition the total yawing moment due to roll rate is given by

p
◦

Np = Ntotal =
∫

semi
span

δNtotal = −ρV0p

∫ s

0

(
ayαe − dCD

dαy

)
cyy2dy (13.135)

Whence, the expression for the dimensional derivative

◦
Np = −ρV0

∫ s

0

(
CLy − dCD

dαy

)
cyy2dy (13.136)

where CLy = ayαe is the equilibrium local lift coefficient. With reference to
Appendix 2, the dimensionless form of the derivative is given by

Np =
◦

Np
1
2ρV0Sb2

= − 1

2Ss2

∫ s

0

(
CLy − dCD

dαy

)
cyy2dy (13.137)

13.3.4 Derivatives due to rate of yaw

As seen by the pilot, a positive yaw rate is such that the nose of the aeroplane swings
to the right and the small perturbation yaw rate transient is denoted r. The nature of a
free positive yaw rate disturbance is such that as the nose swings to the right, the right
wing tends to drop and the aeroplane sideslips to the right. The reaction to the yaw
rate disturbance is stabilising if the aerodynamic forces and moments produced in
response tend to restore the aeroplane to a symmetric wings level equilibrium flight
condition.

◦
Yr = ∂Y

∂r
Side force due to yaw rate

For most conventional aeroplanes the side force due to yaw rate is insignificant unless
the fin is relatively large. In such cases the fin lift generated by the yawing motion
gives rise to a side force of significant magnitude.

Referring to Fig. 13.12, in a yaw rate perturbation the transient incidence of the
fin may be written

α′ ∼= tan α′ = rlF
V0

(13.138)

where lF is the moment arm of the fin aerodynamic centre about the centre of rotation
in yaw, the cg, and by definition, the incidence transient is a small angle. The resultant
transient fin lift L′

F gives rise to a side force YF

YF = L′
F cos α′ ∼= 1

2
ρV 2

0 SF a1F α′ = 1

2
ρV0SF lF a1F r (13.139)

By definition, the side force arising in a yaw rate disturbance is given by

r
◦

Yr = YF = 1

2
ρV0SF lF a1F r (13.140)
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Figure 13.12 Fin incidence due to yaw rate.

Whence, the expression for the dimensional side force due to yaw rate derivative is
given by

◦
Yr = 1

2
ρV0SF lF a1F (13.141)

and with reference to Appendix 2, the dimensionless form of the derivative is
given by

Yr =
◦

Yr
1
2ρV0Sb

= V F a1F (13.142)

where the fin volume ratio V F is given by equation (13.109). Clearly, the resolved
component of the induced drag transient on the fin D′

F will also make a contribution to
the total side force transient. However, this is usually considered to be insignificantly
small compared with the lift contribution.

◦
Lr = ∂L

∂r
Rolling moment due to yaw rate

In positive yawing motion the relative velocity of the air flowing over the right wing
panel is decreased whilst the velocity over the left wing panel is increased. This gives
rise to an increase in lift and induced drag on the port wing with a corresponding
decrease in lift and drag on the starboard wing. The force increments thus produced
result in a rolling moment and a yawing moment about the cg. A contribution to
rolling moment also arises due to the side force generated by the fin in yawing motion
although it is generally smaller than the wing contribution.
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Figure 13.13 Wing forces due to yaw rate.

With reference to Fig. 13.13, the velocity at the chordwise strip element on the
right wing during a yaw rate perturbation is given by

V = V0 − ry (13.143)

and the total lift on the chordwise strip element during the perturbation is given by

δL′
(right) = 1

2
ρV 2cydyCLy = 1

2
ρ(V0 − ry)2cy dyCLy

(13.144)

= 1

2
ρ(V 2

0 − 2ryV0)cy dyCLy

when products of small quantities are neglected. The rolling moment due to the lift
on the chordwise strip element on the right wing is therefore given by

δL(right) = −δL′
(right)y = −1

2
ρ(V 2

0 − 2ryV0)cyy dyCLy (13.145)

Similarly, the rolling moment due to the lift on the chordwise strip element on the
left wing is given by

δL(left) = δL′
(left)y = 1

2
ρ(V 2

0 + 2ryV0)cyy dyCLy (13.146)

Thus the total rolling moment due to yaw rate arising from the wing is given
by integrating the sum of the components due to the chordwise strip elements,
equations (13.145) and (13.146), over the semi-span

Lwing =
∫

semi
span

(δL(left) + δL(right)) = 2ρV0r

∫ s

0
CLy cyy2dy (13.147)

By definition, the rolling moment due to wing lift in a yaw rate disturbance is given by

r
◦

Lr (wing) = Lwing = 2ρV0r

∫ s

0
CLy cyy2dy (13.148)
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Whence, the expression for the wing contribution to the dimensional rolling moment
due to yaw rate derivative is

◦
Lr (wing) = 2ρV0

∫ s

0
CLy cyy2dy (13.149)

and with reference to Appendix 2, the dimensionless form of the derivative is given by

Lr(wing) =
◦

Lr (wing)
1
2ρV0Sb2

= 1

Ss2

∫ s

0
CLy cyy2dy (13.150)

where b = 2s is the wing span.
Note that for a large aspect ratio rectangular wing it may be assumed that CLy = CL

the lift coefficient for the whole wing and that cy = c the constant geometric chord of
the wing. For this special case it is easily shown, from equation (13.150), that

Lr = 1

6
CL (13.151)

However, it should be appreciated that the assumption relating to constant lift
coefficient across the span is rather crude and consequently, the result given by equa-
tion (3.151) is very approximate although it can be useful as a guide for checking
estimated values of the derivative.

The fin contribution to the rolling moment due to yaw rate derivative arises from
the moment about the roll axis of the side force generated by the fin in yaw. The
side force is generated by the mechanism illustrated in Fig. 13.12 and acts at the
aerodynamic centre of the fin, which is usually above the roll axis, and hence, gives
rise to a positive rolling moment. The situation prevailing is illustrated in Fig. 13.14.

x
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Figure 13.14 Rolling moment due to yaw rate arising from the fin.
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With reference to Fig. 13.14, a rolling moment is developed by the fin side force
due to yaw rate YF , which is given by equation (13.139), acting at the aerodynamic
centre which is located hF above the roll axis. Whence, the rolling moment is given by

Lfin = YF hF = 1

2
ρV0SF lF a1F rhF (13.152)

By definition, the rolling moment due to fin side force in a yaw rate disturbance is
given by

r
◦

Lr (fin) = Lfin = 1

2
ρV0SF lF a1F rhF (13.153)

Whence, the fin contribution to the dimensional derivative is given by

◦
Lr (fin) = 1

2
ρV0SF lF a1F hF (13.154)

As before, and with reference to Appendix 2, the dimensionless form of the derivative
is given by

Lr(fin) =
◦

Lr (fin)
1
2ρV0Sb2

= a1F V F
hF

b
≡ −Lv(fin)

lF
b

(13.155)

The total value of the rolling moment due to yaw rate derivative is then given by the
sum of all the significant contributions.

◦
Nr = ∂N

∂r
Yawing moment due to yaw rate

The yawing moment due to yaw rate derivative is an important parameter in the deter-
mination of aircraft directional stability. In particular it is a measure of the damping in
yaw and is therefore dominant in determining the stability of the oscillatory dutch roll
mode. This significance of this derivative to lateral–directional dynamics is discussed
in detail in Section 7.2. The most easily identified contributions to yaw damping arise
from the fin and from the wing. However, it is generally accepted that the most sig-
nificant contribution arises from the fin, although in some aircraft the fin contribution
may become significantly reduced at high angles of attack in which case the wing
contribution becomes more important.

Considering the wing contribution first. This arises as a result of the differential drag
effect in yawing motion as illustrated in Fig. 13.13. Referring to Fig. 13.13, the total
drag on the chordwise strip element on the right wing subject to a steady yaw rate r is
reduced for the same reason as the lift, given by equation (13.144), and may be written

δD′
(right) = 1

2
ρ(V 2

0 − 2ryV0)cydyCDy (13.156)

The yawing moment about the cg generated by the drag on the chordwise strip
element is

δN(right) = δD′
(right)y = 1

2
ρ(V 2

0 − 2ryV0)cyydyCDy (13.157)
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and similarly for the yawing moment arising at the corresponding chordwise strip on
the left wing

δN(left) = −δD′
(left)y = −1

2
ρ(V 2

0 + 2ryV0)cyydyCDy (13.158)

Thus, the total yawing moment due to yaw rate arising from the wing is given
by integrating the sum of the components due to the chordwise strip elements,
equations (13.157) and (13.158), over the semi-span

Nwing =
∫

semi
span

(
δN(right) − δN(left)

) = −2ρV0r

∫ s

0
CDy cyy2dy (13.159)

By definition, the yawing moment due to differential wing drag in a yaw rate
perturbation is given by

r
◦

Nr (wing) = Nwing = −2ρV0r

∫ s

0
CDy cyy2dy (13.160)

Whence, the expression for the wing contribution to the dimensional yawing moment
due to yaw rate derivative is

◦
Nr (wing) = −2ρV0

∫ s

0
CDy cyy2dy (13.161)

and with reference to Appendix 2, the dimensionless form of the derivative is given by

Nr(wing) =
◦

Nr (wing)
1
2ρV0Sb2

= − 1

Ss2

∫ s

0
CDy cyy2dy (13.162)

where b = 2s is the wing span.
As for the derivative Lr , for a large aspect ratio rectangular wing it may be assumed

that CDy = CD the drag coefficient for the whole wing and that cy = c the con-
stant geometric chord of the wing. For this special case it is easily shown, from
equation (13.162), that

Nr(wing) = 1

6
CD (13.163)

Although the result given by equation (13.163) is rather approximate and subject to
the assumptions made, it is useful as a guide for checking the value of an estimated
contribution to the derivative.

The fin contribution to yawing moment due to yaw rate is generated by the yawing
moment of the fin side force due to yaw rate. The mechanism for the generation
of fin side force is illustrated in Fig. 13.12 and with reference to that figure and to
equation (13.139), the yawing moment thereby generated is given by

Nfin = −YF lF = −1

2
ρV0SF l2

F a1F r (13.164)
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By definition, the yawing moment due to the fin in a yaw rate perturbation is given by

r
◦

Nr (fin) = Nfin = −1

2
ρV0SF l2

F a1F r (13.165)

Whence, the expression for the fin contribution to the dimensional yawing moment
due to yaw rate derivative is

◦
Nr (fin) = −1

2
ρV0SF l2

F a1F (13.166)

As before, and with reference to Appendix 2, the dimensionless form of the derivative
is given by

Nr(fin) =
◦

Nr (fin)
1
2ρV0Sb2

= −a1F V F
lF
b

= − lF
b

Nv(fin) (13.167)

The fin volume ratio V F is given by equation (13.109). The total value of the yawing
moment due to yaw rate derivative is therefore given by the sum of all the significant
contributions.

13.4 AERODYNAMIC CONTROL DERIVATIVES

Estimates may be made for the aerodynamic control derivatives provided that the
controller in question is a simple flap like device and provided that its aerodynamic
properties can be modelled with a reasonable degree of confidence. However, esti-
mates of the aileron and rudder control derivatives obtained from simple models are
unlikely to be accurate since it is very difficult to describe the aerodynamic conditions
applying in sufficient detail. Estimates for the lateral–directional aerodynamic control
derivatives are best obtained from the appropriate ESDU data items or, preferably, by
experimental measurement. However, simple models for the aileron and rudder con-
trol derivatives are given here for completeness and in order to illustrate the principles
of lateral–directional control.

For convenience, a summary of the derivative expressions derived in the following
paragraphs are included in Tables A8.3 and A8.4.

13.4.1 Derivatives due to elevator

Typically, the lift coefficient for a tailplane with elevator control is given by

CLT = a0 + a1αT + a2η (13.168)

where a1 is the lift curve slope of the tailplane and a2 is the lift curve slope with
respect to elevator angle η. The corresponding drag coefficient may be expressed

CDT = CD0T
+ kT C2

LT
(13.169)

where all of the parameters in equation (13.169) are tailplane dependent.
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◦
Xη = ∂X

∂η
Axial force due to elevator

It is assumed that for a small elevator deflection, consistent with a small perturbation,
the resulting axial force perturbation arises from the drag change associated with the
tailplane only. Whence

X ≡ XT = −DT = −1

2
ρV 2ST CDT (13.170)

Thus

◦
Xη = ∂XT

∂η
= −1

2
ρV 2ST

∂CDT

∂η
(13.171)

Substitute for CDT , from equation (13.169), into equation (13.171) to obtain

◦
Xη = ∂XT

∂η
= −ρV 2ST kT CLT

∂CLT

∂η
(13.172)

For a small perturbation, in the limit V ∼= V0, from equation (13.168) ∂CLT /∂η ∼= a2

and equation (13.172) may be written

◦
Xη = −ρV 2

0 ST kT CLT a2 (13.173)

With reference to Appendix 2, the dimensionless form of the derivative is given by

Xη =
◦

Xη

1
2ρV 2

0 S
= −2

ST

S
kT CLT a2 (13.174)

◦
Zη = ∂Z

∂η
Normal force due to elevator

As before, it is assumed that for a small elevator deflection the resulting normal force
perturbation arises from the lift change associated with the tailplane only. Whence

Z ≡ ZT = −LT = −1

2
ρV 2ST CLT (13.175)

Thus

◦
Zη = ∂ZT

∂η
= −1

2
ρV 2ST

∂CLT

∂η
(13.176)

Substitute for CLT , from equation (13.168) to obtain

◦
Zη = ∂ZT

∂η
= −1

2
ρV 2ST a2 (13.177)
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For a small perturbation, in the limit V ∼= V0 and with reference to Appendix 2, the
dimensionless form of the derivative is given by

Zη =
◦

Zη

1
2ρV 2

0 S
= −ST

S
a2 (13.178)

◦
Mη = ∂M

∂η
Pitching moment due to elevator

It is assumed that the pitching moment resulting from elevator deflection is due
entirely to the moment of the tailplane lift about the cg. Whence

M ≡ MT = −LT lT = −1

2
ρV 2ST lT CLT (13.179)

Thus, it follows that

◦
Mη = ∂MT

∂η
= −1

2
ρV 2ST lT

∂CLT

∂η
= ◦

ZηlT (13.180)

With reference to Appendix 2, the dimensionless form of the derivative is given by

Mη =
◦

Mη

1
2ρV 2

0 Sc
= −ST lT

Sc
a2 = −V T a2 (13.181)

where V T is the tail volume ratio.

13.4.2 Derivatives due to aileron

Typical aileron geometry is shown in Fig. 13.15 and comprises a part span flap in
the outboard sections of both port and starboard wings. Differential deflection of the
flaps creates the desired control in roll. As described in Section 2.6, a positive aileron
deflection results in the starboard (right) surface deflecting trailing edge down and
the port (left) surface trailing edge up and aileron angle ξ is taken to be the mean of
the two surface angles. Thus, referring to equation (13.168), the local lift coefficient
at spanwise coordinate y is given by

CLy

∣∣
right

= a0 + ayα + a2Aξ

CLy

∣∣
left

= a0 + ayα − a2Aξ (13.182)

Since it is not practical to define a simple model for the increment in local drag
coefficient due to aileron deflection, let it be defined more generally as

CDy

∣∣
right

= ∂CDy

∂ξ
ξ

(13.183)
CDy

∣∣
left

= −∂CDy

∂ξ
ξ
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Figure 13.15 Aileron control geometry.

where it is assumed that for small aileron angles, the change in drag ∂CDy /∂ξ is
dominated by induced drag effects and may vary over the aileron span.

◦
Yξ = ∂Y

∂ξ
Side force due to aileron

For aeroplanes of conventional layout the side force due to aileron is zero or insignif-
icantly small. However, for aeroplanes of unconventional layout, with highly swept
wings or that utilise differential canard surfaces for roll control, this may not be the
case. In such cases, simple analytical models would not be the most appropriate means
for obtaining an estimate of the derivative value.

◦
Lξ = ∂L

∂ξ
Rolling moment due to aileron

This derivative describes the roll control property of the aeroplane and an accurate
estimate of its value is important to flight dynamics analysis. With reference to equa-
tions (13.182) and Fig. 13.15, the application of simple strip theory enables the rolling
moment due to starboard aileron deflection to be written

Lright = −1

2
ρV 2

∫ y2

y1

CLy

∣∣
right

cyy dy = −1

2
ρV 2

∫ y2

y1

(a0+ayα+a2Aξ)cyy dy (13.184)

where a2A is the aileron lift curve slope, which is assumed to be constant over the
span of the aileron. Similarly, the rolling moment due to port aileron deflection may
be written

Lleft = 1

2
ρV 2

∫ y2

y1

CLy

∣∣
left

cyy dy = 1

2
ρV 2

∫ y2

y1

(a0+ayα−a2Aξ)cyy dy (13.185)

It follows that the total rolling moment may be written

◦
Lξξ = Lright + Lleft = −ρV 2(a2Aξ)

∫ y2

y1

cyy dy (13.186)
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Whence, the simple expression for the dimensional derivative

◦
Lξ = −ρV 2a2A

∫ y2

y1

cyy dy (13.187)

Alternatively, with reference to Appendix 2, the dimensionless derivative may be
written

Lξ =
◦

Lξ

1
2ρV 2

0 Sb
= − 1

Ss
a2A

∫ y2

y1

cyy dy (13.188)

where b = 2s is the wing span.

◦
Nξ = ∂N

∂ξ
Yawing moment due to aileron

This derivative describes the adverse yaw property of the aeroplane in response to
aileron roll commands. With reference to equations (13.183) and Fig. 13.15, the
application of simple strip theory enables the yawing moment due to starboard aileron
deflection to be written

Nright = 1

2
ρV 2

∫ y2

y1

CDy

∣∣
right

cyy dy = 1

2
ρV 2

∫ y2

y1

(
∂CDy

∂ξ
ξ

)
cyy dy (13.189)

and similarly, the yawing moment due to port aileron deflection may be written

Nleft = −1

2
ρV 2

∫ y2

y1

CDy

∣∣
left

cyy dy = −1

2
ρV 2

∫ y2

y1

(
−∂CDy

∂ξ
ξ

)
cyy dy (13.190)

It follows that the total yawing moment may be written

◦
Nξξ = Nright + Nleft = ρV 2

∫ y2

y1

(
∂CDy

∂ξ
ξ

)
cyy dy (13.191)

Whence, a simple expression for the dimensional derivative

◦
Nξ = ρV 2

∫ y2

y1

(
∂CDy

∂ξ

)
cyy dy (13.192)

Alternatively, with reference to Appendix 2, the dimensionless derivative may be
written

Nξ =
◦

Nξ

1
2ρV 2

0 Sb
= 1

Ss

∫ y2

y1

(
∂CDy

∂ξ

)
cyy dy (13.193)

13.4.3 Derivatives due to rudder

In normal trimmed flight the fin and rudder generate zero side force. Deflection of
the rudder ζ, and in the notation a positive rudder angle is trailing edge to the left,
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generates a positive side force which gives rise to both rolling and yawing moments.
With reference to Fig. 13.14, for example, it is assumed that the side force acts at
the aerodynamic centre of the fin which is located a distance lF aft of the cg and a
distance hF above the cg. Since the aerodynamics of the fin and rudder will inevitably
be significantly influenced by the presence of the aft fuselage and the horizontal
tailplane, the accuracy of the following models is likely to be poor

◦
Yζ = ∂Y

∂ζ
Side force due to rudder

The side force generated by the fin when the rudder angle is ζ is given approximately by

Y = 1

2
ρV 2SF a2Rζ (13.194)

and by definition

◦
Yζζ = Y = 1

2
ρV 2SF a2Rζ (13.195)

Where a2R is the rudder lift curve slope, which is assumed to be constant over the
span of the fin and rudder. Whence the very simple expression for the dimensional
derivative

◦
Yζ = 1

2
ρV 2SF a2R (13.196)

Alternatively, with reference to Appendix 2, the dimensionless derivative may be
written

Yζ =
◦

Yζ

1
2ρV 2

0 S
= SF

S
a2R (13.197)

◦
Lζ = ∂L

∂ζ
Rolling moment due to rudder

This derivative describes the adverse roll property of the aeroplane in response to
rudder yaw commands. Since the side force due to rudder acts above the roll axis, the
rolling moment due to rudder follows directly

◦
Lζ ζ = YhF = 1

2
ρV 2SF hF a2Rζ (13.198)

Thus a simple expression for the dimensional derivative is

◦
Lζ = 1

2
ρV 2SF hF a2R (13.199)
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and, with reference to Appendix 2, an expression for the dimensionless derivative
may be written

Lζ =
◦

Lζ

1
2ρV 2

0 Sb
= SF hF

Sb
a2R ≡ V F

hF

lF
a2R (13.200)

where V F is the fin volume ratio.

◦
Nζ = ∂N

∂ζ
Yawing moment due to rudder

This derivative describes the yaw control property of the aeroplane and, again, an
accurate estimate of its value is important to flight dynamics analysis. Since the side
force due to rudder acts well behind the cg it generates a yawing moment described
as follows:

◦
Nζζ = −YlF = −1

2
ρV 2SF lF a2Rζ (13.201)

Thus, the simple expression for the dimensional derivative is

◦
Nζ = 1

2
ρV 2SF lF a2R (13.202)

and, with reference to Appendix 2, an expression for the dimensionless derivative
may be written

Nζ =
◦

Nζ

1
2ρV 2

0 Sb
= −SF lF

Sb
a2R ≡ −V F a2R (13.203)

13.5 NORTH AMERICAN DERIVATIVE COEFFICIENT NOTATION

An alternative notation for the dimensionless aerodynamic stability and control
derivatives, based on the derivatives of aerodynamic force and moment coefficients,
is the standard notation in North America and is commonly used in Europe and
elsewhere. Interpretation of the derivatives as quasi-static representations of contin-
uously varying aerodynamic properties of the aircraft remains the same as described
in Section 12.2.

To illustrate the mathematical derivation of the coefficient notation, it is useful to
remember that in a non-steady flight condition, with perturbed velocity V , the lift
and drag force are described in terms of the dimensionless lift and drag coefficients
respectively, namely

L = 1

2
ρV 2SCL

D = 1

2
ρV 2SCD
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In a similar way, the aerodynamic forces and moments in the American normalised
dimensional equations of motion (4.72) and (4.73) may be written in terms of
dimensionless coefficients. With reference to expressions (4.75), the normalised
longitudinal equations of motion (4.72) may thus be written

u̇ + qWe = X

m
= 1

m

(
1

2
ρV 2SCx

)
− gθ cos θe

ẇ − qUe = Z

m
= 1

m

(
1

2
ρV 2SCz

)
− gθ sin θe (13.204)

q̇ = M

Iy
= 1

Iy

(
1

2
ρV 2ScCm

)

and with reference to expressions (4.78) the normalised lateral–directional equations
of motion (4.73) may be written

v̇ − pWe + rUe = Y

m
= 1

m

(
1

2
ρV 2SCy

)
+ gφ cos θe + gψ sin θe

ṗ − Ixz

Ix
ṙ = L

Ix
= 1

Ix

(
1

2
ρV 2SbCl

)
(13.205)

ṙ − Ixz

Iz
ṗ = N

Iz
= 1

Iz

(
1

2
ρV 2SbCn

)

Note that, as written, equations (13.204) and (13.205) are referenced to a general air-
craft body axis system. However, as in the British notation, it is usual (and preferable)
to refer the dimensionless aerodynamic derivative coefficients to aircraft wind axes.

13.5.1 The longitudinal aerodynamic derivative coefficients

Consider the longitudinal equations of motion and by comparing equations (4.77) with
(13.204), in a perturbation the aerodynamic, thrust and control forces and moments
may be written

1

m

(
1

2
ρV 2SCx

)
= Xuu + Xẇẇ + Xww + Xqq + Xδeδe + Xδthδth

1

m

(
1

2
ρV 2SCz

)
= Zuu + Zẇẇ + Zww + Zqq + Zδeδe + Zδthδth (13.206)

1

Iy

(
1

2
ρV 2ScCm

)
= Muu + Mẇẇ + Mww + Mqq + Mδeδe + Mδthδth

In order to identify the dimensionless derivative coefficients the left hand sides of
equations (13.206) may be expanded in terms of partial derivative functions of the
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perturbation variables. This mathematical procedure and its application to aerody-
namic modelling of aircraft is described in Section 4.2.2. Thus, for example, the axial
force equation in (13.204) may be written

1

m

(
1

2
ρV 2SCx

)
= ρS

2m

⎛
⎜⎜⎝

∂(V 2Cx)

∂U
u + ∂(V 2Cx)

∂Ẇ
ẇ + ∂(V 2Cx)

∂W
w

+ ∂(V 2Cx)

∂q
q + ∂(V 2Cx)

∂δe
δe + ∂(V 2Cx)

∂δth
δth

⎞
⎟⎟⎠

= Xuu + Xẇẇ + Xww + Xqq + Xδeδe + Xδthδth (13.207)

Equating equivalent terms in equation (13.207), expressions for the normalised
derivatives, referred to aircraft wind axes, may thus be derived. Recall the following
derivative relationships for small perturbations from equations (13.5) and (13.6)

∂V

∂U
= 1

∂V

∂W
= 0

∂θ

∂U
= 0

∂θ

∂W
= 1

V
(13.208)

Expressions for the force coefficients follow directly from equations (13.8) and (13.9),
retaining the aerodynamic terms only

Cx = CL sin θ − CD cos θ (13.209)

Cz = −CL cos θ − CD sin θ (13.210)

Referring to the expressions (13.208) and equation (13.209) it follows that

Xu = ρS

2m

∂(V 2Cx)

∂U
= ρVS

2m

(
V

∂Cx

∂U
+ 2Cx

)

= ρVS

2m

(
V

∂CL

∂U
sin θ − V

∂CD

∂U
cos θ + 2CL sin θ − 2CD cos θ

)
(13.211)

In the limit, let the perturbation become vanishingly small such that θ → 0, V → V0

and Mach number M0 = V0/a then

Xu = −ρVS

2m

(
V

∂CD

∂V
+ 2CD

)
= −ρVS

2m

(
M

∂CD

∂M
+ 2CD

)

= −ρV0S

2m
(M0CDM + 2CD) (13.212)

It should be noted that ∂CD/∂V is not dimensionless and in order to render the deriva-
tive dimensionless, velocity dependency is replaced by Mach number dependency.
This also has the advantage that the model is not then limited to subsonic flight appli-
cations only. Note that equation (13.212) is the direct equivalent of that given in the
British notation as equation (12.9) and by equation (13.17).
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Similarly, referring to the expressions (13.208) and equation (13.209) it follows that

Xw = ρS

2m

∂(V 2Cx)

∂W
= ρVS

2m

(
V

∂Cx

∂W

)

= ρVS

2m

(
V

∂CL

∂W
sin θ − V

∂CD

∂W
cos θ + CL cos θ − CD sin θ

)

= ρVS

2m

(
∂CL

∂α
sin θ − ∂CD

∂α
cos θ + CL cos θ − CD sin θ

)
(13.213)

Since a wind axes reference is assumed W = We + w = w and w/V = tan α ∼= α for
small perturbations. As before, let the perturbation become vanishingly small such
that θ → 0 and V → V0 then

Xw = ρV0S

2m

(
CL − ∂CD

∂α

)
= ρV0S

2m
(CL − CDα ) (13.214)

Although the derivative Xẇ is usually negligibly small, its derivation in terms of the
dimensionless derivative coefficient is illustrated for completeness:

Xẇ = ρS

2m

∂(V 2Cx)

∂Ẇ
= ρVS

2m

(
V

∂Cx

∂ẇ

)
≡ ρVS

2m

(
∂Cx

∂α̇

)

= ρVS

2m

(
c

2V

)(
∂Cx

∂(α̇c/2V

)
(13.215)

Xẇ = ρSc

4m
Cxα̇

Since a wind axes reference is assumed W = We + w = w and Ẇ = ẇ. Also,
w/V = tan α ∼= α for small perturbations and it follows that ẇ/V ∼= α̇. Now the deriva-
tive ∂Cx/∂α̇ is not dimensionless as α̇ has units rad/s, and in order to render ∂Cx/∂α̇

dimensionless it is necessary to multiply α̇ by a longitudinal reference time value.
The value used for this purpose is c/2V , the time taken for the aircraft to traverse one
half chord length. It is not possible to take this reduction further without significant
additional analysis to define the dependency of Cx on α̇. In the context of the deriva-
tion of the equivalent British notation, the analysis is set out in Section 13.2.6 where
it is seen to describe tailplane aerodynamic response to downwash lag following a
perturbation in normal acceleration ẇ.

The derivative Xq is derived in a similar manner, and since Cxq is negligibly small for
small perturbations it is usual to omit Xq from the linear longitudinal aircraft model:

Xq = ρS

2m

∂(V 2Cx)

∂q
= ρV 2S

2m

∂Cx

∂q
= ρV 2S

2m

(
c

2V

)(
∂Cx

∂(qc/2V )

)

(13.216)

Xq = ρV0Sc

4m
Cxq

Again, it is not practical to take this reduction further without significant additional
analysis to define the dependency of Cx on pitch rate q. However, the analysis relating
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to the equivalent British notation is set out in Section 13.2.5 where it is seen to describe
tailplane aerodynamic response to a perturbation in pitch rate q.

The control derivatives may be dealt with generically as the independent variable
is control angle δ, with a subscript denoting the surface to which it relates and since it
is measured in radians it is treated as dimensionless. When δ is used to denote thrust
control, it is also treated as dimensionless and may be considered as a fraction of
maximum thrust or, equivalently, as a perturbation in throttle lever angle. Otherwise,
the derivation of Xδe and Xδth follows the same procedure:

Xδ = ρS

2m

δ(V 2Cx)

∂δ
= ρV 2S

2m

∂Cx

∂δ (13.217)

Xδ = ρV 2
0 S

2m
Cxδ

Again, it is not practical to take the derivation any further since it depends explicitly
on the aerodynamic and thrust control layout of a given aeroplane.

The normalised axial force derivative expressions given by equations (13.212)–
(13.217) are summarised in Appendix 7.

In a similar way, expressions for the normalised normal force derivatives in equa-
tion (13.206) may be derived in terms of dimensionless derivative coefficients, and
noting that the normal force coefficient Cz is given by equation (13.210). The results
of the derivations follow and are also summarised in Appendix 7.

Zu = −ρV0S

2m
(M0CLM + 2CL)

Zẇ = ρSc

4m
Czα̇

Zw = −ρV0S

2m
(CD + CLα ) (13.218)

Zq = ρV0Sc

m
Czq

Zδ = ρV 2
0 S

2m
Czδ

Since there are some small differences in the derivation of the moment derivatives, it
is useful to review the normalised pitching moment derivative definitions. As before,
the left hand side of the pitching moment equation from equations (13.206) may be
expanded in terms of partial derivative functions of the perturbation variables to give

1

Iy

(
1

2
ρV 2ScCm

)
= ρSc

2Iy

⎛
⎜⎜⎝

∂(V 2Cm)

∂U
u + ∂(V 2Cm)

∂Ẇ
ẇ + ∂(V 2Cm)

∂W
w

+∂(V 2Cm)

∂q
q + ∂(V 2Cm)

∂δe
δe + ∂(V 2Cm)

∂δth
δth

⎞
⎟⎟⎠

= Muu + Mẇẇ + Mww + Mqq + Mδeδe + Mδthδth

(13.219)
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Equating equivalent terms in equation (13.219), expressions for the normalised
pitching moment derivatives, referred to aircraft wind axes, may be derived as
follows:

Mu = ρSc

2Iy

∂(V 2Cm)

∂U
= ρVSc

2Iy

(
V

∂Cm

∂V
+ 2Cm

)

≡ ρVSc

2Iy

(
M

∂Cm

∂M
+ 2Cm

)
= ρVSc

2Iy
(MCmM + 2Cm) (13.220)

Again, remembering that for a wind axes reference U = Ue + u ≡ V and Mach
number M = V/a. To define the derivative Mu at the flight condition of interest, let the
perturbation become vanishingly small such that u → 0, hence V → V0 and M → M0.
Further, since the perturbation is a disturbance about trim and when the aircraft is in
trim the pitching moment is zero so, as the perturbation becomes vanishingly small
Cm → 0. Whence

Mu = ρV0Sc

2Iy
(M0CmM ) (13.221)

The remaining normalised pitching moment derivative expressions may be derived
in a similar manner, for example,

Mẇ = ρSc

2Iy

∂(V 2Cm)

∂Ẇ
= ρV 2Sc

2Iy

∂Cm

∂ẇ
= ρVSc

2Iy

∂Cm

∂α̇

= ρVSc

2Iy

(
c

2V

)
∂Cm

∂(α̇c/2V )
(13.222)

Mẇ = ρSc 2

4Iy
Cmα̇

and so on. Whence

Mw = ρV0Sc

2Iy
Cmα

Mq = ρV0Sc
2

4Iy
Cmq (13.223)

Mδ = ρV 2
0 Sc

2Iy
Cmδ

13.5.2 The lateral–directional aerodynamic derivative coefficients

Similarly, now consider the lateral–directional equations of motion and by comparing
equations (4.78), (4.79) and (4.80) with (13.183), in a perturbation the aerodynamic
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and control forces and moments may be written

1

m

(
1

2
ρV 2SCy

)
= Yvv + Ypp + Yrr + Yδξ δξ + Yδζ δζ

1

Ix

(
1

2
ρV 2SbCl

)
= Lvv + Lpp + Lrr + Lδξ δξ + Lδζ δζ (13.224)

1

Iz

(
1

2
ρV 2SbCn

)
= Nvv + Npp + Nrr + Nδξ δξ + Nδζ δζ

As before, the left hand sides of equations (13.224) may be expanded in terms of partial
derivative functions of the perturbation variables. Thus, for example, the lateral side
force equations in (13.224) may be written

1

m

(
1

2
ρV 2SCy

)
= ρV 2S

2m

(
∂Cy

∂v
v + ∂Cy

∂p
p + ∂Cy

∂r
r + ∂Cy

∂δξ

δξ + ∂Cy

∂δζ

δζ

)

= Yvv + Ypp + Yrr + Yδξ δξ + Yδζ δζ (13.225)

and it is assumed that in a small lateral–directional perturbation, the motion is decou-
pled from longitudinal motion such that velocity V is independent of the perturbation
variables. As before, equating terms in equation (13.225), expressions for the nor-
malised derivatives referred to aircraft wind axes may be derived. For a wind axes
reference v/V = tan β ∼= β, the small perturbation in sideslip angle. Whence

Yv = ρV 2S

2m

∂Cy

∂v
≡ ρVS

2m

∂Cy

∂β

Yv = ρV0S

2m
Cyβ (13.226)

or equivalently

Yβ = ρV 2
0 S

2m
Cyβ (13.227)

Although the derivatives Yp and Yr are usually insignificantly small, it is instructive
to review their derivation in terms of dimensionless coefficients.

Yp = ρV 2S

2m

∂Cy

∂p
= ρV 2S

2m

(
b

2V

)
∂Cy

∂(pb/2V )
= ρVSb

4m
Cyp

Yr = ρV 2S

2m

∂Cy

∂r
= ρV 2S

2m

(
b

2V

)
∂Cy

∂(rb/2V )
= ρVSb

4m
Cyr

Since the derivatives ∂Cp/∂p and ∂Cr/∂r are not dimensionless, it is necessary to
introduce the lateral reference time value b/2V as shown. Again, let the perturbation
become vanishingly small such that V → V0, then

Yp = ρV0Sb

4m
Cyp (13.228)
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Yr = ρV0Sb

4m
Cyr (13.229)

Similarly, the control derivatives may be derived

Yδ = ρV 2
0 S

2m
Cyδ (13.230)

By repeating this process, the roll and yawing moment normalised derivative
expressions may also be derived. For the rolling moment equation in equations
(13.224)

Lv = ρV0Sb

2Ix
Clβ or equivalently Lβ = ρV 2

0 Sb

2Ix
Clβ

Lp = ρV0Sb2

4Ix
Clp

(13.231)

Lr = ρV0Sb2

4Ix
Clr

Lδ = ρV 2
0 Sb

2Ix
Clδ

and for the yawing moment equation in equations (13.224)

Nv = ρV0Sb

2Iz
Cnβ or equivalently Nβ = ρV 2

0 Sb

2Iz
Cnβ

Np = ρV0Sb2

4Iz
Cnp

(13.232)

Nr = ρV0Sb2

4Iz
Cnr

Nδ = ρV 2
0 Sb

2Iz
Cnδ

The lateral–directional derivative expressions given by equations (13.226)–(13.232)
are also summarised in Appendix 7.

13.5.3 Comments

Today it is common for the equations of motion to be presented either in the British
notation or in the American notation, and further, the units in either notational style
can be Imperial or SI. In general, the notational style will depend on the source
of the aerodynamic model of the aircraft. It is therefore important that the modern
flight dynamicist becomes sufficiently dextrous to deal with the equations of motion
and aerodynamic model in whatever form they are presented. It is evident from the
foregoing that the differences between, for example, British dimensionless aerody-
namic derivatives and American aerodynamic derivative coefficients can be subtle,



Ch13-H6927.tex 30/6/2007 11: 47 Page 385

Aerodynamic Stability and Control Derivatives 385

and care must be exercised in their interpretation. It can be tempting to convert from
one notational style to another for various reasons, however, it cannot be emphasised
enough that this process can be fraught with pitfalls unless extreme care is exercised.
Experience shows that it is very easy to confuse the differences between the various
dimensionless derivative forms and even to make errors in the translation from one
style of units to another. It is therefore most advisable to conduct any flight dynamics
analysis of an aeroplane using the equations of motion and aerodynamic model in the
notational style presented by the source of that information. After all, irrespective of
notational style, all equations of motion appear in a similar format once reduced to
the state space form and their solution only differs by the applicable units.

REFERENCES

Babister, A.W. 1961: Aircraft Stability and Control. Pergamon Press, Oxford.
Babister, A.W. 1980: Aircraft Dynamic Stability and Response. Pergamon Press, Oxford.
ESDU Aerodynamics Series. 2006. Engineering Sciences Data, ESDU International Ltd.,

27 Corsham Street, London. www.esdu.com.
Hancock, G.J. 1995: An Introduction to the Flight Dynamics of Rigid Aeroplanes.

Ellis Horwood Ltd, Hemel Hempstead.

PROBLEMS

1. The centre of gravity of an aircraft is moved aft through a distance δh, derive
expressions relating the dimensionless longitudinal aerodynamic stability
derivatives before and after the cg shift.
For an aircraft in steady level flight, using the relevant reduced order solution
of the equations of motion, calculate the aft cg limit at which the phugoid mode
becomes unstable. The aircraft aerodynamic data, referred to wind axes, is given
as follows:

Air density ρ = 1.225 kg/m3

Velocity V0 = 560 kts
Aircraft mass m = 7930 kg
cg location h = 0.25
Wing area S = 24.15 m2

Mean chord c = 3.35 m
Tail moment arm lT = 4.57 m
Pitch inertia Iy = 35,251 kgm2

Dimensionless stability derivatives:

Xu = 0.03 Zq = 0
Xw = 0.02 Mu = 0.01
Xq = 0 Mw = −0.15
Zu = 0.09 Mẇ = 0
Zw = −2.07 Mq = −0.58

Assume that the moment of inertia in pitch remains constant. (CU 1979)
2. Show that, to a good approximation, the following expressions hold for the

dimensionless derivatives of a rigid aircraft in a glide with the engine off,
Xu ∼=−2CD and Zu ∼= −2CL.
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With power on in level flight, the lift coefficient at the minimum power speed
is given by

CLmp = √3πAeCD0

and the minimum power speed is given by

Vmp =
√

mg

ρSCLmp

Show that at the minimum power speed the thrust τmp and velocity Vmp satisfy
the relation

τmpV n
mp = k

and find corresponding values for the constants k and n. Hence show that

Xu = −(n + 2)CD (CU1982)

3. (i) Explain the physical significance of the aerodynamic stability derivative.
(ii) Discuss the dependence of Lv and Nv on the general layout of an aircraft.

(iii) Show that for an unswept wing with dihedral angle Γ, the effect of sideslip
angle β is to increase the incidence of the starboard wing by βΓ, where
both β and Γ are small angles.

(iv) Show that fin contribution to Nv is given by

Nv = a1F V F (CU1982)

4. The Navion light aircraft is a cantilevered low wing monoplane. The unswept
wing has a span of 10.59 m, a planform area of 17.12 m2 and dihedral angle 7.5◦.
The fin has a planform area of 0.64 m2, aspect ratio of 3.0 and its aerodynamic
centre is 5.5 m aft of the cg.

Derive an expression for the dimensionless derivative Nv. Find its value for
the Navion aircraft given that the lift curve slope a1 of a lifting panel may be
approximated by a0A/(A + 2), where a0 is its two dimensional lift curve slope
and A its aspect ratio. (CU 1983)

5. (i) What is roll damping and what are its main sources on an aeroplane?
(ii) Assuming roll damping to be produced entirely by the wing of an aero-

plane show that the dimensionless roll damping stability derivative Lp is
given by

Lp = − 1

2Ss2

∫ s

0
(ay + CDy )cyy2dy

(iii) The Navion light aeroplane has a straight tapered wing of span 33.4 ft, area
184 ft2 and root chord length 8 ft. At the given flight condition the wing
drag coefficient is 0.02 and the lift curve slope is 4.44 1/rad. Estimate a
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value for the dimensionless roll damping stability derivative Lp. Show all
working and state any assumptions made. (CU 1984)

6. Explain the physical significance of the aerodynamic stability derivatives Mu

and Mw.
The pitching moment coefficient for a wing is given by

Cm = k

γ
sin α

and

γ =
√(

1 − V 2

a2

)

where k and a are constants. Obtain expressions for the wing contributions to
Mu and Mw. (CU 1985)

7. What is roll damping? Explain why the aerodynamic stability derivative Lp must
always be negative.

An aircraft of mass 5100 kg, aspect ratio 10 and wing span 16 m is in level
flight at an equivalent airspeed of 150 kts when an aileron deflection of 5◦ results
in a steady roll rate of 15◦/s. The aileron aerodynamic characteristics are such
that a 10◦ deflection produces a lift increment of 0.8, the aileron centres of
pressure being at 6.5 m from the aircraft longitudinal axis. What is the value of
Lp for this aircraft. Take ρ = 1.225 kg/m3 and 1 kt = 0.515 m/s. (CU 1985)

8. What is dihedral effect? Explain the effect of the dihedral angle of a wing on
the dimensionless rolling moment due to sideslip derivative Lv.

Show that for a straight tapered wing of semi-span s, dihedral angle Γ, root
chord cr and tip chord ct :

Lv = −Γ

6

dCL

dα

(
cr + 2ct

cr + ct

)

assuming the lift curve slope to be constant with span.
Calculate the aileron angle required to maintain a steady forced wings level

sideslip angle of 5◦ given that the dimensionless rolling moment due to aileron
control derivative has the value −0.197 1/rad. It may be assumed that the rolling
moment due to sideslip is entirely due to dihedral effect. The straight tapered
wing of the aircraft has a mean chord of 2.4 m, a taper ratio of 1.8 and a dihedral
angle of 4◦. The lift curve slope of the wing may be assumed to have the constant
value of 5.0/rad. (CU 1987)

9. What is the significance of roll damping to the flying and handling qualities of
an aircraft?

Derive from first principles an expression for the stability derivative Lp, and
hence show that for an aircraft with a high aspect ratio rectangular wing the
derivative is given approximately by

Lp = − 1

12

(
CD + dCL

dα

)

State clearly the assumptions made in arriving at this result.



Ch13-H6927.tex 30/6/2007 11: 47 Page 388

388 Flight Dynamics Principles

The Lockheed NT-33A aircraft has a straight tapered wing of span 11.5 m
and is fitted with wing tip fuel tanks each of which has a capacity of 1045 l.
With one tank empty and the other full it is found that the minimum speed at
which wings level flight can be maintained is 168 kts with the maximum aileron
deflection of 15◦. When both wing tip tanks contain equal quantities of fuel an
aileron deflection of 5◦ results in a steady rate of roll of 17◦/s at a velocity of
150 kts. What is the value of the derivative Lp?

Assume an air density of 1.225 kg/m3, a fuel density of 0.8 kg/l, a wing area
of 22.23 m2 and that 1 kt is equivalent to 0.52 m/s. (CU 1990)

10. Show that for a wing with sweepback Λ and dihedral Γ:

Lv = − 2

Sb
(α sin Λ + Γ cos Λ)

∫ s sec Λ

0

(
dCL

dα

)

h
chh dh

where h is the spanwise coordinate along the quarter chord line. Assume the
following for a chordwise element of the wing

Chordwise velocity Vc = V (cos Λ + β sin Λ)
Velocity normal to wing Va = V (α + βΓ)

An aircraft has a wing with the following planform:

Sweep angle at 1
4 chord = 55◦

Dihedral angle = 3◦
Lift curve slope 5.8 1/rad at y = 0
Lift curve slope 0 1/rad at y = 10 m

1 m

6 m

10 m

x

y

Calculate the value of Lv when the aircraft is flying at an incidence of 2◦.
(LU 2001)

11. A three surface aeroplane has the following characteristics:

Foreplane Wing
Span = 4.0 m Span = 12.5 m
Area = 2 m2 Area = 25 m2

Lift curve slope = 3.2 1/rad Lift curve slope = 5.4 1/rad
Moment arm about cg = 5 m Aerodynamic centre = 0.2c

Tailplane Complete aircraft
Span = 5.0 m cg = 0.4c
Area = 6.0 m
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Lift curve slope = 3.5 1/rad
Moment arm about cg = 6.0 m
Tailplane efficiency (1 − dε/dα) = 0.95

When flying at a true airspeed of 100 m/s and an altitude where σ = 0.7,

determine for the complete aircraft (i.e. all three surfaces) values for
◦

Mw and
◦

Mq.
(LU 2002)

12. A tailless aircraft has the following characteristics:

Aerodynamic mean chord c = 3.0 m
cg position h = 0.15c
Aerodynamic centre h0 = 0.30c
Wing area S = 24 m2

Lift curve slope a = 5.4 1/rad

When the aircraft is flying at 200 m/s at sea level calculate
◦

Mw and
◦

Mq. Where
appropriate assume, ∂V /∂U = 0, ∂α/∂U = 0, ∂V/∂W = 0 and ∂α/∂W = 1/V .

When the aircraft is in cruising flight with CL = 0.3 and Cm0 = 0.045
determine a value for Mu. Assume that Cm is invariant with forward speed.

(LU 2004)
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Chapter 14

Coursework Studies

14.1 INTRODUCTION

A number of coursework studies, or assignments, have been prepared for assessing
the understanding and ability of graduate students to apply the material to protracted
exercises which are intended to reflect real-world practice. The four exercises include
in this chapter are typical of the basic evaluations that are undertaken routinely in
a professional flight dynamics environment and require the application of much of
the material in this book. Further, since the aircraft models are of real aircraft the
interested reader may easily expand the scope of the exercises by obtaining additional
information and data from the source references. The exercises provide an opportunity
for students to develop competence in the essential enabling skills relevant to the areas
of flight control, flight dynamics and flight test.

The notational style, theoretical background and other information has been edited
such that it is generally consistent with the material in this book, as far as that is
possible. However, care should be taken with units as both SI and American Imperial
units are used – again reflecting a relatively common situation in industry.

14.2 WORKING THE ASSIGNMENTS

Each assignment requires a mix of hand calculation, computational analysis and
graph plotting. Any convenient computational tools may be used, but they should be
identified in the report. The use of MATLAB, or Program CC, is essential for these
assignments, MS Excel may also be found useful for some data manipulation. Each
assignment is structured as a set of tasks which should be undertaken sequentially to
achieve satisfactory completion of the exercise. To provide experience of the solution
process, the tasks are set out in the order in which they must be completed since, in
most cases, each task builds on the output of the previous task. Clearly therefore, it
is most important that the solution process is undertaken in an orderly way, and that
the results of each task are assessed for correctness and validity before moving on to
the next task.

14.3 REPORTING

Plan and write a short report to summarise and present the results of each assignment
and note that accurate presentation of results is important. For example, strip chart
plots provide the most convenient illustration format for time history responses. Care
should be exercised to show and explain the steps in the working since the overall

390
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objective is to assess understanding, and not the ability to simply process sequential
calculations using tools like MATLAB, or similar software. Supporting material and
calculations may be included in appendices, but note that undocumented computer
printout is generally unacceptable.

ASSIGNMENT 1. STABILITY AUGMENTATION OF THE NORTH
AMERICAN X-15 HYPERSONIC RESEARCH
AEROPLANE

INTRODUCTION

The North American X-15 (Heffley and Jewell, 1972), was a hypersonic research
aeroplane which first flew in 1960. This rocket powered aeroplane was capable of
speeds as high as Mach 6 at up to 300,000 ft altitude. The aeroplane was carried
under a B-52 to an altitude of about 45,000 ft from which it was launched at a speed
of about Mach 0.8. Following the powered phase of flight, recovery entailed gliding
flight to a normal landing – much in the same way as the space shuttle recovery.

The first objective of the assignment is to review the stability and control proper-
ties of the aircraft for one typical flight condition. Since the aircraft was fitted with
damping augmentation in each axis, the second objective is to design a simple damp-
ing augmentation control law for each control axis and to show the improvement in
response thereby achieved.

THE AIRCRAFT MODEL

The aircraft equations of motion are given in the form of the decoupled state equations
as follows. The flight condition assumed corresponds with Mach 2.0 at an altitude of
60,000 ft.

The longitudinal state equation,

⎡
⎢⎢⎣

u̇
ẇ
q̇

θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.00871 −0.019 −135 −32.12
−0.0117 −0.311 1931 −2.246
0.000471 −0.00673 −0.182 0

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

6.24
−89.2
−9.80

0

⎤
⎥⎥⎦ δe

The lateral–directional state equation,
⎡
⎢⎢⎣

β̇

ṗ
ṙ
φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.127 0.0698 −0.998 0.01659
−2.36 −1.02 0.103 0
11.1 −0.00735 −0.196 0

0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β

p
r
φ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

−0.00498 0.0426
28.7 5.38
0.993 −6.90

0 0

⎤
⎥⎥⎦
[

δa

δr

]

Velocities are given in ft/s, angular velocities in rad/s and angles in rad. (g = 32.2 ft/s2)
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THE SOLUTION TASKS

(i) Set up the longitudinal output equation to include the additional variables angle
of attack α and flight path angle γ . Solve the longitudinal equations of motion
and obtain a full set of properly annotated transfer functions.

(ii) Review the longitudinal stability properties of the aeroplane and produce
response time histories to best illustrate the longitudinal stability modes.
Comment on the likely requirement for stability augmentation.

(iii) Set up the lateral–directional output equation, solve the lateral–directional
equations of motion and obtain a full set of properly annotated transfer functions.

(iv) Review the lateral–directional stability properties of the aeroplane and produce
response time histories to best illustrate the lateral–directional stability modes.
Comment on the likely requirement for stability augmentation.

(v) With the aid of an appropriate root locus plot for each control axis, design three
simple damping augmentation control laws. State the design decisions and the
expected change to the stability modes clearly. The root locus plots should be
annotated appropriately for this purpose.

(vi) Augment the open loop longitudinal state equation to include the control law,
thereby creating the closed loop state equation. Solve the closed loop equations
of motion and obtain a full set of properly annotated transfer functions.

(vii) Augment the open loop lateral–directional state equation to include the control
laws, thereby creating the closed loop state equation. Solve the closed loop
equations of motion and obtain a full set of properly annotated transfer functions.

(viii) Compare the longitudinal closed loop stability modes with those of the basic
airframe and produce time histories to best illustrate the improvements to the
response properties of the aeroplane.

(ix) Compare the lateral–directional closed loop stability modes with those of the
basic airframe and produce time histories to best illustrate the improvements to
the response properties of the aeroplane.

(x) Summarise the flight control system design and state the main changes seen in
the augmented aeroplane. Draw simple block diagrams to illustrate the structure
of the stability augmentation system.

REFERENCES

Heffley, R.K. and Jewell, W.F. 1972 Aircraft Handling Qualities Data. NASA Contractor
Report, NASA CR-2144, National Aeronautics and Space Administration, Washington
D.C. 20546.

(CU 2001)

ASSIGNMENT 2. THE STABILITY AND CONTROL CHARACTERISTICS OF
A CIVIL TRANSPORT AEROPLANE WITH RELAXED
LONGITUDINAL STATIC STABILITY

INTRODUCTION

The increasing use of fly-by-wire flight control systems in advanced civil transport
aeroplanes has encouraged designers to consider seriously the advantages of relaxing
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the longitudinal controls fixed static stability of the airframe. However, not all of
the changes to the flying qualities of the aircraft with relaxed static stability (RSS)
are beneficial and some degree of design compromise is inevitable. The purpose of
this assignment is to demonstrate by example typical changes to a conventional civil
transport aeroplane following relaxation of its controls fixed longitudinal stability
margin. The implications for flight control system design are not considered.

THE AIRCRAFT MODEL

The Convair CV-880 was a 130 passenger, four engined civil transport aeroplane
which first flew in 1960. It was very similar in layout to most other jet transport
aeroplanes of the time and had very benign stability and control characteristics. Flying
controls were entirely mechanical and comprised servo tab deflected ailerons, elevator
and rudder, together with power operated spoilers for additional lateral–directional
control. The aircraft does not appear to have been fitted with any kind of automatic
stabilisation system. Data for this exercise was obtained, or derived, from that given
by Heffley and Jewell (1972) and is reasonably accurate, as far as can be ascertained.
The data should be read in the context of the longitudinal geometry of the CV-880
shown in Fig.14.1. A typical level flight cruise condition has been selected for this
exercise defined by the following parameters:

Free stream Mach number M0 0.8
Free stream velocity V0 779 ft/s
Dynamic pressure Q = 1

2ρV 2
0 224 lb/ft2

Altitude h 35,000 ft
Air density ρ 0.000738 slug/ft3

Body trim incidence αe 4.7 degree

Horizon
HFD

ae

hT

ae

T

V0
Lw

lr

cg mgcac
M0

h0

ltr

LT
h

D

i W

HFD

Figure 14.1 Longitudinal geometry of the Convair CV-880.
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Aircraft geometric, weight and cg information are given as follows:

Weight W 155,000 Lb
Mass m 4814 slug
Moment of inertia in pitch Iy 2,510,000 slug ft2

Mean geometric chord (mgc) c̄ 18.94 ft
Wing area Sw 2000 ft2

Wing span b 120 ft
Tailplane area ST 400 ft2

Tail moment arm lT 57 ft
Tailplane trim angle ηT −3.0 degree
cg position (referenced to mgc) h 0.25
Wing–body aerodynamic center h0 0.09

position (referenced to mgc)
Thrust line inclination wrt HFD i 3 degree
Thrust moment arm about cg ltr 2 ft

Note that the reference chord given is the mean geometric chord (mgc) rather than
the more usual mean aerodynamic chord (mac), and it may be used in the same way in
the calculations. The aircraft is fitted with an all moving tailplane for trim and its trim
angle is equivalent to the tailplane setting angle of a fixed tailplane. The longitudinal
geometric reference is the horizontal fuselage datum (HFD).

Relevant aerodynamic characteristics at the operating flight condition are:

Total drag coefficient CD 0.024
Wing–body aerodynamic pitching Cm0 −0.1

moment coefficient
Wing lift curve slope a 4.8 1/rad
Tailplane lift curve slope a1 3.75 1/rad
Elevator lift curve slope a2 0.95 1/rad
Wing downwash at tail dε/dα 0.37

The dimensionless longitudinal aerodynamic stability and control derivatives
referred to aircraft wind axes for the flight condition of interest are given as follows:

Xu −0.0485 Zq −3.7091
Zu −0.6978 Mẇ −2.2387
Mu −0.0055 Mq −5.9983
Xw 0.1920
Zw −4.8210 Xη −0.0001
Mw −0.6492 Zη −0.1456
Zẇ −1.3543 Mη −0.4408
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THE GOVERNING TRIM EQUATIONS

Lift forces,

Ltotal = Lw + LT + T sin (i + αe) = W

Drag forces,

D = T cos (i + αe)

Pitching moment about cg, M = M0 + Lw(h − h0)c cos αe + D(h − h0)c sin αe +
Tltr − LT lT

Tailplane lift coefficient, assuming a symmetric aerofoil section,

CLT = a1(αT + ηT ) + a2η

and tailplane angle of attack is given by,

αT = CLw

a

(
1 − dε

dα

)

BASIC AIRCRAFT STABILITY AND CONTROL ANALYSIS

Working with the equations in coefficient form obtain values for the following:

Trim wing–body lift coefficient CLw

Trim tailplane lift coefficient CLT

Trim elevator angle η

Controls fixed neutral point hn

Controls fixed static margin Kn

What tailplane trim angle ηT would be required to enable the elevator trim angle
to be set at zero?

Set up and solve the equations of motion referred to wind axes and obtain values
for the stability modes characteristics. By applying the final value theorem to each
of the control transfer functions, assuming a unit step input, obtain estimates for the
steady state control sensitivity of the aircraft.

RELAXING THE STABILITY OF THE AIRCRAFT

The longitudinal static stability of the aircraft is now relaxed by shifting the cg aft by
12% of the mgc. In practice this would also be accompanied by design changes to the
aerodynamic configuration of the aircraft, especially of the tail geometry. However,
for the purpose of this exercise the aerodynamic properties of the aeroplane are
assumed to remain unchanged.

Clearly, this change will modify the trim state and it will also modify those aerody-
namic stability and control derivatives which have a dependency on tail volume ratio
and tail moment arm. Calculate a new value for tail volume ratio and tail moment arm
and calculate new values for those derivatives affected by the aft shift in cg position.
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RELAXED STABILITY AIRCRAFT STABILITY AND CONTROL ANALYSIS

Repeat the computational stability and control exercise for the relaxed stability air-
craft to obtain new values for all of the variables defining the stability and control
characteristics at the same flight condition.

EVALUATION OF RESULTS

Tabulate the results of the analyses to facilitate comparison of the unmodified aircraft
stability and control characteristics with those of the relaxed stability aircraft. Sum-
marise the observations with particular reference to the advantages and disadvantages
of relaxing the stability of a civil transport aircraft. Comment also on the obvious
limitations of this exercise and the validity of the estimated variable changes.

POSTSCRIPT

Do not expect to see dramatic changes in the stability and control characteristics of
the aircraft following relaxation of stability by shifting the cg aft.

REFERENCES

Heffley, R.K. and Jewell, W.F. 1972: Aircraft Handling Qualities Data. NASA Contractor
Report, NASA CR-2144, National Aeronautics and Space Administration, Washington
D.C. 20546.

(CU 2001)

ASSIGNMENT 3. LATERAL–DIRECTIONAL HANDLING QUALITIES
DESIGN FOR THE LOCKHEED F-104 STARFIGHTER
AIRCRAFT

INTRODUCTION

The lateral–directional flying qualities of the Lockheed F-104 aircraft are typical
of many high performance aircraft. The airframe is not very stable and its stability
and control characteristics vary considerably with flight condition. Consequently it
is necessary to augment the stability and control characteristics by means of a flight
control system. Since the airframe properties vary with flight condition, it is necessary
to vary, or schedule, the control system gains with flight condition in order to achieve
reasonably even handling qualities over the flight envelope.

The objective of the assignment is to evaluate the lateral–directional stability and
control characteristics of the F-104 at three representative Mach numbers at sea level
only. With an understanding of the basic unaugmented airframe, the task is then
to design a simple command and stability augmentation system to give the aircraft
acceptable roll handling characteristics over the Mach number range. This will require
proposing suitably simple schedules for the flight control system gains.



Ch14-H6927.tex 20/6/2007 16: 39 Page 397

Coursework Studies 397

THE AIRCRAFT MODEL

The Lockheed F-104 Starfighter aircraft is a small single engined combat aircraft
which first flew in the mid 1950s. The aircraft was supplied to many airforces around
the world and remained in service well into the 1970s, and during its service life
many variants were developed. The aircraft configuration is typical of the time; a
long slender fuselage, low aspect ratio unswept wing and a T tail mounted on a
relatively small fin. The airframe is nominally stable at all flight conditions, although
the degree of stability is generally unacceptably low. The flying controls are entirely
mechanical with a simple three axis stability augmentation system. The aircraft is
capable of a little over Mach 1.0 at sea level and as much as Mach 2.0 at high altitude.
Data for this exercise was obtained from Heffley and Jewell (1972) and is reasonably
accurate, as far as is known.

Note that American imperial units are implied throughout and should be retained in
this work. The American sign convention for aileron and rudder control is the reverse
of that defined in this book.

The Laplace transform of the lateral–directional equations of motion, referred to a
body axis system is given in the following format:

⎡
⎢⎢⎣

1 − yv −Wes + g cos θe

Ve

Ues − g sin θe

Ves
−lβ s(s − lp) −lr
−nβ −nps s − nr

⎤
⎥⎥⎦

⎡
⎣

β (s)
p (s)/s
r (s)

⎤
⎦ =

⎡
⎣

yξ yζ

lξ lζ
nξ nζ

⎤
⎦
[
ξ (s)
ζ (s)

]

with auxiliary equations

v(s) = Veβ(s)

φ(s) = p(s)

s
+ r(s)

s
tan θe

ψ(s) = 1

cos θe

r(s)

s

Note that the derivatives are concise derivatives; they have dimensions and are
equivalent to the usual dimensional derivatives divided by mass or inertia terms as
appropriate.

Numerical data for the three sea level flight conditions are given in the follow-
ing table:

Aerodynamic data for the Lockheed F-104A Starfighter aircraft

Trim data
Flight condition 1 2 2
Altitude h ft 0 0 0
Air density ρ0 slug/ft3 0.00238 0.00238 0.00238
Speed of sound a0 ft/s 1116.44 1116.44 1116.44
Gravitational constant g ft/s2 32.2 32.2 32.2
Trim Mach number M0 0.257 0.800 1.100
Trim attitude θε degree 2.30 2.00 1.00

(Continued)
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Aerodynamic data for the Lockheed F-104A Starfighter aircraft (Continued)

Concise derivative data

yv 1/s −0.178 −0.452 −0.791
lβ 1/s2 −20.9 −146.0 −363.0
nβ 1/s2 2.68 13.60 42.70
lp 1/s −1.38 −4.64 −7.12
np 1/s −0.0993 −0.188 −0.341
lr 1/s 1.16 3.67 7.17
nr 1/s −0.157 −0.498 −1.06
yξ 1/s 0 0 0
lξ 1/s2 4.76 49.6 81.5
nξ 1/s2 0.266 3.510 6.500
yζ 1/s 0.0317 0.0719 0.0621
lζ 1/s2 5.35 41.50 57.60
nζ 1/s2 −0.923 −7.070 −8.720

LATERAL–DIRECTIONAL AUTOSTABILISER STRUCTURE

A typical lateral–directional autostabiliser structure is shown in Fig. 14.2 and is quite
representative of the system fitted to the F-104. Note that it is simplified by removing
sensor dynamics, artificial feel system dynamics, surface actuator dynamics and var-
ious feedback signal filtering. The feedback gains Kp and Kr are chosen to augment
the lateral–directional stability modes to acceptable levels of stability. The washout
filter time constant Tw is chosen to give the aircraft acceptable steady turning perfor-
mance. The aileron–rudder interlink gain Kari is chosen to minimise adverse sideslip
during the turn entry.

Kari

Kr

Washout filter 
sTw

1 � sTw

Pilot
commands ��

� �

�

p

r

dx

dz

rwo

z

x
Lateral–

directional
aircraft model

Kp

Figure 14.2 A simplifed lateral–directional autostabiliser.
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BASIC AIRCRAFT STABILITY AND CONTROL ANALYSIS

(i) Derive the open loop aircraft state equation which should have the following
form:

ẋ(t) = Ax(t) + Bu(t)

where the state vector x(t)T = [β(t) p(t) r(t) φ(t)] and the input vector
u(t)T = [ξ(t) ζ(t)]. State clearly any assumptions made.

(ii) Obtain the response transfer functions from the solution of the state equation for
the three flight conditions for which data is provided. Show the transfer functions
in factorised form.

(iii) Obtain time history plots showing the response to a short pulse of aileron and a
short pulse of rudder. The plots should be presented in strip chart form showing
all four variables for a period of 10 s. The pulse lengths should be chosen to
emphasise the dynamics of turn entry.

(iv) Comment on the stability modes characteristics and their variation over the flight
envelope of interest, and identify any deficiencies needing improvement. Com-
ment also on the turn performance of the aircraft and suggest how these might
be improved. Remember that the pilot commands a turn using the aileron and
only uses the rudder to “tidy’’ the turn entry.

AUGMENTING THE STABILITY OF THE AIRCRAFT

(v) With the aid of the appropriate root locus plots investigate the feedback gains,
Kp and Kr , required to improve the stability modes characteristics for all three
flight conditions. Ignore the washout filter at this stage. Aim to achieve the
following closed loop mode characteristics, roll mode time constant of less than
1 s, a stable spiral mode and dutch roll damping 0.5 > ζd > 0.3. Explain why a
roll rate feedback gain Kp = 0 is a good solution for the lateral axis at all three
flight conditions.

(vi) It is typical to schedule feedback gains with dynamic pressure (Q = 1
2ρV 2

0 ) as
shown in Fig. 14.3. Plot out the upper and lower limits of the values of Kr

that meet the stability requirements for each flight condition as a function of Q.
Hence design a gain schedule like that shown in Fig. 14.3. State the value of Kr

for each flight condition according to your schedule and confirm that the values

Gain
K

Dynamic pressure Q

Figure 14.3 A typical gain schedule.
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are consistent with your analysis of (iii) and (iv). These are the values that you
should use in your subsequent work.

(vii) With reference to Fig. 14.2, the autostabiliser control law may be written,

u(t) = Lu1(t) − Kx(t)

Where u1(t)T = [δξ δζ] is the vector of pilot commands, L =
[

1 0
Kari 1

]
is the

input mixing matrix and K is the matrix of feedback gains. Omitting the aileron–
rudder interlink for the moment, Kari = 0, write down the matrices K and L and
calculate the closed loop state equation for all three flight conditions,

ẋ(t) = Ax(t) + Bu1(t)

where now, of course, the matrices A and B are the closed loop versions.
(viii) Obtain the response transfer functions from the solution of the closed loop state

equation developed in (vii) for the three flight conditions for which data is
provided. Show the transfer functions in factorised form.

(ix) Obtain time history plots showing the response to a short pulse of aileron and
a short pulse of rudder. Again, the plots should be presented in strip chart form
showing all four variables for a period of 10 s. The object here is to show and
confirm the improvement in the basic airframe dynamics, the time histories also
provide a “baseline’’ with which to compare the responses developed in the
following sections.

INCLUSION OF THE WASHOUT FILTER IN THE MODEL

(x) Modify the open loop aircraft state equation derived in (i) to include the addi-
tional state variable rwo introduced by the filter, so that the state vector becomes
x(t)T = [β(t) p(t) r(t) φ(t) rwo (t)]. Set the washout filter time constant to the
typical value of 1 s, Tw = 1.0 s. Obtain the open loop state equation for each of
the three flight conditions.

(xi) Modify the control law derived in (vii) to include the additional washout filter
state variable and calculate the closed loop state equation for the three flight
conditions. Take care to redefine the feedback matrix K correctly and set the
aileron–rudder interlink gain to zero as before.

(xii) Obtain the revised closed loop response transfer functions for the three flight
conditions and show the transfer functions in factorised form. What does the
addition of the washout filter do to the closed loop stability modes of the aircraft?

(xiii) Obtain time history plots showing the response to a short pulse of aileron and
a short pulse of rudder. Compare the responses with those obtained in (ix) by
plotting both sets of time histories on the same axes and, once again, the plots
should be presented in strip chart form showing the four aircraft motion variables
only.

(xiv) Identify the differences in the plots and hence explain the purpose of the washout
filter. Remember that the object is to review turning performance in response to
aileron command. Comment also on the initial transient in sideslip angle.
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DESIGNING THE AILERON–RUDDER INTERLINK GAIN

(xv) The objective here is to design a suitable value for the interlink gain Kari for each
of the three flight conditions. This may only be done by choosing a test value and
including it in the input mixing matrix L in the closed loop model developed in
(xi), obtaining the transfer functions and observing the response to an aileron
command. The correct value of Kari is the minimum value that will cancel the
adverse sideslip response seen in the transient immediately following application
of the aileron command. Suitable values of gain lie in the range 0 < Kari < 0.5.
Define a simple gain schedule as a function of dynamic pressure Q.

(xvi) Write down the fully developed closed loop state equations for all three flight
conditions, including now the aileron–rudder interlink gain according to the
schedule designed in (xv).

(xvii) Obtain and show in factorised form the response transfer functions for all three
flight conditions. Note any changes due to the inclusion of the aileron–rudder
interlink gain.

(xviii) Demonstrate the turning performance of the F-104 with the fully developed
control law by showing the response to an aileron pulse. As before, the response
of all four motion variables should be shown in strip chart format.

(xix) Identify the key attributes of the turning performance as refined by the control
law design. In particular explain the response changes due to the aileron–rudder
interlink. This will be easier to do if a comparison is made with the responses
obtained in (viii).

REFERENCES

Heffley, R.K. and Jewell, W.F. 1972: Aircraft Handling Qualities Data. NASA Contractor
Report, NASA CR-2144, National Aeronautics and Space Administration, Washington
D.C. 20546.

(CU2002)

ASSIGNMENT 4. ANALYSIS OF THE EFFECTS OF MACH NUMBER
ON THE LONGITUDINAL STABILITY AND CONTROL
CHARACTERISTICS OF THE LTV A7-A CORSAIR
AIRCRAFT

INTRODUCTION

The object of the assignment is to analyse, illustrate and explain the effects of com-
pressibility on the longitudinal aerodynamics, stability and control of a typical 1960s
combat aeroplane.

THE AIRCRAFT MODEL

The aircraft chosen for this exercise is the Ling-Tempco-Vought (LTV) A7-A Corsair,
a carrier based aircraft which first flew in the mid 1960s. The aircraft is typical for its
time – a single pilot, single engine aircraft built to withstand the rigours of operating
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Table 14.1 LTV A-7A Corsair aerodynamic, geometric and flight condition data

Flight case 1 2 3 4
Altitude h (ft) 15,000 15,000 15,000 15,000
Mach number M0 0.3 0.6 0.9 1.1
Air density ρ (kg/m3) 0.7708 0.7708 0.7708 0.7708
Velocity V0 (m/s) 96.6 193.6 290.2 354.8
Trim body incidence αe (deg) 13.3 4.0 2.5 2.9
Trim elevator angle ηe (deg) −8.80 −3.80 −3.85 −4.95
Trim lift coefficient CL 0.420 0.200 0.095 0.030
Trim drag coefficient CD 0.036 0.018 0.020 0.054

∂CL/∂α (1/rad) 3.90 4.35 5.35 4.80
∂CD/∂α (1/rad) 1.20 0.30 0.23 0.22
∂Cm/∂α (1/rad) −0.48 −0.44 −0.59 −1.08
∂Cm/∂q −0.0664 −0.0337 −0.0231 −0.0188
∂CL/∂M 0.030 0.012 0.058 0.047
∂CD/∂M 0.054 0 0.090 −0.013
∂Cm/∂M 0 0.0010 −0.0360 −0.0055
∂CL/∂η (1/rad) 0.585 0.600 0.550 0.400
∂Cm/∂η (1/rad) −0.89 −0.91 −0.89 −0.63
dε/α 0.179 0.202 0.246 −0.247

Mass m(kg) 9924 9924 9924 9924
Pitch inertia Iy (kg m2) 79946 79946 79946 79946
cg position h 0.3 0.3 0.3 0.3
Wing area S(m2) 34.84 34.84 34.84 34.84
Mean chord c (m) 3.29 3.29 3.29 3.29
Tail moment arm lT (m) 5.5 5.5 5.5 5.5

The aerodynamic data is referenced to an aircraft wind axis system.

from a carrier deck. The airframe is nominally stable at all flight conditions, although
the degree of stability is generally unacceptably low. Consequently the aircraft is
fitted with a simple three axis stability augmentation system. The aircraft is capable
of speeds up to approximately Mach 1.2, and four data sets covering the full Mach
number range at an altitude of 15,000 ft are given in Teper (1969). The data for this
exercise was obtained directly, or derived, from that given in Teper (1969), it is listed
in Table 14.1 and has been adjusted to a consistent set of units, with the exception
of altitude which is retained in ft units. Be aware that some variables are given for
information only and are not required in the calculations.

THE ASSIGNMENT TASKS

All assumptions made should be very clearly stated

ASSEMBLING THE DERIVATIVES

Using simple mathematical approximations for the longitudinal stability and con-
trol derivatives together with the data given in Table 14.1, calculate values for
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Table 14.2 LTV A-7A Corsair aerodynamic stability and control summary

Flight case 1 2 3 4
Altitude h (ft) 15,000 15,000 15,000 15,000
Mach number M0 0.3 0.6 0.9 1.1
Air density ρ (kg/m3) 0.7708 0.7708 0.7708 0.7708
Velocity V0 (m/s) 96.6 193.6 290.2 354.8
Trim body incidence αe (deg) 13.3 4.0 2.5 2.9
Trim elevator angle ηe (deg) −8.80 −3.80 −3.85 −4.95
Trim lift coefficient CL 0.420 0.200 0.095 0.030
Trim drag coefficient CD 0.036 0.018 0.020 0.054

Dimensionless aerodynamic stability and control derivatives referred to wind axes
Xu

Xw

Xq 0 0 0 0
Xẇ 0 0 0 0
Zu

Zw

Zq

Zẇ

Mu

Mw

Mq

Mẇ

Xη 0 0 0 0
Zη

Mη

Aircraft geometric, mass and inertia data

Mass m (kg) 9924 9924 9924 9924
Pitch inertia Iy (kg/m2) 79946 79946 79946 79946
Wing area S (m2) 34.84 34.84 34.84 34.84
Mean chord c (m) 3.29 3.29 3.29 3.29
Tail moment arm lT (m) 5.5 5.5 5.5 5.5

Aircraft stability and control parameters

cg position h 0.3 0.3 0.3 0.3
Static margin – controls fixed Kn

Neutral point – controls fixed hn

Longitudinal relative density factor μ1

Manoeuvre margin – controls fixed Hm

Manoeuvre point – controls fixed hm

the dimensionless derivatives, static and manoeuvre stability parameters and hence
complete Table 14.2 for all four flight conditions. Note that the usual tailplane approx-
imation for the derivatives Mq, Mη and Zη is not assumed. These derivatives should
be calculated from first principles, for example, in the same way as Mu and Zw.
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SOLVING THE EQUATIONS OF MOTION

Writing the longitudinal state equation thus Mẋ = A′x + B′u, write down the matri-
ces M, A′ and B′ in algebraic form stating the elements in terms of dimensionless
derivatives. In the interests of simplicity, the equations of motion should be referred
to aircraft wind axes. Hence, obtain the aircraft response transfer functions for each
of the four flight conditions.

ASSESSING THE DYNAMIC STABILITY CHARACTERISTICS

Tabulate the closed loop longitudinal stability modes characteristics for each of the
four flight conditions. Produce response time histories which best show the stability
modes dynamics for the unaugmented aircraft for all flight conditions. Assess the
stability modes against the requirements for Level 1 flying qualities.

STABILITY AUGMENTATION

Assuming a simple pitch damping stability augmentation system and with the aid of
root locus plots, design values for pitch rate feedback gain Kq in order to achieve a
short period mode damping ratio of about 0.5 ∼ 0.7 for each of the four flight condi-
tions. Calculate the closed loop state equations and hence obtain the response transfer
functions for the augmented aircraft. Tabulate the closed loop longitudinal stability
modes characteristics for each of the four flight conditions. Produce response time
histories which best show the stability modes dynamics for the augmented aircraft. It
is most helpful if the response time histories for the previous tasks are plotted on the
same axes for comparison purposes.

ASSESSING THE EFFECTS OF MACH NUMBER

Plot the following parameters against Mach number: CL, CD, αe, ηe, Kn, Hm, Zη,
Mη and Kq. Plot also the stability modes change with Mach number for both the
unaugmented and augmented aircraft on the s-plane. Discuss and explain briefly the
effect of Mach number on the following:

• Static stability and trim
• Dynamic stability and response
• Elevator control characteristics
• Feedback gain schedule.

REFERENCES

Teper, G.L. 1969: Aircraft Stability and Control Data. Systems Technology, Inc., STI
Technical Report 176-1, NASA Contractor Report, National Aeronautics and Space
Administration, Washington D.C. 20546.

(CU 2003)
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AeroTrim - A Symmetric Trim Calculator for
Subsonic Flight Conditions

A Mathcad programme written by M.V. Cook, version date August 15, 2006.
Given the operating condition and some basic geometric and aerodynamic data for a conven-
tional aircraft this programme will calculate an estimate of the symmetric trim state of the
aircraft for a chosen airspeed range . The programme is limited to subsonic flight in the tro-
posphere only. However, the programme may be developed easily for application to a wider
range of operating conditions and aircraft configurations. Data given are best estimates for
the Cranfield Jetstream laboratory aircraft.

1. Aircraft flight condition

(Insert values to define aircraft operating condition)

Altitude (ft) ht := 6562 Convert to m ht := 0.3048 · ht

Aircraft mass (kg) m := 6300

cg position (%c) h := 0.29

Flight path angle (deg) γe := 0 Convert to rad γe := γe

57.3
Gravity constant (m/s2) g := 9.81

2. Air density calculation

Valid for troposphere only - up to 36,000 ft

Gas constant (Nm/kgK) R := 287.05

Lapse rate (K/m) lr := −0.0065

Temperature (K) Temp := 288.16 + lr · ht
Check results

Air density (kg/m3) ρ := 1.225

(
Temp

288.16

)−[
( g

lr·R
)+1]

Temp = 275.15

ρ = 1.006

Density ratio σ := ρ

1.225
σ = 0.822

3. Set up velocity range for computations

Note that true airspeed is assumed unless otherwise stated
Counter i := 0..10

(Set counter to number of velocity test points required)

True airspeed range (knots) Vknotsi := 100 + 15 · i

(Set initial velocity and velocity increment as required)

True airspeed (m/s) Vi := Vknotsi · 0.515

Equivalent airspeed (knots) Veasi := Vknotsi ·
√

σ

405
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4. Aircraft geometry - constant

(Insert values defined by aircraft geometry)

Wing geometry

Wing area (m2) S := 25.08

Wing span (m) b := 15.85

Wing mean chord (m) cw := 1.716

Sweep 1/4cw (deg) � := 0

z coordinate of 1/4cw point above(−ve)
zw := 0.45or below(+ve) ox body axis (m)

Wing rigging angle (deg) αwr := 1.0 Convert to rad αwr := αwr

57.3
Tailplane geometry

Tailplane area (m2) ST := 7.79

Tailplane span (m) bT := 6.6

Tail arm, 1/4cw to 1/4ct (m) lt := 6.184

z coordinate of 1/4cw point above(−ve) zT := −1.435
or below(+ve) ox body axis (m)

Tail setting angle (deg) ηT := 1.5 Convert to rad ηT := ηT

57.3
Fuselage diameter or width (m) Fd := 1.981

Engine installation

Thrust line z coordinate above(−ve) zτ := 0.312
or below(+ve) ox body axis (m)

Engine thrust line angle (deg) κ := 0
relative to ox body axis (+nose up)

Convert to rad κ := κ

57.3

5. Wing-body aerodynamics

(Insert values defined by the installed wing aerodynamic design)

Wing-body CL-α (per rad) a := 5.19

Maximum lift coefficient CLmax := 1.37

Zero lift pitching moment Cm0 := −0.0711

Zero lift drag coefficient CD0 := 0.03

Zero lift angle of attack (deg) αw0 := −2 Convert to rad αw0 := αw0

57.3
Wing-body aero centre h0 := −0.08
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6. Tailplane aerodynamics

(Insert values defined by the tailplane aerodynamic design)

Tailplane CL-α (per rad) a1 := 3.2

Elevator CL-η (per rad) a2 := 2.414

Zero lift downwash angle (deg) ε0 := 2.0 Convert to rads ε0 := ε0

57.3

7. Wing and tailplane calculations

Aspect ratio Ar := b2

S

Wing semi-span (m) s := b

2

Tail arm, cg to 1/4ct (m) lT := lt − cw · (h − 0.25)

Tail volume VT := ST · lT
Scw

Check results
Ar = 10.017
s = 7.925
lT = 6.115
VT = 1.107

8. Downwash at tail

Ref:-Stribling, C.B. 1984: “Basic Aerodynamics’’, Butterworth Ltd, 1984.

Tail position relative to wing x := lt
b

z := zw − zT

b
(% of span)

dεα = a

π2 · Ar

85∑
fi=5

0.5 cos

(
fi · π
180

)2

√
x2 +

(
0.5 cos

(
fi · π
180

))2

+ z2

·

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎣x+

√√√√x2+
(

0.5 cos

(
fi · π
180

))2

+z2

⎤
⎥⎦

(
0.5 cos

(
fi · π
180

))2

+z2

+ x

(x2 + z2)

⎤
⎥⎥⎥⎥⎦

π

180

Check result dεα = 0.279

9. Induced drag factor

Ref:-Shevell, R.S. 1983: “Fundamentals of Flight’’, 2nd edition, Prentice Hall Inc., 1983.

Drag polar is defined, CD = CD0 + KC2
L, where K is the induced drag factor.

Fuselage drag factor sd := 0.9998 + 0.0421 ·
(

Fd

b

)
− 2.6286 ·

(
Fd

b

)2

+ 2.000 ·
(

Fd

b

)3

Empirical constant kD := −3.333 · 10−4 · �2 + 6.667 · 10−5 · � + 0.38 Check results

Oswald efficiency factor e := 1

π · Ar · kD · CD0 + 1

(0.99 · sd)

sd = 0.968

kD = 0.38

e = 0.713

Induced drag factor K := 1

π ·Ar · e
K = 0.045
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10. Basic performance parameters

Minimum drag speed (knots) Vmd :=
[(√

2 · m · g

ρ · S

)(
K

CD0

)0.25
]

· 1

0.515

Equivalent minimum drag speed (knots) Vmdeas := Vmd · √σ

Stall speed (knots) Vstall :=
√

2 · m · g

ρ · S · CLmax

1

0.515

Equivalent stall speed (knots) Vstalleas := Vstall · √σ

Neutral point hn := h0 + VT · a1

a
· (1 − dεα)

- controls fixed

Static margin Kn := hn − h
- controls fixed

11. Trim calculation

The trim computation finds the trim condition for each speed defined in the speed range
table and for the flight condition defined in paragraph 1.

Initial seed values for solve block

CL := 0.7 CLw := 0.5 CD := 0.02 Cτ := 0.4 αe := 0.1 CLT := 0.1

Trim solve block

Given

Total axial force 2
m · g

ρ · (V)2 · S
· sin (αe + γe) = Cτ · cos (κ) − CD · cos (αe) + CL · sin (αe)

(ox body axis)

Total normal force 2
m · g

ρ · (V)2 · S
· cos (αe + γe) = CL · cos (αe) + CD · sin (αe) + Cτ · sin (κ)

oz body axis)

Pitching moment 0 = [Cm0 + (h − h0) · CLw] − VT · CLT + Cτ · zτ

cw(about cg)

Total lift coefficient CL = CLw + CLT · ST

S

Total drag coefficient CD = CD0 + K · C2
L

Wing/body lift CLw = a · (αe + αwr − αw0)
coefficient

Trim(V) := Find (αe, Cτ , CD, CLT, CLW, CL)

End of trim solve block
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12. Trim variables calculation

αei :=Trim(Vi)0 Cτi :=Trim(Vi)1 CDi :=Trim(Vi)2

CLTi :=Trim(Vi)3 CLwi :=Trim(Vi)4 CLi :=Trim(Vi)5

Wing incidence αwi := αei + αwr

Trim elevator angle ηei
:= CLTi

a2
− a1

a2
· [αwi · (1 − dεα) + ηT − αwr − ε0]

Pitch attitude θei := γe + αwi − αwr

Tail angle of attack αTi := αwi (1 − dεα) + ηT − ε0 − αwr

Lift to drag ratio LDi := CLwi

CDi

13. Conversions of angles to degrees

αwi := αwi · 57.3 αei := αei · 57.3 θei := θei · 57.3

αTi := αTi · 57.3 ηei
:= ηei

· 57.3 γe := γe · 57.3

14. Total trim forces acting on aircraft

Total lift force (N) Li := 0.5 · ρ · (Vi)2 · S · CLi

Total drag force (N) Di := 0.5 · ρ · (Vi)2 · S · CDi

Total thrust (N) Ti := 0.5 · ρ · (Vi)2 · S · Cτi
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SUMMARY RESULTS OF TRIM CALCULATION

15. Definition of flight condition

Aircraft weight (N) m · g = 6.18 · 104 Minimum drag Vmd = 150.012
speed (knots)

Altitude (ft) ht · 3.281 = 6.562 · 103 Equivalent minimum Vmdeas = 135.97
drag speed (knots)

Flight path angle (deg) γe = 0 Stall speed (knots) Vstall = 116.092

cg position (%cw) h = 0.29 Equivalent stall Vstalleas = 105.225
speed (knots)

Neutral point hn = 0.412 Static margin Kn = 0.122
- controls fixed - controls fixed

16. Trim conditions as a function of aircraft velocity

Angles in degrees, velocity in m/s, forces in N except where indicated otherwise

Vknotsi

100
115
130
145
160
175
190
205
220
235
250

Vi

51.5
59.225
66.95
74.675
82.4
90.125
97.85

105.575
113.3
121.025
128.75

CLi

1.799
1.374
1.081
0.872
0.717
0.6
0.51
0.438
0.381
0.334
0.295

CDi

0.174
0.114
0.082
0.064
0.053
0.046
0.042
0.039
0.036
0.035
0.034

CLwi

1.64
1.258
0.994
0.805
0.665
0.56
0.478
0.413
0.361
0.319
0.284

CLTi

0.514
0.375
0.282
0.215
0.167
0.13
0.102
0.08
0.063
0.048
0.036

LDi

9.409
11.017
12.106
12.603
12.573
12.154
11.496
10.72
9.912
9.123
8.383

Cτi

0.181
0.116
0.083
0.064
0.053
0.046
0.042
0.039
0.036
0.035
0.034

αwi

16.105
11.885
8.97
6.885
5.346
4.181
3.277
2.564
1.99
1.523
1.136

αei

15.105
10.885
7.97
5.885
4.346
3.181
2.277
1.564
0.99
0.523
0.136

θei

15.105
10.885
7.97
5.885
4.346
3.181
2.277
1.564
0.99
0.523
0.136

αTi

10.107
7.066
4.965
3.462
2.353
1.513
0.862
0.348

−0.066
−0.403
−0.681

ηei

−1.208
−0.46

0.1
0.521
0.842
1.091
1.287
1.444
1.572
1.677
1.764

Vknotsi

100
115
130
145
160
175
190
205
220
235
250

Vi

51.5
59.225
66.95
74.675
82.4
90.125
97.85

105.575
113.3
121.025
128.75

Li

6.023 · 104

6.083 · 104

6.115 · 104

6.134 · 104

6.146 · 104

6.154 · 104

6.16 · 104

6.165 · 104

6.17 · 104

6.174 · 104

6.179 · 104

Di

5.834 · 103

5.053 · 103

4.643 · 103

4.494 · 103

4.535 · 103

4.722 · 103

5.025 · 103

5.424 · 103

5.907 · 103

5.465 · 103

5.089 · 103

Ti

6.042 · 103

5.146 · 103

4.688 · 103

4.518 · 103

4.548 · 103

4.729 · 103

5.029 · 103

5.426 · 103

5.908 · 103

6.465 · 103

7.089 · 103
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17. Some useful trim plots

life to drag ratio variation with true airspeed
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- End of programme -
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Appendix 2

Definitions of Aerodynamic Stability and
Control Derivatives

Notes

(i) The derivatives given in Tables A2.5–A2.8 are all referred to generalised body
axes and, Ue = V0 cos θe and We = V0 sin θe. In the particular case when the
derivatives are referred to wind axes θe = 0 and the following simplifications
can be made, Ue = V0, We = 0, sin θe = 0 and cos θe = 1.

(ii) The equivalent algebraic expressions in Tables A2.5–A2.8 were derived with
the aid of the computer program Mathcad which includes a facility for
symbolic calculation.

(iii) In Tables A2.5–A2.8 normalised mass and inertias are used which are defined
as follows:

m′ = m
1
2ρV0S

I ′
x = Ix

1
2ρV0Sb

I ′
y = Iy

1
2ρV0S ¯̄c

I ′
z = Iz

1
2ρV0Sb

I ′
xz = Ixz

1
2ρV0Sb

412
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Table A2.1 Longitudinal aerodynamic stability derivatives

Dimensionless Multiplier Dimensional

Xu
1
2ρV0S

◦
Xu

Xw
1
2ρV0S

◦
Xw

Xẇ
1
2ρSc

◦
Xẇ

Xq
1
2ρV0Sc

◦
Xq

Zu
1
2ρV0S

◦
Zu

Zw
1
2ρV0S

◦
Zw

Zẇ
1
2ρSc

◦
Zẇ

Zq
1
2ρV0Sc

◦
Zq

Mu
1
2ρV0Sc

◦
Mu

Mw
1
2ρV0Sc

◦
Mw

Mẇ
1
2ρSc

2 ◦
Mẇ

Mq
1
2ρV0Sc

2 ◦
Mq

Table A2.2 Longitudinal control derivatives

Dimensionless Multiplier Dimensional

Xη
1
2ρV 2

0 S
◦

Xη

Zη
1
2ρV 2

0 S
◦

Zη

Mη
1
2ρV 2

0 S ¯̄c ◦
Mη

Xτ 1
◦

Xτ

Zτ 1
◦

Zτ

Mτ c
◦

Mτ
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Table A2.3 Lateral aerodynamic stability derivatives

Dimensionless Multiplier Dimensional

Yv
1
2ρV0S

◦
Yv

Yp
1
2ρV0Sb

◦
Yp

Yr
1
2ρV0Sb

◦
Yr

Lv
1
2ρV0Sb

◦
Lv

Lp
1
2ρV0Sb2

◦
Lp

Lr
1
2ρV0Sb2

◦
Lr

Nv
1
2ρV0Sb

◦
Nv

Np
1
2ρV0Sb2

◦
Np

Nr
1
2ρV0Sb2

◦
Nr

Table A2.4 Lateral aerodynamic control derivatives

Dimensionless Multiplier Dimensional

Yξ
1
2ρV 2

0 S
◦

Yξ

Lξ
1
2ρV 2

0 Sb
◦

Lξ

Nξ
1
2ρV 2

0 Sb
◦

Nξ

Yζ
1
2ρV 2

0 S
◦

Yζ

Lζ
1
2ρV 2

0 Sb
◦

Lζ

Nζ
1
2ρV 2

0 Sb
◦

Nζ
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Table A2.5 Concise longitudinal aerodynamic stability derivatives

Concise Equivalent expressions in terms Equivalent expressions in terms
derivative of dimensional derivatives of dimensionless derivatives

xu

◦
X u

m
+

◦
X ẇ

◦
Zu

m
(

m − ◦
Zẇ

) Xu

m′ +
c

V0
XẇZu

m′
(

m′ − c
V0

Zẇ

)

zu

◦
Zu

m − ◦
Zẇ

Zu

m′ − c
V0

Zẇ

mu

◦
M u

Iy
+

◦
Zu

◦
M ẇ

Iy

(
m − ◦

Zẇ

) Mu

I ′
y

+
c

V0
MẇZu

I ′
y

(
m′ − c

V0
Zẇ

)

xw

◦
X w

m
+

◦
X ẇ

◦
Zw

m
(

m − ◦
Zẇ

) Xw

m′ +
c

V0
XẇZw

m′
(

m′ − c
V0

Zẇ

)

zw

◦
Zw

m − ◦
Zẇ

Zw

m′ − c
V0

Zẇ

mw

◦
M w

Iy
+

◦
Zw

◦
M ẇ

Iy

(
m − ◦

Zẇ

) Mw

I ′
y

+
c

V0
MẇZw

I ′
y

(
m′ − c

V0
Zẇ

)

xq

( ◦
X q − mWe

)

m
+

( ◦
Zq + mUe

) ◦
X ẇ

m
(

m − ◦
Zẇ

) cXq − m′We

m′ +
(
cZq + m′Ue

) c
V0

Xẇ

m′
(

m′ − c
V0

Zẇ

)

zq

( ◦
Zq + mUe

)

m − ◦
Zẇ

cZq + m′Ue

m′ − c
V0

Zẇ

mq

◦
M q

Iy
+
( ◦

Zq + mUe

) ◦
M ẇ

Iy

(
m − ◦

Zẇ

) cMq

I ′
y

+
(
cZq + m′Ue

) c
V0

Mẇ

I ′
y

(
m′ − c

V0
Zẇ

)

xθ −g cos θe −
◦

X ẇg sin θe

m − ◦
Zẇ

−g cos θe −
c

V0
Xẇg sin θe

m′ − c
V0

Zẇ

zθ −mg sin θe

m − ◦
Zẇ

− m′g sin θe

m′ − c
V0

◦
Zẇ

mθ −
◦

M
ẇ

mg sin θe

Iy

(
m − ◦

Zẇ

) −
c

V0
Mẇm′g sin θe

I ′
y

(
m′ − c

V0
Zẇ

)
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Table A2.6 Concise longitudinal control derivatives

Concise Equivalent expressions in terms Equivalent expressions in terms
derivative of dimensional derivatives of dimensionless derivatives

xη

◦
Xη

m
+

◦
X ẇ

◦
Zη

m

(
m − ◦

Zẇ

) V0Xη

m′ +
c

V0
XẇZη

m′
(

m′ − c
V0

Zẇ

)

zη

◦
Zη

m − ◦
Zẇ

V0Zη

m′ − c
V0

Zẇ

mη

◦
M η

Iy
+

◦
M ẇ

◦
Zη

Iy

(
m − ◦

Zẇ

) V0Mη

I ′
y

+ cMẇZη

I ′
y

(
m′ − c

V0
Zẇ

)

xτ

◦
X τ

m
+

◦
X ẇ

◦
Zτ

m

(
m − ◦

Zẇ

) V0Xτ

m′ +
c

V0
XẇZτ

m′
(

m′ − c
V0

Zẇ

)

zτ

◦
Zτ

m − ◦
Zẇ

V0Zτ

m′ − c
V0

Zẇ

mτ

◦
M τ

Iy
+

◦
M ẇ

◦
Zτ

Iy

(
m − ◦

Zẇ

) V0Mτ

I ′
y

+ cMẇZτ

I ′
y

(
m′ − c

V0
Zẇ

)
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Table A2.7 Concise lateral aerodynamic stability derivatives

Concise Equivalent expressions in terms Equivalent expressions in terms
derivative of dimensional derivatives of dimensionless derivatives

yv

◦
Y v

m

Yv

m′

yp

◦
Y p + mWe

m

(bYp + m′We)

m′

yr

( ◦
Y r − mUe

)

m

(bYr − m′Ue)

m′
yφ g cos θe g cos θe

yψ g sin θe g sin θe

lv

(
Iz

◦
Lv + Ixz

◦
N v

)

(IxIz − I 2
xz)

(I ′
zLv + I ′

xzNv)

(I ′
xI ′

z − I ′2
xz )

lp

(
Iz

◦
Lp + Ixz

◦
Np

)

(IxIz − I 2
xz)

(I ′
zLp + I ′

xzNp)

(I ′
xI ′

z − I ′2
xz )

lr

(
Iz

◦
Lr + Ixz

◦
N r

)

(IxIz − I 2
xz)

(I ′
zLr + I ′

xzNr)

(I ′
xI ′

z − I ′2
xz )

lφ 0 0

lψ 0 0

nv

(
Ix

◦
N v + Ixz

◦
Lv

)

(IxIz − I 2
xz)

(I ′
xNv + I ′

xzLv)

(I ′
xI ′

z − I ′2
xz )

np

(
Ix

◦
N p + Ixz

◦
Lp

)
(
IxIz − I 2

xz

) (I ′
xNp + I ′

xzLp)

(I ′
xI ′

z − I ′2
xz )

nr

(
Ix

◦
N r + Ixz

◦
Lr

)

(IxIz − I 2
xz)

(I ′
xNr + I ′

xzLr)

(I ′
xI ′

z − I ′2
xz )

nφ 0 0

nψ 0 0
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Table A2.8 Concise lateral control derivatives

Concise Equivalent expressions in terms Equivalent expressions in terms
derivative of dimensional derivatives of dimensionless derivatives

yξ

◦
Y ξ

m

V0Yξ

m′

lξ

(
Iz

◦
Lξ + Ixz

◦
N ξ

)

(IxIz − I 2
xz)

V0(I ′
zLξ + I ′

xzNξ)

(I ′
xI ′

z − I ′2
xz )

nξ

(
Ix

◦
N ξ + Ixz

◦
Lξ

)

(IxIz − I 2
xz)

V0(I ′
xNξ + I ′

xzLξ)

(I ′
xI ′

z − I ′2
xz )

yζ

◦
Y ζ

m

V0Yζ

m′

lζ

(
Iz

◦
Lζ + Ixz

◦
N ζ

)

(IxIz − I 2
xz)

V0(I ′
zLζ + I ′

xzLζ)

(I ′
xI ′

z − I ′2
xz )

nζ

(
Ix

◦
N ζ + Ixz

◦
Lζ

)

(IxIz − I 2
xz)

V0(I ′
zNζ + I ′

xzLζ)

(I ′
xI ′

z − I ′2
xz )
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Appendix 3

Aircraft Response Transfer Functions Referred
to Aircraft Body Axes

1 LONGITUDINAL RESPONSE TRANSFER FUNCTIONS IN TERMS OF
DIMENSIONAL DERIVATIVES

The following longitudinal numerator polynomials describe the motion of the aircraft
in response to elevator η input. To obtain the numerators describing the response to
engine thrust input it is simply necessary to replace the subscript η with τ.

Common denominator polynomial Δ(s) = as4 + bs3 + cs2 + ds + e

a mIy

(
m − ◦

Zẇ

)

b Iy

( ◦
X u

◦
Zẇ − ◦

X ẇ
◦
Zu

)
− mIy

( ◦
X u + ◦

Zw

)
− mMw

( ◦
Zq + mUe

)

− m
◦

M q

(
m − ◦

Zẇ

)

c + Iy

( ◦
X u

◦
Zw − ◦

X w
◦

Zu

)
+
( ◦

Xu
◦

Mẇ − ◦
X ẇ

◦
M u

)( ◦
Zq + mUe

)

+ ◦
Zu

( ◦
X ẇ

◦
M q − ◦

X q
◦

M ẇ

)
+
( ◦

X u
◦

M q − ◦
X q

◦
M u

)(
m − ◦

Zẇ

)

+ m
( ◦

M q
◦
Zw − ◦

M w
◦
Zq

)
+ mWe

( ◦
M ẇ

◦
Zu − ◦

M u
◦
Zẇ

)

+ m2
( ◦

M ẇ g sin θe + We
◦

M u − Ue
◦

M w

)

d
( ◦

X u
◦

M w − ◦
X w

◦
M u

) ( ◦
Zq + mUe

)
+
( ◦

M u
◦
Zw − ◦

M w
◦
Zu

) ( ◦
X q − mWe

)

+ ◦
M q

( ◦
X w

◦
Zu − ◦

X u
◦
Zw

)
+ mg cos θe

( ◦
M ẇ

◦
Zu + ◦

M u

(
m − ◦

Zẇ

))

+ mg sin θe

( ◦
X ẇ

◦
M u − ◦

X u
◦

M ẇ + m
◦

M w

)

e mg sin θe

( ◦
X w

◦
M u − ◦

X u
◦

M w

)
+ mg cos θe

( ◦
M w

◦
Zu − ◦

M u
◦
Zw

)

419
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Numerator polynomial N u
η (s) = as3 + bs2 + cs + d

a Iy

( ◦
X ẇ

◦
Zη + ◦

X η(m − ◦
Zẇ)

)

b
◦

Xη

(
−Iy

◦
Zw − Mẇ(

◦
Zq + mUe) − ◦

M q(m − ◦
Zẇ)

)
+ ◦

Zη

(
Iy

◦
Xw − ◦

X ẇ
◦

Mq

+ ◦
Mẇ

( ◦
Xq − mWe

))
+ ◦

Mη

(( ◦
Xq − mWe

)(
m − ◦

Zẇ

)
+ ◦

Xẇ

( ◦
Zq + mUe

))

c
◦

Xη

( ◦
Zw

◦
M q − ◦

Mw

( ◦
Zq + mUe

)
+ mg sin θe

◦
Mẇ

)

+ ◦
Zη

( ◦
Mw

( ◦
Xq − mWe

)
− ◦

X w
◦

Mq − mg cos θe
◦

Mẇ

)
+ ◦

Mη

( ◦
Xw

( ◦
Zq + mUe

)

− ◦
Zw

( ◦
Xq − mWe

)
− mg cos θe

(
m − ◦

Zẇ

)
− mg sin θe

◦
X ẇ

)

d
◦

Xη

◦
Mwmg sin θe − ◦

Zη

◦
Mwmg cos θe + ◦

Mη

( ◦
Zwmg cos θe − ◦

X wmg sin θe

)

Numerator polynomial N w
η (s) = as3 + bs2 + cs + d

a mIy
◦

Zη

b Iy
◦

Xη

◦
Zu − ◦

Zη

(
Iy

◦
Xu + m

◦
M q

)
+ m

◦
Mη

( ◦
Zq + mUe

)

c
◦

Xη

( ◦
Mu

( ◦
Zq + mUe

)
− ◦

Zu
◦

Mq

)
+ ◦

Zη

( ◦
X u

◦
M q − ◦

M u

( ◦
Xq − mWe

))

+ ◦
Mη

( ◦
Zu

( ◦
Xq − mWe

)
− ◦

X u

( ◦
Zq + mUe

)
− m2g sin θe

)

d − ◦
Xη

◦
Mumg sin θe + ◦

Zη

◦
Mumg cos θe + ◦

Mη

( ◦
X u mg sin θe − ◦

Zu mg cos θe

)

Numerator polynomials N q
η (s) = s(as2 + bs + c) and N θ

η (s) = as2 + bs + c

a m
◦

Zη

◦
Mẇ + m

◦
Mη

(
m − ◦

Zẇ

)

b
◦

Xη

( ◦
Zu

◦
Mẇ + ◦

Mu

(
m − ◦

Zẇ

))
+ ◦

Zη

(
m

◦
Mw − ◦

Xu
◦

Mẇ + ◦
Mu

◦
X ẇ

)

+ ◦
Mη

(
− ◦

Xu

(
m − ◦

Zẇ

)
− ◦

Zu
◦

Xẇ − m
◦

Zw

)

c
◦

Xη

( ◦
Zu

◦
Mw − ◦

Mu
◦

Zw

)
+ ◦

Zη

( ◦
Xw

◦
M u − ◦

Mw
◦

X u

)

+ ◦
Mη

( ◦
X u

◦
Zw − ◦

Zu
◦

Xw

)
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2 LATERAL–DIRECTIONAL RESPONSE TRANSFER FUNCTIONS IN
TERMS OF DIMENSIONAL DERIVATIVES

The following lateral–directional numerator polynomials describe the motion of the
aircraft in response to aileron ξ input. To obtain the numerators describing the response
to rudder input it is simply necessary to replace the subscript ξ with ζ.

Denominator polynomial Δ(s) = s(as4 + bs3 + cs2 + ds + e)

a m(IxIz − I 2
xz)

b − ◦
Yv
(
IxIz − I 2

xz

) − m

(
Ix

◦
Nr + Ixz

◦
Lr

)
− m

(
Iz

◦
Lp + Ixz

◦
Np

)

c
◦

Yv

(
Ix

◦
Nr + Ixz

◦
Lr

)
+ ◦

Yv

(
Iz

◦
Lp + Ixz

◦
Np

)
−
( ◦

Yp + mWe

)(
Iz

◦
Lv + Ixz

◦
Nv

)

−
( ◦

Yr − mUe

)(
Ix

◦
Nv + Ixz

◦
Lv

)
+ m

( ◦
Lp

◦
Nr − ◦

Lr
◦

Np

)

d
◦

Yv

( ◦
Lr

◦
Np − ◦

Lp
◦

Nr

)
+
( ◦

Yp + mWe

)( ◦
Lv

◦
Nr − ◦

Lr
◦

Nv

)

+
( ◦

Yr − mUe

)( ◦
Lp

◦
Nv − ◦

Lv
◦

Np

)
−mg cos θe

(
Iz

◦
Lv + Ixz

◦
Nv

)

− mg sin θe

(
Ix

◦
Nv + Ixz

◦
Lv

)

e mg cos θe

( ◦
Lv

◦
Nr − ◦

Lr
◦

Nv

)
+ mg sin θe

( ◦
Lp

◦
Nv − ◦

Lv
◦

Np

)

Numerator polynomial N v
ξ (s) = s(as3 + bs2 + cs + d)

a
◦

Yξ(IxIz − I 2
xz)

b
◦

Yξ

(
−Ix

◦
Nr − Iz

◦
Lp − Ixz(

◦
Lr + ◦

Np)

)
+ ◦

Lξ

(
Iz

( ◦
Yp + mWe

)
+ Ixz

( ◦
Yr − mUe

))

+ ◦
Nξ

(
Ix

( ◦
Yr − mUe

)
+ Ixz

( ◦
Yp + mWe

))

c
◦

Yξ

( ◦
Lp

◦
Nr − ◦

Lr
◦

Np

)
+ ◦

Lξ

( ◦
Np

( ◦
Yr − mUe

)
− ◦

Nr

( ◦
Yp + mWe

)

+ mg (Iz cos θe + Ixz sin θe)
)+ ◦

Nξ

( ◦
Lr

( ◦
Yp + mWe

)
− ◦

Lp

( ◦
Yr − mUe

)

+ mg (Ix sin θe + Ixz cos θe)
)

d
◦

Lξ

( ◦
Npmg sin θe − ◦

Nrmg cos θe

)
+ ◦

Nξ

( ◦
Lrmg cos θe − ◦

Lpmg sin θe

)
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Numerator polynomials N p
ξ (s) = s(as3 + bs2 + cs + d) and

Nφ
ξ (s) = as3 + bs2 + cs + d

a m

(
Iz

◦
Lξ + Ixz

◦
Nξ

)

b
◦

Yξ

(
Iz

◦
Lv + Ixz

◦
Nv

)
+ ◦

Lξ

(
−Iz

◦
Yv − m

◦
Nr

)
+ ◦

Nξ

(
m

◦
Lr − Ixz

◦
Yv

)

c
◦

Yξ

( ◦
Lr

◦
Nv − ◦

Lv
◦

Nr

)
+ ◦

Lξ

( ◦
Nr

◦
Yv − ◦

Nv
◦

Yr + mUe
◦

Nv

)

+ ◦
Nξ

( ◦
Lv

◦
Yr−

◦
Lr

◦
Yv − mUe

◦
Lv

)

d mg sin θe

( ◦
Lv

◦
Nξ − ◦

Lξ

◦
Nv

)

Numerator polynomials N r
ξ (s) = s(as3 + bs2 + cs + d) and

Nψ
ξ (s) = as3 + bs2 + cs + d

a m

(
Ix

◦
Nξ + Ixz

◦
Lξ

)

b
◦

Yξ

(
Ix

◦
Nv + Ixz

◦
Lv

)
+ ◦

Lξ

(
m

◦
Np − Ixz

◦
Yv

)
− ◦

Nξ

(
Ix

◦
Yv + m

◦
Lp

)

c
◦

Yξ

( ◦
Lv

◦
Np − ◦

Lp
◦

Nv

)
+ ◦

Lξ

( ◦
Nv

◦
Yp − ◦

Np
◦

Yv + mWe
◦

Nv

)

+ ◦
Nξ

( ◦
Lp

◦
Yv−

◦
Lv

◦
Yp − mWe

◦
Lv

)

d mg cos θe

( ◦
Lξ

◦
Nv − ◦

Lv
◦

Nξ

)

3 LONGITUDINAL RESPONSE TRANSFER FUNCTIONS IN TERMS OF
CONCISE DERIVATIVES

Again the longitudinal numerator polynomials describe the motion of the aircraft in
response to elevator η input. To obtain the numerators describing the response to
engine thrust input it is simply necessary to replace the subscript η with τ.
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Common denominator polynomial Δ(s) = as4 + bs3 + cs2 + ds + e

a 1

b − (mq + xu + zw)

c (mqzw − mwzq) + (mqxu − muxq) + (xuzw − xwzu) − mθ

d (mθxu − muxθ) + (mθzw − mwzθ) + mq(xwzu − xuzw)
+ xq(muzw − mwzu) + zq(mwxu − muxw)

e mθ(xwzu − xuzw) + xθ(muzw − mwzu) + zθ(mwxu − muxw)

Numerator polynomial N u
η (s) = as3 + bs2 + cs + d

a xη

b mηxq − xη(mq + zw) + zηxw

c mη(xwzq − xqzw + xθ) + xη(mqzw − mwzq − mθ) + zη(mwxq − mqxw)

d mη(xwzθ − xθzw) + xη(mθzw − mwzθ) + zη(mwxθ − mθxw)

Numerator polynomial N w
η (s) = as3 + bs2 + cs + d

a zη

b mηzq + xηzu − zη(mq + xu)

c mη(xqzu − xuzq + zθ) + xη(muzq − mqzu) + zη(mqxu − muxq − mθ)

d mη(xθzu − xuzθ) + xη(muzθ − mθzu) + zη(mθxu − muxθ)

Numerator polynomials N q
η (s) = s(as2 + bs + c) and

N θ
η (s) = as2 + bs + c

a mη

b −mη(xu + zw) + xηmu + zηmw

c mη(xuzw − xwzu) + xη(mwzu − muzw) + zη(muxw − mwxu)

4 LATERAL–DIRECTIONAL RESPONSE TRANSFER FUNCTIONS IN TERMS OF
CONCISE DERIVATIVES

As before, the lateral–directional numerator polynomials describe the motion of the
aircraft in response to aileron ξ input. To obtain the numerators describing the response
to rudder input it is simply necessary to replace the subscript ξ with ζ.
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Denominator polynomial Δ(s) = as5 + bs4 + cs3 + ds2 + es + f

a 1

b −(lp + nr + yv)

c (lpnr − lrnp) + (nryv − nvyr) + (lpyv − lvyp) − (lφ + nψ)

d (lpnψ − lψnp) + (lφnr − lrnφ) + lv(nryp − npyr − yφ)
+ nv(lpyr − lryp − yψ) + yv(lrnp − lpnr + lφ + nψ)

e (lφnψ − lψnφ) + lv((nryφ − nφyr) + (nψyp − npyψ))
+ nv((lφyr − lryφ) + (lpyψ − lψyp)) + yv((lrnφ − lφnr) + (lψnp − lpnψ))

f lv(nψyφ − nφyψ) + nv(lφyψ − lψyφ) + yv(lψnφ − lφnψ)

Numerator polynomial N v
ξ (s) = as4 + bs4 + cs2 + ds + e

a yξ

b lξyp + nξyr − yξ(lp + nr)

c lξ(npyr − nryp + yφ) + nξ(lryp − lpyr + yψ) + yξ(lpnr − lrnp − lφ − nψ)

d lξ(nφyr − nryφ + npyψ − nψyp) + nξ(lryφ − lφyr + lψyp − lpyψ)
+ yξ(lφnr − lrnφ + lpnψ − lψnp)

e lξ(nφyψ − nψyφ) + nξ(lψyφ − lφyψ) + yξ(lφnψ − lψnφ)

Numerator polynomials N p
ξ (s) = s(as3 + bs2 + cs + d) and

Nφ
ξ (s) = as3 + bs2 + cs + d

a lξ

b −lξ(nr + yv) + nξlr + yξlv

c lξ(nryv − nvyr − nψ) + nξ(lvyr − lryv + lψ) + yξ(lrnv − lvnr)

d lξ(nψyv − nvyψ) + nξ(lvyψ − lψyr) + yξ(lψnv − lvnψ)

Numerator polynomials N r
ξ (s) = s(as3 + bs2 + cs + d) and

Nψ
ξ (s) = as3 + bs2 + cs + d

a nξ

b lξnp − nξ(lp + yv) + yξnv

c lξ(nvyp − npyv + nφ) + nξ(lpyv − lvyp − lφ) + yξ(lvnp − lpnv)

d lξ(nvyφ − nφyv) + nξ(lφyv − lvyφ) + yξ(lvnφ − lφnv)
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Appendix 4

Units, Conversions and Constants

Table A4.1 Factors for conversion from Imperial to SI units

Parameter Symbol Imperial unit Equivalent SI unit

Mass m 1 slug 14.594 kg
Length l 1 ft 0.3048 m
Velocity V 1 ft/s 0.3048 m/s
Acceleration a 1 ft/s2 0.3048 m/s2

Force F 1 lb 4.448 N
Moment M 1 lb ft 1.356 N m
Density ρ 1 slug/ft3 515.383 kg/m3

Inertia I 1 slug ft2 1.3558 kg m2

Table A4.2 Useful constants

Constant Symbol Imperial units SI units

1knot kt 1.689 ft/s 0.515 m/s
Sea level air density ρ0 0.00238 slug/ft3 1.225 kg/m3

Speed of sound a0 1116.44 ft/s 340.29 m/s
at sea level

Radian rad 57.3◦ 57.3◦
Gravitational g 32.17 ft/s2 9.81 m/s2

acceleration
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Appendix 5

A Very Short Table of Laplace Transforms

F(t) f(s)

1 1
1

s

2 eat 1

s − a

3 sin kt
k

s2 + k2

4 cos kt
s

s2 + k2

5 e−at sin kt
k

(s + a)2 + k2

6 e−at cos kt
(s + a)

(s + a)2 + k2
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Appendix 6

The Dynamics of a Linear Second Order System

The solution of the linearised small perturbation equations of motion of an aircraft
contains recognisable classical second order system terms. A review of the dynamics
of a second order system is therefore useful as an aid to the correct interpretation of
the solution of the aircraft equations of motion.

Consider the classical mass–spring–damper system whose motion is described by
the equation of motion

mẍ(t) + cẋ(t) + kx(t) = f (t) (A6.1)

where x(t) is the displacement of the mass and f (t) is the forcing function. The
constants of the system comprise the mass m, the viscous damping c and the spring
stiffness k.

Classical unforced motion results when the forcing f (t) is made zero, the mass is
displaced by A, say, and then released. Equation (A6.1) may then be written

mẍ(t) + cẋ(t) + kx(t) = 0 (A6.2)

and the initial conditions are defined, ẋ(0) = 0 and x(0) = A. The time response of the
motion of the mass may be found by solving equation (A6.2) subject to the constraints
imposed by the initial conditions. This is readily achieved with the aid of the Laplace
transform.

Thus

L{mẍ(t) + cẋ(t) + kx(t)} = m(s2x(s) − sx(0) − ẋ(0)) + c(sx(s) − x(0)) + kx(s)

= m(s2x(s) − sA) + c(sx(s) − A) + kx(s) = 0

which after some rearrangement may be written

x(s) = A(ms + c)

(ms2 + cs + k)
(A6.3)

Or, alternatively

x(s) = A(s + 2ζω)

(s2 + 2ζωs + ω2)
(A6.4)

427
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where

2ζω = c

m (A6.5)

ω2 = k

m

where ζ is the system damping ratio and ω is the system undamped natural frequency
The time response x(t) may be obtained by determining the inverse Laplace trans-

form of equation (A6.4) and the form of the solution obviously depends on the
magnitudes of the physical constants of the system m, c and k . The characteristic
equation of the system is given by equating the denominator of equation (A6.3) or
(A6.4) to zero

ms2 + cs + k = 0 (A6.6)

or, equivalently

s2 + 2ζωs + ω2 = 0 (A6.7)

To facilitate the determination of the inverse Laplace transform of equation (A6.4),
the denominator is first factorised and the expression on the right hand side is split
into partial fractions. Whence

x (s) = A(s + 2ζω)(
s + ω

(
ζ +√ζ2 − 1

)) (
s + ω

(
ζ −√ζ2 − 1

))

= A

2

⎛
⎜⎜⎜⎜⎝

(
1 + ζ√

ζ2 − 1

)

(s + ω(ζ +√ζ2 − 1))
+

(
1 − ζ√

ζ2 − 1

)

(s + ω(ζ −√ζ2 − 1))

⎞
⎟⎟⎟⎟⎠

(A6.8)

With reference to the table of transform pairs, Appendix 5, transform pair 2, the
inverse Laplace transform of equation (A6.8) is readily obtained

x(t) = Ae−ωζt

2

((
1 + ζ√

ζ2 − 1

)
e−ωt

√
ζ2−1 +

(
1 − ζ√

ζ2 − 1

)
eωt

√
ζ2−1

)

(A6.9)

Equation (A6.9) is the general solution describing the unforced motion of the mass
and the type of response depends on the value of the damping ratio.

(i) When ζ = 0 equation (A6.9) reduces to

x(t) = A

2
(e−jωt + e jωt) = A cos ωt (A6.10)

which describes undamped harmonic motion or, alternatively, a neutrally
stable system.
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(ii) When 0 < ζ < 1 equation (A6.9) may be modified by writing

ωn = ω
√

1 − ζ2

where ωn is the damped natural frequency. Thus the solution is given by

x(t) = Ae−ωζt

2

((
1 + jζ√

1 − ζ2

)
e−jωnt +

(
1 − jζ√

1 − ζ2

)
ejωnt

)

= Ae−ωζt
(

cos ωnt − ωζ

ωn
sin ωnt

)
(A6.11)

which describes damped harmonic motion.
(iii) When ζ = 1 the coefficients of the exponential terms in equation (A6.9)

become infinite. However, by expressing the exponentials as series and by
letting ζ → 1, it may be shown that the damped natural frequency ωn tends to
zero and the solution is given by

x(t) = Ae−ωt(1 − ωt) (A6.12)

(iv) When ζ > 1 the solution is given by equation (A6.9) directly and is thus a
function of a number of exponential terms. The motion thus described is
non-oscillatory and is exponentially convergent.

Typical response time histories for a range of values of damping ratio are shown in
Fig. A6.1.

It is important to note that the type of response is governed entirely by the damping
ratio and undamped natural frequency which, in turn, determine the roots of the

Time (t)
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(t

)
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Figure A6.1 Typical second order system responses.
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characteristic equation (A6.6) or (A6.7). Thus dynamic properties of the system may
be directly attributed to the physical properties of the system. Consequently the type
of unforced response may be ascertained simply by inspection of the characteristic
equation. A summary of these observations for a stable system is given in the following
table.

Summary of a stable system

Damping ratio Roots of characteristic equation Type of response

ζ = 0 (s + jω)(s − jω) = 0 Undamped sinusoidal oscillation
Complex with zero real part with frequency ω

0 < ζ < 1 (s + ωζ + jωn)(s + ωζ − jωn) = 0 Damped sinusoidal oscillation
Complex with non-zero real part with frequency ωn = ω

√
1 − ζ2

ζ = 1 (s + ω)2 = 0 Exponential convergence of
Repeated real roots form e−ωt(1 − ωt)

ζ > 1 (s + r1)(s + r2) = 0 Exponential convergence of
Real roots where general form, k1e−r1t + k2e−r2t

r1 = ω(ζ +√ζ2 − 1)
r2 = ω(ζ −√ζ2 − 1)

The classical mass–spring–damper system is always stable but, rather more general
systems which demonstrate similar properties may not necessarily be stable. For a
more general interpretation including unstable systems in which ζ < 0 it is sufficient
only to note that the types of solution are similar except that the motion they describe
is divergent rather than convergent. Aeroplanes typically demonstrate both stable and
unstable characteristics which are conveniently described by this simple linear second
order model.
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Appendix 7

North American Aerodynamic Derivative
Notation

Table A7.1 Longitudinal normalised derivatives

Dimensionless coefficient Multiplier Dimensional

Cxu = −(M0CDM + 2CD) ρV0S/2m Xu

C∗
xu

= −(M0CDM + 2CD) + M0CτM cos κ ρV0S/2m X∗
u

Cxẇ = Cxα̇
ρS ¯̄c/4m Xẇ

Cxw = CL − CDα ρV0S/2m Xw

Cxq ρV0S ¯̄c/4m Xq

Cxδ ρV 2
0 S/2m Xδ

Czu = −(M0CLM + 2CL) ρV0S/2m Zu

C∗
zu

= −(M0CLM + 2CL) − M0CτM sin κ ρV0S/2m Z∗
u

Czẇ = Czα̇ ρS ¯̄c/4m Zẇ

Czw = −(CD + CLα ) ρV0S/2m Zw

Czq ρV0S ¯̄c/4m Zq

Czδ ρV 2
0 S/2m Zδ

Cmu = M0CmM ρV0S ¯̄c/2Iy Mu

C∗
mu

= M0CmM + M0
zτ

¯̄c CτM cos κ ρV0S ¯̄c/2Iy M∗
u

Cmẇ = Cmα̇
ρV0S ¯̄c2/4Iy Mẇ

Cmw = Cmα ρV0S ¯̄c/2Iy Mw

Cmq ρV0S ¯̄c2/4Iy Mq

Cmδ ρV 2
0 S ¯̄c/2Iy Mδ

Note:

(i) Thrust coefficient is defined Cτ = τ/ 1
2ρV 2

0 S.

(ii) In the notational style CτM = ∂Cτ/∂M.
(iii) κ is the (upward) inclination of the thrust line with respect to the x axis.
(iv) zτ is the normal offset of the thrust line from the cg. It is assumed that xτ , the

axial offset of the thrust line from the cg, is negligibly small.

431
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Table A7.2 Longitudinal dimensionless derivative
equivalents

Dimensionless derivative equivalents

American British American British

Cxu Czα Zw

C∗
xu

Xu Czq 2Zq

Cxα̇
2Xẇ Czδ Zη,τ

Cxα Xw Cmu

Cxq 2Xq C∗
mu

Mu

Cxδ Xη,τ Cmα̇
2Mẇ

Czu Cmα Mw

C∗
zu

Zu Cmq 2Mq

Czα̇ 2Zẇ Cmδ Mη,τ

Table A7.3 Lateral–directional normalised derivatives

Dimensionless
coefficient Multiplier Dimensional

Cyv ρV0S/2m Yv

Cyβ ρV 2
0 S/2m Yβ

Cyp ρV0Sb/4m Yp

Cyr ρV0Sb/4m Yr

Cyδ ρV 2
0 S/2m Yδ

Clv ρV0Sb/2Ix Lv

Clβ ρV 2
0 Sb/2Ix Lβ

Clp ρV0Sb2/4Ix Lp

Clr ρV0Sb2/4Ix Lr

Clδ ρV 2
0 Sb/2Ix Lδ

Cnv ρV0Sb/2Iz Nv

Cnβ ρV 2
0 Sb/2Iz Nβ

Cnp ρV0Sb2/4Iz Np

Cnr ρV0Sb2/4Iz Nr

Cnδ ρV 2
0 Sb/2Iz Nδ
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Table A7.4 Lateral–directional dimensionless
derivative equivalents

Dimensionless derivative equivalents

American British American British

Cyv Yv Clr 2Lr

Cyβ Clδ Lξ,ζ

Cyp 2Yp Cnv Nv

Cyr 2Yr Cnβ

Cyδ Yξ,ζ Cnp 2Np

Clv Lv Cnr 2Nr

Clβ Cnδ Nξ,ζ

Clp 2Lp
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Appendix 8

Approximate Expressions for the
Dimensionless Aerodynamic Stability
and Control Derivatives

Table A8.1 Longitudinal aerodynamic stability derivatives

Small perturbation derivatives referred to aircraft wind axes

Derivative Description Expression Comments

Xu Axial force due Drag and thrust
Equation (13.16) to velocity effects due to

velocity perturbation

−2CD − V0
∂CD

∂V
+ 1

1
2ρV0S

∂τ

∂V

Xw Axial force due Lift and drag effects
Equation (13.27) to “incidence’’ due to incidence

perturbation

CL − ∂CD

∂α

Xq Axial force due Tailplane drag effect,
Equation (13.46) to pitch rate usually negligible−V T

∂CDT

∂αT

Xẇ Axial force due Tailplane drag due to
Equation (13.68) to downwash lag downwash lag effect

(added mass effect)

−V T
∂CDT

∂αT

dε

dα
≡ Xq

dε

dα

Zu Normal force due Lift effects due to
Equation (13.21) to velocity velocity perturbation−2CL − V0

∂CL

∂V

Zw Normal force due Lift and drag effects
Equation (13.30) to “incidence’’ due to incidence

perturbation

−CD − ∂CL

∂α

Zq Normal force due −V T a1 Tailplane lift effect
Equation (13.51) to pitch rate

Zẇ Normal force due Tailplane lift due to
Equation (13.72) to downwash lag downwash lag effect

(added mass effect)

−V T a1
dε

dα
= Zq

dε

dα

Mu Pitching moment Mach dependent,
Equation (13.34) due to velocity small at low speed

V0
∂Cm

∂V

434
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Table A8.1 (Continued )

Small perturbation derivatives referred to aircraft wind axes

Derivative Description Expression Comments

Mw Pitching moment Pitch stiffness,
Equation (13.39) due to “incidence’’ dependent on static

margin

dCm

dα
= −aKn

Mq Pitching moment Pitch damping, due
Equation (13.55) due to pitch rate mainly to tailplane−V T a1

lT

c
≡ Zq

lT

c
Mẇ Pitching moment Pitch damping due to
Equation (13.76) due to downwash lag downwash lag effect at

tailplane

−V T a1
lT

c

dε

dα
≡ Mq

dε

dα

Table A8.2 Lateral aerodynamic stability derivatives

Small perturbation derivatives referred to aircraft wind axes

Derivative Description Expression Comments

Yv Side force Always negative and
Equation (13.82) due to sideslip hence stabilising

(
SB

S
yB − SF

S
a1F

)

Lv Rolling moment Lateral static stability,
Equation (13.92) due to sideslip determined by total
Equation (13.105) dihedral effect. Many
Equation (13.108) contributions most of

which are difficult
to estimate reliably.
Most accessible
approximate
contributions given.

(i) Wing with dihedral

− 1

Ss

∫ s

0
cyay�y dy

(ii) Wing with aft sweep

−2CL tan �¼

Ss

∫ s

0
cyy dy

(iii) Fin contribution

−a1F V F
hF

lF

Nv Yawing moment (i) Fin contribution Natural weathercock
Equation (13.112) due to sideslip a1F V F stability, dominated

by fin effect.

Yp Side force due (i) Fin contribution Fin effect dominates,
Equation (13.117) to roll rate often negligible.− 1

Sb

∫ HF

0
ahchhdh

Lp Rolling moment (i) Wing contribution Roll damping,
Equation (13.128) due to roll rate wing effects

dominate but fin and
tailplane contribute.

− 1

2Ss2

∫ s

0
(ay + CDy )cyy2 dy

(Continued)



App-8-H6927.tex 20/6/2007 16: 42 Page 436

436 Flight Dynamics Principles

Table A8.2 (Continued )

Small perturbation derivatives referred to aircraft wind axes

Derivative Description Expression Comments

Np Yawing moment (i) Wing contribution

Equation (13.137) due to roll rate − 1

2Ss2

∫ s

0

(
CLy − dCD

dαy

)
cyy2dy

Yr Side force due (i) Fin contribution Many contributions,
Equation (13.142) to yaw rate V F a1F but often negligible.

Lr Rolling moment (i) Wing contribution
Equation (13.150) due to yaw rate
Equation (13.155)

1

Ss2

∫ s

0
CLy cyy2dy

(ii) Fin contribution

a1F V F
hF

b
≡ −Lv( fin)

lF
b

Nr Yawing moment (i) Wing contribution Yaw damping, for
Equation (13.162) due to yaw rate large aspect ratio
Equation (13.167) rectangular wing,

wing contribution is
approximately CD/6.

− 1

Ss2

∫ s

0
CDy cyy2dy

(ii) Fin contribution

−a1F V F
lF
b

= − lF
b

Nv( fin)

Table A8.3 Longitudinal aerodynamic control derivatives

Small perturbation derivatives referred to aircraft wind axes

Derivative Description Expression Comments

Xη Axial force due Usually
Equation (13.174) to elevator insignificantly small

−2
ST

S
kT CLT a2

Zη Normal force due −ST

S
a2

Equation (13.178) to elevator

Mη Pitching moment −V T a2 Principal measure of
Equation (13.181) due to elevator pitch control power



App-8-H6927.tex 20/6/2007 16: 42 Page 437

Aerodynamic Stability and Control Derivatives 437

Table A8.4 Lateral-directional aerodynamic control derivatives

Small perturbation derivatives referred to aircraft wind axes

Derivative Description Expression Comments

Yξ Side force due Insignificant for
to aileron conventional aeroplanes

Lξ Rolling moment Principal measure of
Equation (13.188) due to aileron roll control power

− 1

Ss
a2A

∫ y2

y1

cyy dy

Nξ Yawing moment Adverse yaw due
Equation (13.193) due to aileron to aileron

1

Ss

∫ y2

y1

(
∂CDy

∂ξ

)
cyy dy

Yζ Side force due
Equation (13.197) to rudder

SF

S
a2R

Lζ Rolling moment Principal measure
Equation (13.200) due to rudder of yaw control power

V F
hF

lF
a2R

Nζ Yawing moment −V F a2R Adverse roll due
Equation (13.203) due to rudder to rudder
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Appendix 9

The Transformation of Aerodynamic Stability
Derivatives from a Body Axes Reference to a
Wind Axes Reference

INTRODUCTION

Aerodynamic stability derivatives are usually quoted with respect to a system of body
axes or with respect to a system of wind axes. When the derivatives are quoted with
respect to one system of axes and it is desired to work with the equations of motion
referred to a different system of axes, then the derivatives must be transformed to the
system of axes of interest. Fortunately, the transformation of aerodynamic derivatives
from one axis system to another is a relatively straightforward procedure using the
transformation relationships discussed in Chapter 2. The procedure for transforming
derivatives from a body axes reference to a wind axes reference is illustrated below.
However, the procedure can be applied for transforming derivatives between any two
systems of reference axes provided their angular relationship is known.

In steady level symmetric flight a system of body axes differs from a system of
wind axes by the body incidence αe only as shown in Fig. 2.2. In the following
paragraphs small perturbation force and velocity components, X , Y , Z and u, v, w
respectively, are indicated in the usual way where, here, the subscript denotes the
reference axes. Small perturbation moment and angular velocity components, L, M, N
and p, q, r respectively, are also most conveniently represented by vectors as described
in Chapter 2. Again the subscript denotes the reference axes system.

FORCE AND MOMENT TRANSFORMATION

The transformation of the aerodynamic force components from a body to wind
axes reference may be obtained directly by the application of the inverse direction
cosine matrix, as given by equation (2.13). Writing θ = αe and φ = ψ = 0 since level
symmetric flight is assumed then

⎡
⎣

Xw

Yw

Zw

⎤
⎦ =

⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦
⎡
⎣

Xb

Yb

Zb

⎤
⎦ (A9.1)

Similarly, the aerodynamic moments transformation may be written

⎡
⎣

Lw

Mw

Nw

⎤
⎦ =

⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦
⎡
⎣

Lb

Mb

Nb

⎤
⎦ (A9.2)

438
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AERODYNAMIC STABILITY DERIVATIVE TRANSFORMATIONS

Force–velocity derivatives

Consider the situation when the aerodynamic force components comprise only those
terms involving the force–velocity derivatives. Then, referred to wind axes

⎡
⎣

Xw

Yw

Zw

⎤
⎦ =

⎡
⎢⎢⎣

◦
X uw 0

◦
X ww

0
◦
Y vw 0

◦
Zuw 0

◦
X ww

⎤
⎥⎥⎦

⎡
⎣

uw

vw

ww

⎤
⎦ (A9.3)

and referred to body axes

⎡
⎣

Xb

Yb

Zb

⎤
⎦ =

⎡
⎢⎢⎣

◦
X ub 0

◦
X wb

0
◦
Y vb 0

◦
Zub 0

◦
X wb

⎤
⎥⎥⎦

⎡
⎣

ub

vb

wb

⎤
⎦ (A9.4)

Substitute equations (A9.3) and (A9.4) into equation (A9.1)

⎡
⎢⎢⎣

◦
X uw 0

◦
X ww

0
◦
Y vw 0

◦
Zuw 0

◦
X ww

⎤
⎥⎥⎦

⎡
⎣

uw

vw

ww

⎤
⎦ =

⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦

⎡
⎢⎢⎣

◦
X ub 0

◦
X wb

0
◦
Y vb 0

◦
Zub 0

◦
X wb

⎤
⎥⎥⎦

⎡
⎣

ub

vb

wb

⎤
⎦

(A9.5)

Now the transformation of linear velocity components from a wind to body axes
reference may be obtained directly from the application of the direction cosine matrix,
equation (2.12), with the same constraints as above

⎡
⎣

ub

vb

wb

⎤
⎦ =

⎡
⎣

cos αe 0 −sin αe

0 1 0
sin αe 0 cos αe

⎤
⎦
⎡
⎣

uw

vw

ww

⎤
⎦ (A9.6)

Substitute the velocity vector referred to body axes, given by equation (A9.6), into
equation (A9.5) and cancel the velocity vectors referred to wind axes to obtain

⎡
⎢⎢⎣

◦
X uw 0

◦
X ww

0
◦
Y vw 0

◦
Zuw 0

◦
X ww

⎤
⎥⎥⎦

=
⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦

⎡
⎢⎢⎣

◦
X ub 0

◦
X wb

0
◦
Y vb 0

◦
Zub 0

◦
X wb

⎤
⎥⎥⎦

⎡
⎣

cos αe 0 −sin αe

0 1 0
sin αe 0 cos αe

⎤
⎦
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or, after multiplying the matrices on the right hand side the following transformations
are obtained

◦
X uw = ◦

X ub cos2 αe + ◦
Zwb sin2 αe +

( ◦
X wb + ◦

Zub

)
sin αe cos αe

◦
X ww = ◦

X wb cos2 αe − ◦
Zub sin2 αe −

( ◦
X ub − ◦

Zwb

)
sin αe cos αe

◦
Y vw = ◦

Y vb (A9.7)

◦
Zuw = ◦

Zub cos2 αe − ◦
X wb sin2 αe −

( ◦
X ub − ◦

Zwb

)
sin αe cos αe

◦
Zww = ◦

Zwb cos2 αe + ◦
X ub sin2 αe −

( ◦
X wb + ◦

Zub

)
sin αe cos αe

Moment–velocity derivatives

Consider now the situation when the aerodynamic moment components comprise
only those terms involving the moment–velocity derivatives. Then, referred to
wind axes

⎡
⎣

Lw

Mw

Nw

⎤
⎦ =

⎡
⎢⎢⎣

0
◦
Lvw 0

◦
M uw 0

◦
M ww

0
◦

N vw 0

⎤
⎥⎥⎦

⎡
⎣

uw

vw

ww

⎤
⎦ (A9.8)

and referred to body axes

⎡
⎣

Lb

Mb

Nb

⎤
⎦ =

⎡
⎢⎢⎣

0
◦
Lvb 0

◦
M ub 0

◦
M wb

0
◦

N vb 0

⎤
⎥⎥⎦

⎡
⎣

ub

vb

wb

⎤
⎦ (A9.9)

Substitute equations (A9.8) and (A9.9) into equation (A9.2)

⎡
⎢⎢⎣

0
◦
Lvw 0

◦
M uw 0

◦
M ww

0
◦

N vw 0

⎤
⎥⎥⎦

⎡
⎣

uw

vw

ww

⎤
⎦ =

⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦

⎡
⎢⎢⎣

0
◦
Lvb 0

◦
M ub 0

◦
M wb

0
◦

N vb 0

⎤
⎥⎥⎦

⎡
⎣

ub

vb

wb

⎤
⎦

(A9.10)

As before the transformation of linear velocity components from a wind to body axes
reference is given by equation (A9.6). Substitute the velocity vector referred to body
axes, given by equation (A9.6), into equation (A9.10). Again, the velocity vectors
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referred to wind axes cancel and after multiplying the matrices on the right hand side
the following transformations are obtained

◦
Lvw = ◦

Lvb cos αe + ◦
N vb sin αe

◦
M uw = ◦

M ub cos αe + ◦
M wb sin αe

(A9.11)◦
M ww = ◦

M wb cos αe − ◦
M ub sin αe

◦
N vw = ◦

N vb cos αe − ◦
Lvv sin αe

Force–rotary derivatives

Consider now the situation when the aerodynamic force components comprise only
those terms involving the force–angular velocity derivatives, more commonly referred
to as the force–rotary derivatives. Then, referred to wind axes

⎡
⎣

Xw

Yw

Zw

⎤
⎦ =

⎡
⎢⎢⎣

0
◦

X qw 0
◦
Y pw 0

◦
Y rw

0
◦
Zqw 0

⎤
⎥⎥⎦

⎡
⎣

pw

qw

rw

⎤
⎦ (A9.12)

and referred to body axes

⎡
⎣

Xb

Yb

Zb

⎤
⎦ =

⎡
⎢⎢⎣

0
◦

X qb 0
◦
Y pb 0

◦
Y rb

0
◦
Zqb 0

⎤
⎥⎥⎦

⎡
⎣

pb

qb

rb

⎤
⎦ (A9.13)

Substitute equations (A9.12) and (A9.13) into equation (A9.1)

⎡
⎢⎢⎣

0
◦

X qw 0
◦
Y pw 0

◦
Y rw

0
◦
Zqw 0

⎤
⎥⎥⎦

⎡
⎣

pw

qw

rw

⎤
⎦ =

⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦

⎡
⎢⎢⎣

0
◦

X qb 0
◦
Y pb 0

◦
Y rb

0
◦
Zqb 0

⎤
⎥⎥⎦

⎡
⎣

pb

qb

rb

⎤
⎦

(A9.14)

Now with reference to Chapter 2, the treatment of angular velocity components as
vectors enables their transformation from a wind to body axes reference to be obtained
as before by the direct application of the direction cosine matrix, equation (2.12). Thus
with the same constraints as above

⎡
⎣

pb

qb

rb

⎤
⎦ =

⎡
⎣

cos αe 0 −sin αe

0 1 0
sin αe 0 cos αe

⎤
⎦
⎡
⎣

pw

qw

rw

⎤
⎦ (A9.15)

Substitute the angular velocity vector referred to body axes, given by equation
(A9.15), into equation (A9.14) and cancel the velocity vectors referred to wind axes
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to obtain
⎡
⎢⎢⎣

0
◦

X qw 0
◦
Y pw 0

◦
Y rw

0
◦
Zqw 0

⎤
⎥⎥⎦

=
⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦

⎡
⎢⎢⎣

0
◦

X qb 0
◦
Y pb 0

◦
Y rb

0
◦
Zqb 0

⎤
⎥⎥⎦

⎡
⎣

cos αe 0 −sin αe

0 1 0
sin αe 0 cos αe

⎤
⎦

or, after multiplying the matrices on the right hand side the following transformations
are obtained

◦
X qw = ◦

X qb cos αe + ◦
Zqb sin αe

◦
Y pw = ◦

Y pb cos αe + ◦
Y rb sin αe

(A9.16)◦
Y rw = ◦

Y rb cos αe − ◦
Y pb sin αe

◦
Zqw = ◦

Zqb cos αe − ◦
X qb sin αe

Moment–rotary derivatives

Consider now the situation when the aerodynamic moment components comprise only
those terms involving the moment–angular velocity derivatives or, moment–rotary
derivatives. Then, referred to wind axes

⎡
⎣

Lw

Mw

Nw

⎤
⎦ =

⎡
⎢⎢⎣

◦
Lpw 0

◦
Lrw

0
◦

M qw 0
◦

N pw 0
◦

N rw

⎤
⎥⎥⎦

⎡
⎣

pw

qw

rw

⎤
⎦ (A9.17)

and referred to body axes

⎡
⎣

Lb

Mb

Nb

⎤
⎦ =

⎡
⎢⎢⎣

◦
Lpb 0

◦
Lrb

0
◦

M qb 0
◦

N pb 0
◦

N rb

⎤
⎥⎥⎦

⎡
⎣

pb

qb

rb

⎤
⎦ (A9.18)

Substitute equations (A9.17) and (A9.18) into equation (A9.2)
⎡
⎢⎢⎣

◦
Lpw 0

◦
Lrw

0
◦

M qw 0
◦

N pw 0
◦

N rw

⎤
⎥⎥⎦

⎡
⎣

pw

qw

rw

⎤
⎦ =

⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦

⎡
⎢⎢⎣

◦
Lpb 0

◦
Lrb

0
◦

M qb 0
◦

N pb 0
◦

N rb

⎤
⎥⎥⎦

⎡
⎣

pb

qb

rb

⎤
⎦

(A9.19)

As before the transformation of angular velocity components from a wind to body axes
reference is given by equation (A9.15). Substitute the angular velocity vector referred
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to body axes, given by equation (A9.15), into equation (A9.19). Again, the angular
velocity vectors referred to wind axes cancel and after multiplying the matrices on
the right hand side the following transformations are obtained

◦
Lpw = ◦

Lpb cos2 αe + ◦
N rb sin2 αe +

(◦
Lrb + ◦

N pb

)
sin αe cos αe

◦
Lrw = ◦

Lrb cos2 αe − ◦
N pb sin2 αe −

(◦
Lpb − ◦

N rb

)
sin αe cos αe

◦
M qw = ◦

M qb (A9.20)

◦
N pw = ◦

N pb cos2 αe − ◦
Lrb sin2 αe −

(◦
Lpb − ◦

N rb

)
sin αe cos αe

◦
Nrw = ◦

Nrb cos2 αe + ◦
Lpb sin2 αe −

(◦
Lrb + ◦

N pb

)
sin αe cos αe

Force–acceleration derivatives

The force–acceleration derivatives are calculated in exactly the same way as the force–
velocity derivatives. However, in this case the aerodynamic force components referred
to wind axes are given by

⎡
⎣

Xw

Yw

Zw

⎤
⎦ =

⎡
⎢⎣

0 0
◦

X ẇw

0 0 0

0 0
◦
Zẇw

⎤
⎥⎦
⎡
⎣

u̇w

v̇w

ẇw

⎤
⎦ (A9.21)

and referred to body axes

⎡
⎣

Xb

Yb

Zb

⎤
⎦ =

⎡
⎢⎣

0 0
◦

X ẇb

0 0 0

0 0
◦
Zẇb

⎤
⎥⎦
⎡
⎣

u̇b

v̇b

ẇb

⎤
⎦ (A9.22)

Equations (A9.21) and (A9.22) are substituted into equation (A9.1), the velocity vec-
tors become acceleration vectors and after some algebraic manipulation the following
transformations are obtained

◦
X ẇw = ◦

X ẇb cos2 αe + ◦
Zẇb sin αe cos αe

(A9.23)◦
Zẇw = ◦

Zẇb cos2 αe − ◦
X ẇb sin αe cos αe

Moment–acceleration derivatives

The moment–acceleration derivatives are calculated in exactly the same way as
the moment–velocity derivatives. However, in this case the aerodynamic moment
components referred to wind axes are given by

⎡
⎣

Lw

Mw

Nw

⎤
⎦ =

⎡
⎢⎣

0 0 0

0 0
◦

M ẇw

0 0 0

⎤
⎥⎦
⎡
⎣

u̇w

v̇w

ẇw

⎤
⎦ (A9.24)
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and referred to body axes

⎡
⎣

Lb

Mb

Nb

⎤
⎦ =

⎡
⎢⎣

0 0 0

0 0
◦

M ẇb

0 0 0

⎤
⎥⎦
⎡
⎣

u̇b

v̇b

ẇb

⎤
⎦ (A9.25)

Equations (A9.24) and (A9.25) are substituted into equation (A9.2), the velocity vec-
tors become acceleration vectors and after some algebraic manipulation the following
transformation is obtained

◦
M ẇw = ◦

M ẇb cos αe (A9.26)

Aerodynamic control derivatives

The aerodynamic control derivatives are most easily dealt with by denoting a general
control input δ. The transformation of the control force derivatives from a body to
wind axes reference then follows directly from equation (A9.1) by writing

⎡
⎢⎢⎣

◦
X δw◦
Y δw◦
Zδw

⎤
⎥⎥⎦δ =

⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦

⎡
⎢⎢⎣

◦
X δb◦
Y δb◦
Zδb

⎤
⎥⎥⎦δ (A9.27)

The corresponding transformation of the control moment derivatives follows directly
from equation (A9.2) by writing

⎡
⎢⎢⎣

◦
Lδw◦
M δw◦
N δw

⎤
⎥⎥⎦δ =

⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦

⎡
⎢⎢⎣

◦
Lδb◦
M δb◦
N δb

⎤
⎥⎥⎦δ (A9.28)

The specific control derivative transformations are then obtained by substituting ele-
vator angle η, aileron angle ξ, rudder angle ζ, thrust τ and so on, in place of δ in
equations (A9.27) and (A9.28). Bearing in mind that the longitudinal and lateral
equations of motion are decoupled then it follows that

◦
X ηw = ◦

X ηb cos αe + ◦
Zηb sin αe

◦
Zηw = ◦

Zηb cos αe − ◦
X ηb sin αe (A9.29)

◦
M ηw = ◦

M ηb

and

◦
Y ξw = ◦

Y ξb

◦
Lξw = ◦

Lξb cos αe + ◦
N ξb sin αe (A9.30)

◦
N ξw = ◦

N ξb cos αe − ◦
Lξb sin αe
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By writing τ in place of η in equation (A9.29) the thrust control derivative transfor-
mations are obtained. Similarly, by writing ζ in place of ξ in equation (A9.30) the
rudder control derivative transformations are obtained.

SUMMARY

The body to wind axes derivative transformations described above are summarised in
Table A9.1. The transformations from wind to body axes are easily obtained by the

Table A9.1 Body axes to wind axes derivative transformations

Wind axes Body axes

◦
X uw

◦
X ub cos2 αe + ◦

Zwb sin2 αe +
( ◦

X wb + ◦
Zub

)
sin αe cos αe

◦
X ww

◦
X wb cos2 αe − ◦

Zub sin2 αe −
( ◦

X ub − ◦
Zwb

)
sin αe cos αe

◦
Y vw

◦
Y vb◦

Zuw

◦
Zub cos2 αe − ◦

X wb sin2 αe −
( ◦

X ub − ◦
Zwb

)
sin αe cos αe

◦
Zww

◦
Zwb cos2 αe + ◦

X ub sin2 αe −
( ◦

X wb + ◦
Zub

)
sin αe cos αe

◦
Lvw

◦
Lvb cos αe + ◦

N vb sin αe◦
M uw

◦
M ub cos αe + ◦

M wb sin αe◦
M ww

◦
M wb cos αe − ◦

M ub sin αe◦
N vw

◦
N vb cos αe − ◦

Lvb sin αe◦
X qw

◦
X qb cos αe + ◦

Zqb sin αe◦
Y pw

◦
Y pb cos αe + ◦

Y rb sin αe
◦
Y rw

◦
Y rb cos αe − ◦

Ypb sin αe◦
Zqw

◦
Zqb cos αe − ◦

X qb sin αe◦
Lpw

◦
Lpb cos2 αe + ◦

N rb sin2 αe +
(◦

Lrb + ◦
N pb

)
sin αe cos αe

◦
Lrw

◦
Lrb cos2 αe − ◦

N pb sin2 αe −
(◦

Lpb − ◦
N rb

)
sin αe cos αe

◦
M qw

◦
M qb◦

N pw

◦
N pb cos2 αe − ◦

Lrb sin2 αe −
(◦

Lpb − ◦
N rb

)
sin αe cos αe

◦
N rw

◦
N rb cos2 αe + ◦

Lpb sin2 αe −
(◦

Lrb + ◦
N pb

)
sin αe cos αe

◦
X ẇw

◦
X ẇb cos2 αe + ◦

Zẇb sin αe cos αe◦
Zẇw

◦
Zẇb cos2 αe − ◦

X ẇb sin αe cos αe◦
M ẇw

◦
M ẇb cos αe◦

X ηw

◦
X ηb cos αe + ◦

Zηb sin αe◦
Zηw

◦
Zηb cos αe − ◦

X ηb sin αe



App-9-H6927.tex 20/6/2007 16: 42 Page 446

446 Flight Dynamics Principles

Table A9.2 Wind axes to body axes derivative transformations

Body axes Wind axes

◦
X ub

◦
X uw cos2 αe + ◦

Zww sin2 αe −
( ◦

X ww + ◦
Zuw

)
sin αe cos αe

◦
X wb

◦
X ww cos2 αe − ◦

Zuw sin2 αe +
( ◦

X uw − ◦
Zww

)
sin αe cos αe

◦
Y vb

◦
Y vw

◦
Zub

◦
Zuw cos2 αe − ◦

X ww sin2 αe +
( ◦

X uw − ◦
Zww

)
sin αe cos αe

◦
Zwb

◦
Zww cos2 αe + ◦

X uw sin2 αe +
( ◦

X ww + ◦
Zuw

)
sin αe cos αe

◦
Lvb

◦
Lvw cos αe − ◦

N vw sin αe
◦

M ub

◦
M uw cos αe − ◦

M ww sin αe◦
M wb

◦
M ww cos αe + ◦

M uw sin αe◦
N vb

◦
N vw cos αe + ◦

Lvw sin αe◦
X qb

◦
X qw cos αe − ◦

Zqw sin αe◦
Y pb

◦
Y pw cos αe − ◦

Y rw sin αe◦
Y rb

◦
Y rw cos αe + ◦

Y pw sin αe◦
Zqb

◦
Zqw cos αe + ◦

X qw sin αe◦
Lpb

◦
Lpw cos2 αe + ◦

N rw sin2 αe −
(◦

Lrw + ◦
N pw

)
sin αe cos αe

◦
Lrb

◦
Lrw cos2 αe − ◦

N pw sin2 αe +
(◦

Lpw + ◦
N rw

)
sin αe cos αe

◦
M qb

◦
M qw

◦
N pb

◦
N pw cos2 αe − ◦

Lrw sin2 αe +
(◦

Lpw − ◦
N rw

)
sin αe cos αe

◦
N rb

◦
N rw cos2 αe + ◦

Lpw sin2 αe +
(◦

Lrw + ◦
N pw

)
sin αe cos αe

◦
X ẇb

◦
X ẇw cos2 αe − ◦

Zẇw sin αe cos αe◦
Zẇb

◦
Zẇw cos2 αe + ◦

X ẇw sin αe cos αe◦
M ẇb

◦
M ẇw cos αe

inverse procedure and these are summarised inTableA9.2 for convenience. The corre-
sponding control derivative transformations are summarised in Tables A9.3 and A9.4.

In the two following tables it is simply necessary to write η, τ, ξ or ζ in place of δ

as appropriate.
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Table A9.3 Body axes to wind axes control derivative
transformations

Wind axes Body axes

◦
X δw

◦
X δb cos αe + ◦

Zδb sin αe
◦
Y δw

◦
Y δb

◦
Zδw

◦
Zδb cos αe − ◦

X δb sin αe◦
Lδw

◦
Lδb cos αe + ◦

N δb sin αe◦
M δw

◦
M δb◦

N δw

◦
N δb cos αe − ◦

Lδb sin αe

Table A9.4 Wind axes to body axes control derivative
transformations

Body axes Wind axes

◦
Xδb

◦
X δw cos αe − ◦

Zδw sin αe◦
Y δb

◦
Y δw◦

Zδb

◦
Zδw cos αe + ◦

X δw sin αe◦
Lδb

◦
Lδw cos αe − ◦

N δw sin αe◦
M δb

◦
M δw◦

N δb

◦
N δw cos αe + ◦

Lδw sin αe
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Appendix 10

The Transformation of the Moments and
Products of Inertia from a Body Axes
Reference to a Wind Axes Reference

INTRODUCTION

In the same way that it is sometimes necessary to transform the aerodynamic stability
and control derivatives from a body axes reference to a wind axes reference, and vice
versa, it is also necessary to transform the corresponding moments and products of
inertia. Again, the procedure is very straightforward and makes use of the transfor-
mation relationships discussed in Chapter 2. It is assumed that the body axes and
wind axes in question have a common origin at the cg of the aeroplane and that it is
in steady level symmetric flight. Thus the axes differ by the steady body incidence αe

only as shown in Fig. 2.2.

COORDINATE TRANSFORMATION

Body to wind axes

A set of coordinates in a body axes system xb, yb, zb may be transformed into the
equivalent set in a wind axes system xw, yw, zw by application of the inverse direction
cosine matrix given by equation (2.13). Writing θ = αe and φ = ψ = 0 since level
symmetric flight is assumed then

⎡
⎣

xw

yw

zw

⎤
⎦ =

⎡
⎣

cos αe 0 sin αe

0 1 0
−sin αe 0 cos αe

⎤
⎦
⎡
⎣

xb

yb

zb

⎤
⎦ (A10.1)

or

xw = xb cos αe + zb sin αe

yw = yb (A10.2)

zw = zb cos αe + xb sin αe

Wind to body axes

A set of coordinates in a wind axes system xw, yw, zw may be transformed into the
equivalent set in a body axes system xb, yb, zb by application of the direction cosine

448
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matrix given by equation (2.12). Again, writing θ = αe and φ = ψ = 0 since level
symmetric flight is assumed then

⎡
⎣

xb

yb

zb

⎤
⎦ =

⎡
⎣

cos αe 0 − sin αe

0 1 0
sin αe 0 cos αe

⎤
⎦
⎡
⎣

xw

yw

zw

⎤
⎦ (A10.3)

which is simply the inverse of equation (A10.1). Alternatively

xb = xw cos αe − zw sin αe

yb = yw (A10.4)

zb = zw cos αe + xw sin αe

THE TRANSFORMATION OF THE MOMENT OF INERTIA IN ROLL FROM
A BODY AXES REFERENCE TO A WIND AXES REFERENCE

The moment of inertia in roll is defined in Table 4.1, and may be written when
referenced to a system of wind axes

Ixw =
∑

δm(y2
w + z2

w) (A10.5)

Substitute for yw and zw from equations (A10.2) to obtain

Ixw =
∑

δm(y2
b + z2

b) +
∑

δm(x2
b − z2

b) sin2 αe − 2
∑

δmxbzb sin αe cos αe

(A10.6)

Add the following null expression to the right hand side of equation (A10.6)

∑
δm(y2

b + z2
b) sin2 αe −

∑
δm(y2

b + z2
b) sin2 αe

and rearrange to obtain

Ixw =
∑

δm(y2
b + z2

b) cos2 αe +
∑

δm(x2
b + y2

b) sin2 αe

− 2
∑

δmxbzb sin αe cos αe (A10.7)

Referring to the definitions of moments and products of inertia in Table 4.1, equation
(A10.7) may be rewritten

Ixw = Ixb cos2 αe + Izb sin2 αe − 2Ixzb sin αe cos αe (A10.8)

Equation (A10.8) therefore describes the inertia transformation from a body axes
reference to a wind axes reference.

This simple procedure may be repeated to obtain all of the moment and prod-
uct of inertia transformations from a body axes reference to a wind axes reference.
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The inverse procedure, using the coordinate transformations given by equations
(A10.4), is equally straightforward to apply to obtain the corresponding transfor-
mations from a wind axes reference to a body axes reference.

SUMMARY

The body to wind axes moments and products of inertia transformations are sum-
marised in Table A10.1. The corresponding transformations from wind to body axes
obtained by the inverse procedure are summarised in Table A10.2.

Table A10.1 Moment and product of inertia transformations
from a body to wind axes reference

Wind axes Body axes

Ixw Ixb cos2 αe + Izb sin2 αe − 2Ixzb sin αe cos αe

Iyw Iyb

Izw Izb cos2 αe + Ixb sin2 αe + 2Ixzb sin αe cos αe

Ixyw Ixyb cos αe + Iyzb sin αe

Ixzw Ixzb (cos2αe − sin2 αe) + (Ixb − Izb ) sin αe cos αe

Iyzw Iyzb cos αe − Ixyb sin αe

Table A10.2 Moment and product of inertia transformations
from a wind to body axes reference

Body axes Wind axes

Ixb Ixw cos2 αe + Izw sin2 αe + 2Ixzw sin αe cos αe

Iyb Iyw

Izb Izw cos2 αe + Ixw sin2 αe − 2Ixzw sin αe cos αe

Ixyb Ixyw cos αe − Iyzw sin αe

Ixzb Ixzw (cos2αe − sin2 αe) + (Izw − Ixw ) sin αe cos αe

Iyzb Iyzw cos αe + Ixyw sin αe
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Appendix 11

The Root Locus Plot

MATHEMATICAL BACKGROUND

Given the general closed loop system transfer function

r(s)

c(s)
= G(s)

1 + G(s)H (s)
(A11.1)

where r is the response to a command input c, G(s) is the transfer function of the open
loop system and H (s) is the transfer function of the feedback controller located in the
feedback path. The closed loop characteristic equation is given by the denominator
of equation (A11.1)

1 + G(s)H (s) = 0 (A11.2)

Now, in general, the transfer function product G(s)H (s) will itself be a transfer
function and may be expressed as the ratio of two polynomials

G(s)H (s) = K1(1 + sT1)(1 + sT3) · · ·
sn(1 + sT2)(1 + sT4) · · · (A11.3)

or, alternatively,

G(s)H (s) =
K

(
s + 1

T1

) (
s + 1

T3

)
· · ·

Sn
(

s + 1
T2

) (
s + 1

T4

)
· · ·

(A11.4)

where the gain constant is given by

K = K1T1T3 . . .

T2T4 . . .
(A11.5)

Each factor in equation (A11.4) may be expressed alternatively in terms of magnitude
and phase, assuming sinusoidal command and response such that s = jω, for example,

(
s + 1

T1

)
= A1e jφ1 (A11.6)

451
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whence, equation (A11.4) may be written

G(s)H (s) = KA1A3 . . . ej((φ1+φ3+··· )−(nφ0+φ2+φ4+··· ))

An
0A2A4 . . .

≡ Aejφ (A11.7)

where, the total magnitude A is given by

A = KA1A3 . . .

An
0A2A4 . . .

(A11.8)

and the total phase is given by

φ = (φ1 + φ3 + · · ·) − (nφ0 + φ2 + φ4 + · · ·) (A11.9)

Thus, the characteristic equation (A11.2) may be written

1 + G(s)H (s) ≡ 1 + Ae jφ = 0 (A11.10)

which has solution

Ae jφ = −1 (A11.11)

For the solution of equation (A11.11) to exist two conditions must be satisfied:

(i) The angle condition

φ = (φ1 + φ3 + · · ·) − (nφ0 + φ2 + φ4 + · · ·) = (2k + 1)180 deg

(A11.12)

where k = 0, ±1, ±2, ±3, . . .
(ii) The magnitude condition

|G(s)H (s)| = A = K A1A3 . . .

An
0A2A4 . . .

= 1 (A11.13)

Thus any point in the s-plane where the conditions defined by both equations
(A11.12) and (A11.13) are satisfied defines a root of the characteristic equation.
By finding all such points in the s-plane a locus of the roots of the characteristic
equation may be constructed. In fact the root loci may be identified merely by
satisfying the angle condition only, the loci may then be calibrated by applying
the magnitude condition to selected points of interest on the loci.

THE RULES FOR CONSTRUCTING A ROOT LOCUS PLOT

The simple closed loop system of interest is defined by the structure shown in
Fig. A11.1. The object is to establish how the roots of the closed loop transfer function
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�

�

Demand ResponseAircraft
dynamics

G(s)

Feedback
gain Kr

Feedback
transfer
function

H(s)

r (s)c (s) e (s)
ErrorΣ

Figure A11.1 A simple closed loop system.

are governed by the choice of feedback gain Kr . The open loop transfer function of
the system is known at the outset and comprises the product of the transfer functions
of all the system components in the loop

KrG(s)H (s) (A11.14)

The corresponding closed loop transfer function is

r(s)

c(s)
= G(s)

1 + KrG(s)H (s)
(A11.15)

The root locus plot is constructed from the open loop transfer function (A11.14) which
should be in factorised form for convenience. The zeros are the numerator roots and
the poles are the denominator roots of equation (A11.15). When plotting the root loci
on the s-plane it is often convenient to choose the same numerical scales for both the
real and imaginary axes.

Rule 1
Continuous curves which comprise the branches of the locus start at the poles of
G(s)H (s) where the gain Kr = 0. The branches of the locus terminate at the zeros of
G(s)H (s), or at infinity, where the gain Kr = ∞.

Rule 2
The locus includes all points on the real axis to the left of an odd number of poles
plus zeros.

Rule 3
As Kr → ∞, the branches of the locus become asymptotic to straight lines with angles,

(2k + 1)180

np − nz
deg k = 0, ±1, ±2, ±3, . . .

where
np is the number of poles and nz is the number of zeros.
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Rule 4
The asymptotes radiate from a point on the real axis called the centre of gravity (cg)
of the plot and is determined by

cg =
∑

poles − ∑
zeros

np − nz

Rule 5
The loci break in to or break away from points on the real axis located between pairs
of zeros or pairs of poles respectively. Two methods may be used to estimate the
locations of the break-in or break-away points on the real axis. The first method is
approximate and gives results of acceptable accuracy for the majority of cases. The
second method is exact and may be used when the first method gives unsatisfactory
results:

(i) Method 1

• Select a test point on the real axis in the vicinity of a known break-in or
break-away point.

• Measure the distances from the test point to each real axis pole and zero.
Assign a negative sign to the pole distances, a positive sign to the zero
distances and calculate the reciprocals of the distances.

• Calculate the sum of the reciprocals for all poles and zeros to the left of the
test point and calculate the sum of the reciprocals for all poles and zeros to
the right of the test point.

• The test point is a break-in or break-away point when the left and right
reciprocal sums are equal.

• Choose a new test point and iterate until the break-in or break-away point is
obtained with acceptable accuracy.

• Note that this method may give inaccurate results when complex poles and
zeros lie close to the real axis.

(ii) Method 2

• Denote the open loop transfer function

G(s)H (s) = A(s)

B(s)
(A11.16)

• Define a function F(s)

F(s) = B(s)
dA(s)

ds
− A(s)

dB(s)

ds
(A11.17)

• The roots of F(s) include all the break-in or break-away points.

Rule 6
Loci branching in to, or away from the real axis do so at 90◦ to the real axis.
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Figure A11.2 Example of the locus departure angle from a complex pole.

Rule 7
The angle of departure of a locus from a complex pole, or the angle of arrival at a
complex zero, is given by

φ −
∑

(angles to all other zeros) −
∑

(angles to all other poles) − 180 deg

(A11.18)

An example is illustrated in Fig. A11.2.
Thus with reference to Fig. A11.2 the angle of departure of the locus from complex

pole p1 is given by

φ = (θ1 + θ3 + θ5) − (θ2 + θ4) − 180 deg (A11.19)

Rule 8
The total loop gain at any point on a locus is given by

Gain = �(distances from test point to poles)

�(distances from test point to zeros)
(A11.20)

Note that if the system under investigation has no zeros then the denominator of
expression (A11.20) is taken to be unity.
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Note: Page numbers representing figures are in bold; tables are in italics.

A-7A Corsair II, 139, 155, 163, 402, 403
velocity frequency response, 163, 164

Accelerated flight, 210
Acceleration:

inertial, 66
initial pitch, 262
normal, 262
perturbations, derivatives, 346–350
and rotary motion, 68
tangential, 68

Ackeret theory, 330
Adjustment:

elevator tab, 49
trim tab, 49

Adverse roll, 179
Adverse yaw, 181
Aerobatic aircraft, 69–70
Aerodynamic:

centre, aerofoil, 28
coefficients, dimensionless, 82
control derivatives, 371–377
control terms, 76
drag, 322
force, and moment components, 339
modelling, 320–336

limitations of, 335
operating conditions, 57
spring, 186
stability derivatives, 76

longitudinal, 337–350
terms, 75–76

Aerofoil:
aerodynamic centre, 29
cambered, 28
centre of pressure, 28

Aerotrim, 61–64
Agility, 212
Aileron, displacements, 27
Aircraft:

classification, 252
dynamics, and manoeuvring, 222–223

Aircraft behaviour:
like amplifier, 162

like attenuator, 162
Aircraft body fixed axes, 13–18
Aircraft geometry, 5
Aircraft trim condition, 57–59

calculation
Aerotrim, 61–64
controls fixed static stability, 60–61
elevator to trim, 59–60

Airframes:
configuration, trimmed equilibrium, 32
flexibility, 39

Algorithms:
Fadeeva, 118
Generalised Eigenvalue Problem, 118

American Military Specification
MIL-F-8785C, 250–251

American Military Standard
MIL-STD-1797A, 251

Angle of attack, 28–29
Angular:

perturbation, 75
relationships, symmetric flight,

16–17, 16
velocities, 22–24

Apparent inertia, 347
Apparent mass, 347
Approximations:

dutch roll mode, 192–193
roll mode, 189–190
short period mode, 147–150
spiral mode, 190–192

Aspect ratio, 25
Atmospheric disturbances, 4, 5
Attitude, 13, 18

angles, 18
constant steady state pitch, 110
perturbation, 74
rate, 22

Augmentation system, design, 280–283, 281
Augmented state equation, 132–133
Automatic flight control system (AFCS) 2
Autopilot, stability augmentation system,

275
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Axes:
aerodynamic, 14
body, 13
choice of, 17–18
generalised body, 13
moving, 13, 14
principal inertia, 72
stability, 14
transformations, 18–24
wind, 14, 17

Axial force:
due to elevator, 372
due to normal velocity, 341
due to pitch rate, 344
due to rate of change of normal velocity,

348
due to velocity, 322

Axial velocity:
normal force due to, 340
and pitching moment, 342

Balance, 75, 212
Bandwidth, 159

frequency, 162
speed of response, 163

Banked turn, 23
Bode diagram, 159–165, 161, 195

break frequency, 160
gain plot, 160
interpretation, 161–165

Body axis system, 13–14
Body rates, angular, 22
Boeing B-747, 200–201, 238, 236
British Civil Airworthiness Requirements,

249
British Defence Standard

DEF-STAN 00-970, 213–214,
250, 251

Busemann theory, 330

Centre of gravity:
location, 26, 24
trimmed equilibrium, 32

Centre of pressure, 28
wings, 28

Characteristic equation, 102, 144, 182–183,
227

augmented, 282, 284
Douglas DC-8, 193
lateral–directional, 191, 231
order of, 189
reduced order, 149, 188
solution of, 182–183, 227

Chord:
geometric, 25
mean aerodynamic, 25
standard mean, 25

Civil Aviation Authority, 249
Civil transport aeroplane:

stability and control characteritics,
392–396

Closed loop, 166
control law, 284
equations of motion, 284
system analysis, 283–287, 283

Cockpit design, 4
Coefficient E, 233–234
Command and stability augmentation

system (CSAS), 279
Command path control, 281
Compressibility, 327–335
Computers, 8–10

analytical, 8
flight control, 8–9
software, 9–10

Concise lateral state equation, 91
Control:

augmentation, 6
derivatives, 7

Lockheed F-104 Starfighter, 106
error signal, 281, 282
force, to trim, 32, 49
gains, 275
law, 275

closed loop, 274
stability augmentation system (SAS),

275, 277, 314
and response, 5
and stability, 6
system, closed loop, 274
terms, aerodynamic, 76

Control Anticipation Parameter (CAP), 258,
260–263

definition, 261
Controllability, 226, 240
Controlled motion, 241–242
Controlled system:

multi-input, 312
single input, 312

Controls, 27–28
aerodynamic, 27
engine, 27–28
fixed

dynamic stability, 170
manoeuvre margin, 150, 217
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manoeuvre point, 150, 217
neutral point, 29, 44, 46, 150
stability, 44–47, 216–218
stability margin, 52, 150

free
dynamic stability, 170
neutral point, 48, 51, 52
stability, 47–51, 218–221

notation, 27–28
in pitch, 27
in roll, 27
in yaw, 27

Convair CV-880, 393
Conversions, 425
Convolution integral, 120
Cooper–Harper rating, 255–256, 257 (table)
Coordinate transformation, 448–449

body to wind axes, 448
wind to body axes, 448–449

Coupling:
aerodynamic, 81, 186, 192
dynamic, 167, 178, 202
mode, 167

Coursework studies, 390–404
Cramer’s rule, 99–101, 103, 105
Critical damping, 236

Damped harmonic motion, 429
Damped natural frequency, 429
Damping, 33, 139, 144

angle, 235
ratio, 107, 110–111, 266
requirements, dutch roll mode, 268

Datum-path, earth axes, 13
Decoupled equations of motion, 79–82
Definitions:

Control Anticipation Parameter (CAP),
261

Mach cone, 328
Mach number, 328
pitch, 15
roll, 15
shock stall, 328
shock wave, 328
stability, 224
subsonic flight, 328
supersonic flight, 328
yaw, 15

Degrees of freedom, 66, 72, 85, 186
Demonstration of compliance, 250

test flights, 250
Department of Defense, 249

Derivatives:
acceleration perturbations, 346–350
aerodynamic, 7, 76, 321

control, 371–377
lateral–directional stability, 350–371
longitudinal stability, 337–350

aero-normalised, 83
axial force due to velocity, 322–323
calculation, 324
concise, 187, 397–398
control

lateral, 414, 418
longitudinal, 413, 446

dimensional, 419–420, 420–421
dimensionless, 83, 84, 88, 90,

233, 234
due to elevator, 371–373
estimation, 323–327
force, 339–342
force–acceleration, 443
force–rotary, 441–442
force–velocity, 439–440
high-performance aeroplanes, 347
lateral, McDonnell F-4C Phantom, 90
magnitudes, 126
measurement

flight test, 325–327
wind tunnel, 324–325

moment–acceleration, 443–444
moment–rotary, 442–443
moment–velocity, 440–441
pitch velocity perturbation, 343–346
quasi-static, 321–323
rate of roll, 360–365, 361, 362
semi-empirical, 324
due to sideslip, 351–360
stability

lateral, 414, 417
longitudinal, 413, 415

yaw rate, 365–371
Design modification, 6
Dihedral effect, 53, 185, 264, 352
Dimensionless:

equations of motion, 82–85
inertias, 85

Direct lift control (DLC), 212
Direction cosine matrix, 19, 20
Directional:

static stability, 54–57
weathercock effect, 234

Disturbance forces, and moments,
72–73
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Douglas DC-8, 176–182, 195
characteristic equation, 227
frequency response, 195–200
sideslip angle frequency, 198
source data, 147–153

Downwash, 347–348
field, 42, 348

Drag:
coefficient, 330
lateral, 351
due to lift, 331
and pitching moment

subsonic lift, 329–330
supersonic lift, 330–332
variation with Mach number, 334

properties, and Mach number, 333
skin friction, 331
wave, 331

Drag–velocity plot, 322
Dutch roll mode, 186–188, 198–199,

201, 202, 204, 232,
264–265, 310

approximations, 192–193
damping ratio, 195
damping requirements, 268
flight recording, 205
frequency, 197
limiting frequency, 268
McDonnell F-4 Phantom, 269
oscillatory, 178, 187

Dynamic coupling, 167
Dynamic models, short term, 241–249
Dynamics:

lateral–directional, 174
longitudinal, 138
short term, 201, 241

Early aviation, 1
Earth axes, 12–13, 13

datum-path, 13
Effective aspect ratio, 331
Eigenvalues:

and eigenvectors, 120–121
matrix, 121

Eigenvectors:
and eigenvalues, 120–121
magnitude, 126
matrix, 181

Elevator:
angle

to trim, 43
trimmed equilibrium, 32

and axial force, 72
deflection, 82
displacements, 27, 218
hinge moment, 47, 218
longitudinal response to, 138
and normal force, 372
and pitching moment, 373
pulse duration, 167
tab

adjustment, 49
angle to trim, 43, 49

transfer function, Lockheed F-104
Starfighter, 285–287

Engine:
control, 27–28
dynamics, 131–132

Equations:
aero-normalised, 83
characteristic, 102, 144, 182–183, 227
error method, 326
generalised force, 70–71
generalised moment, 71–72
height, 128–129
lateral–directional state, 189
longitudinal characteristic, 144, 147
longitudinal state, 129, 132
modal, 121, 122
of motion, 5, 7

in American normalised form, 91–95
closed loop, 284
decoupled, 79–82
dimensional decoupled, 82
dimensionless, 82–85
lateral asymmetric, 82
lateral–directional, 81–82, 174–175
linearised, 73–79
longitudinal, 79–81, 83
McDonnell Douglas DC-8 see Douglas

DC-8
McDonnell Douglas F-4C Phantom,

88–90, 90–91, 312
open loop, 284
small perturbations, 77–79
solving, 98

Laplace transform, 98–99
state space form, 85–91

pitching moment, 40-43, 214–216
reduced order, 148
steady state, 78

Equilibrium, trimmed, 15, 32–40
Euler angles, 18, 18
Experiments, dynamic, 325
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Failure transient, 276
Federal Aviation Administration, 249, 250
Feed forward path, 281
Feedback path, 280–281
Fin:

disturbance, 55
effect, 185
effectiveness, 56
moment arm, 26, 27
volume ratio, 26, 27, 359

Final value theorem, 111, 181, 243, 262
Fixed axes, aircraft body, 13–18
Fixed neutral point:

locating, 334–335
and Mach number, 334–335

Flat earth, 12, 13
Flexibility, airframes, 39
Flight control system (FCS), 274–276, 275

design, 279
electronic (EFCS), 274
mechanical elements, 278

Flight critical stability augmentation see
Flight control system

Flight envelopes, 6, 7, 253–255, 254, 255,
256

extended, 240
large, 37
McDonnell-Douglas A-4D Skyhawk,

254–255, 255, 256
normal load factor, 255
operational, 253, 254
permissible, 253
service, 253

Flight path angle, 13
Flight phase, 252

categories, 252
Flight test measurement, 325–337, 326
Flow effects, 38
Fly-by-wire:

aeroplane, 251
civil transport aeroplanes, 9
controls, 4, 4
system, 278–280, 279

reliability, 279
unstable airframes, 295

Flying, and handling, 3–4, 165–167,
200–202, 240

Flying qualities:
lateral–directional, 263–266
Level of, 252–253
longitudinal, 256–260
McDonnell F-4C Phantom, 269–271

requirements, 249–251
on s-plane, 266–269, 267
specification, 247

Force balance, 32, 34
Frequency:

phugoid, 107, 146, 162, 259, 260
response, 158–165, 195–200

Full state feedback, 312, 314
Functional visibility, 5, 241, 280
Functions:

Dirac delta, 123
unit impulse, 123

Gain:
logarithmic, 160
margin, 162
and phase, calculation, 160
plot, Bode diagram, 160

Generalised:
force equations, 70–71
moment equations, 71–72

Gradients, stable, 257–258, 258
Gravitational:

force components, 74–75
terms, 74–75

Gyration, longitudinal radius of, 263

Handley Page Jetstream, 167, 168, 202, 203
elevator angle to trim, 46
flight test, 45, 50–51, 167
phugoid response, 169
roll subsidence mode, 202, 203
with tailplane, 40
wind tunnel experiments, 39, 40
without tailplane, 40

Handling, 200–202
and flying, 165–167, 240
long term, 241
pilot’s perception, 241
qualities, 3–4, 3, 4

criteria, 247
short term, 241

Harmonisation, of control power, 240
Height response, 128
High pass filter, 276
Hinge moment to trim, 50, 51
Horizontal fuselage datum, 14, 59

Incidence angle feedback to elevator,
298–299, 298

Incidence lag, 243, 247–249, 249
on pitch response, 249, 248
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Inertia:
dimensionless, 84, 85
moments and products, 71
transformation

body to wind, 445
wind to body, 446

Inertial acceleration, 68
components, 66–70

Initial value theorem, 111, 112
Inner control loop, 278
Instability, conditional, 232–233
Integrated actuation, 278

Jet engine, exhaust, 38, 38
Joint Aviation Requirements, 249

Kalman filtering, 326

Lanchester phugoid model, 151–152, 157
Laplace transforms, 397
Lateral:

dihedral effect, 234
directional equations of motion, 81–82
perturbation, sideslip angle, 130
relative density, 84
response transfer functions, 105–108

Lateral–directional:
augmentation, 300–311
control, steady, 263
derivative coefficients, 382–384
equations of motion, 81–82
modes, 267–269, 268
stability, 33, 263–265, 350–371

Level:
of flying qualities, 252–253

Lift coefficient, 39, 50, 83
Lift to drag ratio, 155
Lifting properties, and Mach number, 333,

334
Limiting frequency, dutch roll mode, 268,

265
Linear second order system, 427–430
Linear system modelling, 197
Linear time invariant (LTI) system, 85
Ling-Temco-Vought A-7A Corsair II,

139–143
Lockheed F-104 Starfighter, 106–108,

132–134, 291–293
control derivatives, 106
elevator transfer function, 285–287
lateral–directional handling qualities,

396–401
longitudinal equations of motion,

125–128

phugoid stability, 287
pitch attitude response, 106
pitch response, 106–108
root locus plot, 287–291
stability, dimensional, 106

Locus departure angle, 455
Logarithmic gain, 160
Longitudinal:

characteristic equation, 144
derivative coefficients, 378–382
equations of motion, 79–81
manoeuvrability, 216, 222–223, 260, 261
modes, 266–267

damping ratios, 266, 267
motion, 232
reduced order, 242–244
reference geometry, 24
relative density, 83, 214
response to elevator, 138
short period, thumb print criterion, 247,

248
stability, 165
state equation, 87, 129, 132, 155

decoupled, 129
static stability, test for, 43

Low pass system, 159
LTV A7-A Corsair aircraft, 401–404

McDonnell-Douglas A-4D Skyhawk,
294–300

flight envelopes, 254, 255
stability mode characteristics, 295

McDonnell F-4C Phantom, 80–81, 88–90,
312–316

aerodynamic variables, 90
control characteristics, 269–271
dutch roll mode characteristics, 271
equations of motion, 312
flying qualities, 269–271
lateral derivatives, 90–91
longitudinal equations of motion, 90
longitudinal stability modes, 313, 315
stability, 269–271

Mach cone, definition, 328
Mach number, 82

critical, definition, 328
definition, 328
and drag properties, 333, 334
and fixed neutral point, 291–292
flow, 329
and lifting properties, 333, 334
and pitching moment, 334, 334
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Manoeuvrability:
controls free, 260
lateral–directional, 265–266

sideslip excursions, 227
longitudinal, 260, 261

Manoeuvre stability, 211, 211–212
analysis, 212
longitudinal

controls fixed, 216–218
controls free, 218–221

Manoeuvring:
and aircraft dynamics, 222–223
classical theory, 211
controls fixed, 216–218
controls free, 218–221
longitudinal stability, 216–221
normal, 210
steady pull-up, 212–214
steady symmetric, 212
symmetric pull-up, 213
tailplane incidence, 215
transcient upset, 211

Mathcad, software, 10, 61–62
Mathematical models, 5–6

approximate, 6
high fidelity, 5

MATLAB, 109
software, 9

Matrix, 85
direct, 86
eigenvalue, 120
eigenvector, 121
exponential, 119, 122
identity, 86
input, 85
mass, 87
modal, 121
output, 86
polynomial, 115
state, 85
state transition, 119
transfer function, 114–118

longitudinal, 115–116
lateral–directional, 116–118

zero, 86
Maximum likelihood method, 326
Measurement:

flight test, 325–327, 326
wind tunnel, 324–325

Minimum drag speed, 34, 143
Minimum phase, 162
Ministry of Defence, 249

Modal:
equations, 122
matrix, 121

Modelling, pitching behaviour, 41
Modes:

coupling, 167, 183
dynamic stability, 144–147
excitation, 167–170, 202–206
faster, 237
slow, 237

Moment components, and aerodynamic
force, 339

Moments, and disturbance forces, 72–73
Morane Saulnier MS-760 Paris, 255, 256
Motion:

cues, 241–242
variables, 15

Multi-input, controlled system, 312

Natural frequency, 110, 145, 146,
155, 222

Navigation, trans-globe, 12
Navion Aircraft Corporation, Navion/H,

244–247, 245
Negative feedback, 274, 302
Newton:

second law, 66, 70
rotational form, 71

Nichols chart, 159
Non-linear system, 225
Non-minimum phase, 113, 162, 164, 179
Normal:

acceleration
equations, 112
feedback to elevator, 299–300, 299
response at cg, 114

force
axial velocity, 340
due to elevator, 372
due to normal velocity, 342
due to pitch rate, 345
due to rate of change of normal

velocity, 349
load factor, 69–70, 213, 243

flight envelopes, 253–254
velocity

and axial force, 341, 348
and normal force, 342, 349
and pitching moment, 343, 350

North American derivative coefficient
notation, 377–385
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North American X-15 hypersonic research
aeroplane:

stability augmentation, 391–392
Northrop T-38 Talon, transfer function data,

301
Nyquist diagram, 159

Open loop, equations of motion, 284
Optical signal transmission, 280
Oscillations:

phugoid, 146–147, 151, 168, 151–158
pilot induced, 162
short period pitching, 107, 110, 126, 127,

141, 144–145, 145, 148, 167, 168,
258–259, 259

Outer control loop, 274, 275
Output response variable, 158

Parameter identification, 325–327, 326
disadvantages, 327
equation error method, 326
maximum likelihood method, 326
statistical regression method, 326

PC MATLAB, 125, 127, 141, 160, 181, 272,
390

root locus plot, 272, 288
software, 9

Peak roll, to peak yaw ratio, 187–188
Perturbations:

angular, 75
attitude, 74
height, 21
small, 7–8
about trim, 37, 73, 201
variables, 14–16, 15, 15, 16
velocity, 339

Phase margin, 162
Phugoid, 107, 146–147

damping, 290, 296
frequency, 162, 296
Lanchester model, 151–152
mode, 167, 168
oscillation, 127, 151
reduced order model, 152–155
stability, 140

Lockheed F-104 Starfighter, 285
Pilot opinion, 240

rating, 255–256
Pilot workload, 226, 253
Pitch, 19

attitude, and elevator, 106, 110, 161, 295
damper, 292
definition, 15

motion cue, 249
rate, 22

and axial force, 344–345
feedback, 291

to elevator, 295–297, 296
and normal force, 345
and pitching moment, 346

response, Lockheed F-104 Starfighter,
106–108

stiffness, 300, 343
velocity perturbation, 343–346

Pitching:
Behaviour, modelling, 41
moment, 29, 34, 35, 37, 38, 38

due to axial velocity, 342–343
due to elevator, 373
equation, 40–43, 41, 214–216

simple development, 41–43
due to normal velocity, 343
due to pitch rate, 346
due to rate of change of normal

velocity, 350
Pole placement method, 311–316

application, 311
Power effects:

indirect, 37
stability, 37–39

Power terms, 77
Prandtl–Glauert rule, 329–330, 333
Pressure drag, 331
Program CC, 89, 109, 163

root locus plot, 272
software, 10

Q-feel system, 278

Rapid incidence adjustment, 148
Rate command, 246
Rate of roll, derivatives, 360–365, 361, 362
Reduced order:

longitudinal response, 157
models, 147–158, 152–155, 188–195

lateral–directional, 189–190
longitudinal, 242–247

phugoid dynamics, 154, 156
Redundancy, 277, 279
Reference centres, 28–30, 29
Reference geometry, 23, 25 24–27, 24, 27
Resolvent, 119
Resonant frequencies, 159
Response, 98–106 119–128

to aileron, 175, 177, 179
and control, 5
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to controls, 108–112, 138–144, 174–183
to elevator, 138, 139, 141, 142
homogeneous, 120
impulse, 120, 123
pitch rate, 156, 245, 246, 293
to rudder, 179, 180
second-order-like, 244–247, 245
shapes, 124
shaping, 281, 282
steady state, 143
step, 102–103 120, 123–124
transfer functions, 99, 101–108, 138–139,

159, 188
acceleration, 112–114
elevator, 102, 159, 269
flight path angle, 131
height, 128–129
improper, 101, 113
incidence, 129–130
lateral, 105–106
lateral–directional, 105–106, 421–422,

423
Ling-Temco-Vought A-7A Corsair II,

139–143
longitudinal, 102–105, 175, 419–420,

422–423
pitch rate, 104
sideslip, 129–130
thrust, 105

unforced, 122–123
Restoring moment, 36, 145, 184
Retrimming, 45, 48
Reynolds number, 82
Ride quality, 166
Roll, 19

attitude
feedback to aileron, 304–305, 305
feedback to rudder, 309–310, 310

definition, 15
mode, approximation, 183–184
rate, 22

and aileron, 102, 105, 108
feedback to aileron, 302, 303
feedback to rudder, 307–308, 308
and rolling moment, 317–319, 362–365
and side force, 360, 361
and yawing moment, 364–365

response
to aileron, 189, 194

subsidence mode, 118, 178, 182,
183–184, 201, 202, 206, 263–264,
264

flight recording, 202, 203
Handley Page Jetstream, 172, 172, 202,

203
maximum value, 264

Rolling moment:
coefficient, 54
equation, 189
negative, 54
due to roll rate, 362–365
due to sideslip, 352–359
due to yaw rate, 367–368, 368

Root locus plot, 287–291, 289, 451–455
angle condition, 452
applications, 288
background, 451–452
constructing, 452–455
incidence angle feedback to elevator,

298–299, 298
interpretation, 288
magnitude condition, 452
normal acceleration feedback to elevator,

299–300, 299
pitch attitude feedback to elevator, 295,

296
pitch rate feedback to elevator, 295–297,

296
roll attitude feedback to aileron, 304–305,

305
roll attitude feedback to rudder, 309–310,

310
roll rate feedback to aileron, 302, 303
roll rate feedback to rudder, 307–308, 308
sideslip angle feedback to aileron,

301–302, 302
sideslip angle feedback to rudder,

306–307, 307
single variable feedback, 293
velocity feedback to elevator, 297–298,

297
yaw attitude feedback to aileron,

305–306, 306
yaw attitude feedback to rudder, 310, 311
yaw rate feedback to aileron, 303–304,

304
yaw rate feedback to rudder, 308–309, 309

Rotary motion:
and acceleration, 68
and velocity, 67

Routh array, 228
Routh–Hurwitz criterion:

application, 227–229
stability, 227–228
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Routh’s discriminant, 232
Rudder surface, displacements, 27
s-plane:

complex roots on, 235
flying qualities on, 266–269
lateral–directional modes on, 267–269,

268
longitudinal modes on, 266–267, 267
root mapping on, 234–236

Safety, 276–277
Setting angle, tailplane, 40
Shock expansion, 330
Shock stall, definition, 328
Shock wave, definition, 328
Short period mode approximation, 147–150
Short term, dynamic models:

controlled motion and motion cues,
241–242

longitudinal reduced order model,
242–247

thumb print criterion, 247
incidence log, 247–249

Sideforce:
due to roll rate, 360
due to sideslip, 351
due to yaw rate, 365

Side-stick controller, 279
Sideslip, 62

angle, 20
angle feedback to aileron, 301–302, 302
angle feedback to rudder, 306–307, 307
disturbance, 54, 55, 351
fin lift, 358
lateral cross flow, 358
and rolling moment, 352–359
and sideforce, 351
swept wing in, 355
and yawing moment, 359–360

Similarity transform, 121
Single input, controlled system, 312
Single variable feedback, root locus plot,

293
Small perturbations, 7–8

equations of motion, 77–79
Software:

20-Sim, 10
Mathcad, 10
MATLAB, 9
Program CC, 10
Simulink, 9–10

Specification, flying qualities, 250

Spherical coordinates, 12
Spiral mode, 118, 178, 184–186, 185, 201,

203, 204, 264, 264, 265
approximations, 190–192
boundary, 268
stable, 188, 191
time constant, 191
unstable, 186, 203, 301

Stability, 178, 240–241
aerodynamic, 7
augmentation, 6, 251, 290–291

control law, 292
longitudinal, 293–300, 294
system, 240, 275, 277–280,

277, 279
autopilot, 275
control law, 276
role of, 278

conditions for, 33–35, 34
and control, 6
controls, 225–226

fixed, 43, 44–47, 216–218
margin, 44
static, 218–221

fixed dynamic, 170, 205
free, 41, 43, 47–50, 218–221

meaning, 47
free dynamic, 170, 205
free margin, 48

definition, 224
degree of, 35–36, 36
directional static, 54–57, 185
dynamic modes, 144–147, 183–188
estimating, 321
graphical interpretation, 234–236, 235
lateral static, 53–54, 185, 352
lateral–directional, 33, 202, 350–371

augmentation, 300–311, 301
dynamic, 263–265
short period, 201

longitudinal, 266–267
dynamic, 258–260
manoeuvring, 216–221
margins, 52
modes, 167, 168
static, 44–53, 256–258

manoeuvre, 211
margin, 36, 44
modes, 178, 237, 238
non-linear systems, 225
phugoid, 146–147, 259, 287, 295
power effects, 37–39, 38
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quartic, 231–234
definition, 231

relative sensitivity, 290
reversal, 39
Routh–Hurwitz criterion, 227–228
short period mode, 259
static

and dynamic, 225
longitudinal, 43,

44–53
margins, 258

subsonic, 36–37
supersonic, 37
variable, 247
variation in, 36–40

Stable system, 430
State space method, 114–128

Laplace transform, 119
State space model augmentation, 128–134
State transition matrix, 119
Static stability, longitudinal, 43, 44–53
Statistical regression, 326
Stick displacement, 218
Stick force per g, 221

measuring, 221
Subsonic flight, definition, 328
Subsonic lift, drag and pitching moment,

329–330
Supersonic flight, definition, 328
Supersonic lift, drag and pitching moment,

330–332
Symmetric flight, angular relationships,

16–17, 16
Symmetry, of airframe, 32
System analysis, closed loop, 283–287, 283
System realization, 132

Tailplane:
lift coefficient, 42, 215, 371
moment arm, 26
setting angle, 42
volume ratio, 26, 345
weathercock tendency, 145

Test flights:
demonstration of compliance, 250
variable stability, 247

Throttle lever angle, 77, 132
Thrust, 77

line, 37
trimmed equilibrium, 33
variation, 82

Thumb print criterion, 247

longitudinal short period, 247, 248
Time response, 98, 110, 111
Transfer function, 197, 282

angular pitch acceleration, 262
matrix, 94–95, 114–115

lateral–directional, 116
Lockheed C-5A, 116–118

longitudinal, 115–116
open loop, 295

Transformation:
angular rates, 230
angular velocities, 22–24
coordinate, 448–449

body to wind axes, 438, 444, 448
wind to body axes, 448–449

force and moment, 438
inertia, 449
linear, 19–21

Transonic flight, 258, 328
Trim:

change of, 257
function, electrical, 279
hands-off, 47, 48, 49
state, 5, 32
tabs, 32

adjustment, 49
elevator, 32

Trimmability, 32
Trimmed aircraft, 57, 167, 202
Trimmed equilibrium, 15, 32–40

airframe configuration, 32
centre of gravity, 32
elevator angle, 33
flight path angle, 32, 33
lateral–directional, 33
longitudinal, 33
stable, 34
thrust, 33
weight, 32

Units, 425

Variable stability, 36–39
test flights, 247

Velocity:
eigenfunctions, 124, 126
feedback to elevator, 291–293, 292
linear disturbance, 73
perturbations, moment derivatives,

342–343
resolution, 20
and rotary motion, 67
tangential, 67
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Virtual inertia, 347
Virtual mass, 347

Wake, 38
Washout filter, 276, 400
Weathercock, 54, 56, 145
Weight, trimmed equilibrium, 32
Wind axes, perturbed, 338
Wind tunnel:

experiments, Handley Page Jetstream, 40
measurement, 324–325

accuracy, 325
Wing:

area, 24
aspect ratio, 25
centre of pressure, 28
mean aerodynamic chord (mac), 25
standard mean chord (smc), 25
sweep back, 39

Yaw, 19
adverse, 181

angle, 18, 22
attitude

feedback to aileron, 305–306, 306
feedback to rudder, 310, 311

definition, 15
rate, 22

derivatives, 365–371
feedback to aileron, 303–304, 304
feedback to rudder, 303–309, 309
fin incidence, 366
and rolling moment, 366–369,

367, 368
and sideforce, 365
and yawing moment, 369–371

Yawing moment:
due to aileron, 375
about cg, 369
coefficient, 52, 53, 54
due to roll rate, 364–365
due to rudder, 377
due to sideslip, 359–360
due to yaw rate, 369–371
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