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ABSTRACT

Investigation of bacterial community dynamics across different time scales is important for understanding how
environmental conditions drive community change over time. Bacterioplankton from the surface waters of a subtropical
urban reservoir in southeast China were analyzed through high-frequency sampling over 13 months to compare patterns
and ecological processes between short (0−8 weeks), medium (9−24 weeks) and long (25−53 weeks) time intervals. We
classified the bacterial community into different subcommunities: abundant taxa (AT); conditionally rare taxa (CRT); rare
taxa (RT). CRT contributed > 65% of the alpha-diversity, and temporal change of beta-diversities was more pronounced for
AT and CRT than RT. The bacterial community exhibited a directional change in the short- and medium-time intervals and
a convergent dynamic during the long-time interval due to a seasonal cycle. Cyanobacteria exhibited a strong succession
pattern than other phyla. CRT accounted for > 76% of the network nodes in three stations. The bacteria–environment
relationship and deterministic processes were stronger for large sample size at station G (n = 116) than small sample size at
stations C (n = 12) and L (n = 22). These findings suggest that a high-frequency sampling approach can provide a better
understanding on the time scales at which bacterioplankton can change fast between being abundant or rare, thus
providing the facts about environmental factors driving microbial community dynamics.
Patterns and processes in alpha- and beta-diversities and community assembly of bacterioplankton differ among different
time intervals (short-, medium- and long-time intervals) and different subcommunities (abundant, conditionally rare and
rare taxa) in a subtropical urban reservoir, demonstrating the importance of temporal scale and high-frequency sampling in
microbial community ecology.
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INTRODUCTION

Freshwater bacterioplankton have significant capabilities to
response to both natural and human-induced environmental
changes at different spatial and temporal scales (Locey and
Lennon 2016; Zelaya et al. 2019). It is important to investigate the
interaction between microbial community and environmental
change across various time intervals (short-term vs long-term)
to fully understand community assembly of microorganisms in
aquatic ecosystems. Seasonal sampling studies relying on rel-
atively long time interval of data collection (e.g. monthly) in
general show different seasonal succession patterns in bacterio-
plankton community composition that occur in lakes and reser-
voirs (Boucher, Jardillier and Debroas 2006; Ávila et al. 2017; Liu
et al. 2019b; Nyirabuhoro et al. 2020). These works illustrate that
different environmental variables shape bacterioplankton com-
munities at different sequential scales (Boucher, Jardillier and
Debroas 2006; Ávila et al. 2017; Nyirabuhoro et al. 2020). For exam-
ple, water temperature, organic nutrients and pH have been con-
nected to seasonal variability in bacterioplankton community
(Nyirabuhoro et al. 2020). Identifying seasonal dynamics in bac-
terioplankton community composition at fine time scale have
not been widely explored in aquatic habitats (Gilbert et al. 2012;
Needham et al. 2013; Lindh et al. 2015).

Groups of closely related individual bacterial populations
(operational taxonomic units or OTUs), can cause temporal
dynamics over short time scales (e.g. several days to weeks)
(Needham et al. 2013) and can respond to changes in environ-
mental conditions showing a quick succession of different bac-
terial taxa (Zelaya et al. 2019; Linz et al. 2020). This implies that
bacterioplankton community sampled in high temporal resolu-
tion and influenced by environmental variables can be broken
down into responses of each OTU (Lindh et al. 2015). Hence, it
could be essential to find out whether similar dynamics within
bacterioplankton would take place in environment over shorter
or longer temporal scales in response to change in environmen-
tal conditions (Shade et al. 2013; Lindh et al. 2015; Linz et al. 2020).
More importantly, the analyses associated with high-resolution
observations over longer time series could help to show the
essential features of variations in bacterioplankton community
within 1 year, revealing responses of microbial community to
environmental disturbances with separate ecological processes
(Lindh et al. 2015; Xue et al. 2018).

In inland waters, bacterioplankton communities usually
include a few abundant taxa and many rare or low-abundance
ones (Liu et al. 2015b; Nyirabuhoro et al. 2020). The high-
throughput sequencing technologies allowed researchers to
explore and identify the rare phylotypes that were diffi-
cult to detect with traditional culture-based and microscopic
approaches (Liu et al. 2015b). At a specific point in space and
time, just a few members of abundant taxa generally domi-
nate bacterioplankton community, and they can occur at the
same time with a majority of rare taxa (Shade et al. 2014; Riv-
ett and Bell 2018). Both abundant and rare bacterioplankton
can respond to changes in environmental conditions (Liu et al.
2019b; Campbell et al. 2011); for example, the rare taxa that can
wait for favorable environmental conditions to increase in rel-
ative abundance these are called conditionally rare taxa (CRT;
Liu et al. 2019b; Campbell et al. 2011; Shade et al. 2014). The eco-
logical importance of the resilience and alteration within these
bacterioplankton communities is not well understood, particu-
larly in responding to changes in environmental conditions on
various temporal scales. As an example, bacterial community
turnover times and percentage change of particular individual

populations in aquatic environments may vary over 3–5 days
(Yokokawa et al. 2004; Fang et al. 2019). This shows that spa-
tiotemporal patterns of bacterioplankton may not be easily rec-
ognized from observations conducted based on low-frequency
sampling.

Microbial community composition, influenced by environ-
mental variables is often considered to be shaped by deter-
ministic processes (Ndayishimiye et al. 2020; Nyirabuhoro et al.
2020). These ecological processes are also referred to as niche-
based processes for the reason that they can produce the com-
petitive interactions among species and changes in community
composition (Lindström and Langenheder 2012; Jiao et al. 2017).
Further, microbial community composition can also be influ-
enced by random changes in demographic characteristics, called
neutral-based processes or stochastic processes (Ofiţeru et al.
2010; Stegen et al. 2012; Chen et al. 2019). Both stochastic and
deterministic processes are important ecological processes in
shaping microbial community structure across space and time
(Ofiţeru et al. 2010). However, it is still unclear to what extent
these two processes work together with each other and influ-
ence community assembly at various time scales (Ofiţeru et al.
2010; Ndayishimiye et al. 2020). Variation partitioning analysis,
neutral community model and network approaches offer a set
of theories and methods with which to investigate, with greater
precision and consistency, the wide range of interactions that
are likely to occur among microbial populations in an aquatic
environment (Eiler, Heinrich and Bertilsson 2012; Faust and Raes
2012; Mo et al. 2018; Chen et al. 2019; Liu et al. 2019a). In addi-
tion, these network methods can not only help better under-
stand species composition, and their interactions in the form of
interaction networks, but also in assessing responses of abun-
dant and rare bacterioplankton to temporal change in subtropi-
cal reservoirs (Liu et al. 2019b).

In this study, the dynamics of bacterioplankton communi-
ties in relationship to variations of environmental conditions—
at short-, medium- and long-term time scales—have been
assessed. Bacterioplankton communities were collected twice a
week over 1 year from a subtropical urban reservoir in southeast
China, and the bacterial 16S rRNA gene was analyzed to explore
the succession patterns within bacterioplankton subcommuni-
ties (abundant taxa, conditionally rare taxa and rare taxa) in
response to change in environmental variables. It was hypoth-
esized that: (i) Bacterioplankton subcommunities may exhibit
distinct temporal patterns at short- and long-term time scales;
(ii) Environmental factors influencing bacterioplankton commu-
nity dynamics may be different across different time intervals
and across the three bacterioplankton subcommunities; (iii) The
relative importance of deterministic processes driving the com-
munity change may be different among different subcommu-
nities. To test our hypotheses, the following objectives were
established: (i) Determining the temporal patterns in bacterio-
plankton community across different time intervals; (ii) Iden-
tifying the environmental factors regulating bacterial commu-
nity dynamics; (iii) Revealing the co-occurrence patterns of bac-
terioplankton community and the mechanisms underlying their
assembly.



Nyirabuhoro et al. 3

MATERIALS AND METHODS

Study area and sampling

Xinglinwan Reservoir is located in Xiamen, southeast China. It
has been the subject of long-term monitoring as part of the Xia-
men reservoir time-series (XRT), with sampling for plankton typ-
ically having occurred twice weekly starting in January 2016. In
this study, a total of 150 water samples was collected from three
locations in Xinglinwan Reservoir (Figure S1, Supporting Infor-
mation) from August 2016 to August 2017. The sampling was
undertaken at about 9:00 am on Tuesday and Friday in each
week. The water samples were first pre-filtered using a 200 μm
pore-sized sieve to remove large particles. Then, the water sam-
ples (volume: 300−500 mL) were filtered using 0.22 μm poly-
carbonate membrane (47 mm diameter, Millipore, Billerica, MA)
using a vacuum filtration system (filtering time: 30−50 min). The
membranes with microbial plankton were packed into sterilized
tubes and preserved at −80◦C until DNA extraction.

All environmental variables were measured as described pre-
viously (Fang et al. 2019), and a summary of environmental data
is shown in the Figure S2 (Supporting Information). The weather
data such as precipitation, air temperature (AiT) and wind speed
(WS), which were recorded by China Meteorological Data Service
Center (http://data.cma.cn), were obtained from a weather sta-
tion in Xiamen (ID 59134, 24◦28.998′N 118◦4.98′E).

DNA extraction, Illumina sequencing and
bioinformatics

Total bacterioplankton DNA was extracted directly from the
membrane using the FastDNA SPIN Kit and the FastPrep Instru-
ment (MP Biomedicals, Santa Ana, CA) according to the manu-
facturer’s instructions. The DNA quality and concentration were
measured using a NanoDrop 1000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA). The V3–4 hypervariable region
of the bacterial 16S rRNA gene was amplified using the primer
pair 341F/806R with barcodes following our previous study (Fang
et al. 2019). PCR products from triplicate reactions per sample
were pooled and gel-purified. Gene fragments were sequenced
on Illumina MiSeq platform (Illumina Inc., San Diego, CA) using
a paired end strategy.

The removal of barcode and primer sequences was car-
ried out and the output data have been made publically avail-
able at the GenBank sequence read archive (SRA) under Bio-
Project number PRJNA510463 and accession number SRP173857.
Bioinformatic analyses of 16S rRNA gene sequences were con-
veyed using VSEARCH (Rognes et al. 2016). Chimeras were dis-
carded using default settings in VSEARCH from a set of unique
sequences to construct biologically corrected sequences. Qual-
ity filtered sequences were assigned to OTUs at a 97% sequence
similarity threshold. The OTU taxonomies were assigned using
the sintax algorithm on query sequences mapped against the
Greengenes database (DeSantis et al. 2006). Unknown OTUs
were removed before the downstream analyses. The resulting
OTU tables were subject to subsequent processing with single-
ton, archaea, chloroplast and mitochondrial sequences removal.
Finally, the bacterial sequences were normalized to the same
number of sequences 35 000 per sample, and 20 438 OTUs at
97% sequence similarity level were obtained.

The bacterioplankton community was classified into three
different taxa categories by setting a local relative abundance
threshold of 1% for abundant taxa and 0.01% for rare taxa
(Nyirabuhoro et al. 2020). Those categories were as follows: (i)

abundant taxa (AT), OTUs with relative abundance > 1% at least
once in a sample; (ii) conditionally rare taxa (CRT), OTUs with
< 0.01% local relative abundance in some samples and ≥ 0.01%
in others, but never ≥ 1%; (iii) rare taxa (RT), OTUs with relative
abundance < 0.01% in all samples.

Real-time quantitative PCR

PCR amplification of 16S rRNA genes was performed to prepare
the quantitative PCR standard curve (Yu et al. 2014). The 50 mL
PCR mixture contained 1 μL of the primer set (25 pmol each),
25 μL of 2 × Ex Taq DNA polymerase mix (Takara Bio, Japan),
100 ng of DNA template and ddH2O. The primer set was 341F [5′-
CCTACGGGNGGCWGCAG-3′] and 515R [5′-ATTCCGCGGCTGGCA
-3′]. PCR was performed in the following thermal cycles: initial
denaturation at 94◦C for 5 min; 35 cycles at 94◦C for 30 s, 51◦C for
30 s and 72◦C for 60 s; and a final extension at 72◦C for 10 min.
The purified PCR products were ligated into the pMD18-vector
(Takara Bio, Japan) and transformed into Escherichia coli DH5α

competent cells. The plasmids containing 16S rRNA gene frag-
ments were sequenced using an automated sequencer (ABI3730,
Applied Biosystems, Foster City, CA). Successfully inserted plas-
mids DNA then were extracted using the MiniPrep kit (Qiagen,
Germany) and the plasmid concentrations were determined by
spectrophotometry using a NanoDrop 1000 (Thermo Fisher Sci-
entific). Standards were prepared with triplicate from linearized
plasmid serial dilutions containing between 109 and 104 16S
rRNA gene copies calculated directly from the concentration of
extracted plasmid. A standard curve was generated by plotting
the threshold cycle values versus log10 of the gene copy num-
bers. The amplification efficiency (E) was estimated using the
slope of the standard curve based on the following formula: E
= (10−1/slope) −1 (Bustin et al. 2009). The efficiency of PCR was
between 95 and 105% and R2 of the standard curve was 0.991 ±
0.002 in this study.

Statistical analyses

The community alpha-diversity was evaluated using six indices
(observed OTUs, ACE, Chao 1, Shannon-Wiener, Simpson and
Pielou’s evenness; Magurran 1988) and they were compared
using a the Wilcoxon rank-sum test. Non-metric multidimen-
sional scaling analysis and analysis of similarity (ANOSIM),
based on Bray–Curtis similarity, were used to explore the differ-
ences in composition of bacterial communities between differ-
ent months.

To quantify the rate of community variation over time, we
employed time-lag regression analysis (Collins, Micheli and
Hartt 2000) at three different timescales: short-term (0−8 �

weeks), medium-term (9−24 � weeks) and long-term (25−53 �

weeks), where delta time � stands for the time elapsed between
two sampling days. The time-lag analysis has proven to be a use-
ful tool with which to quantify the temporal variation of ecologi-
cal communities, and it can be considered an extension of auto-
correlation analysis for short time series of community data.
If the regression line is significant, positive and linear, then it
implies that the community is undergoing directional change
over time. If the regression line is not significant or the slope
is not significantly different from zero, then it implies fluctu-
ation or stochastic variation over time. If the slope of the line
is negative, then it implies community composition is becom-
ing more similar to a community-type characteristic of the ear-
lier samples in the time series (Collins, Micheli and Hartt 2000).
The fraction of consecutive Bray–Curtis dissimilarity attributed

http://data.cma.cn
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to the dynamics of each bacterioplankton subcommunity (AT,
CRT and RT) was calculated. The dynamics of bacterial commu-
nity at phylum and genus levels of taxonomic resolution were
calculated using relative abundance data in R environment (R
Core Team 2019).

To investigate bacterioplankton’s responses to environmen-
tal conditions, we used Spearman correlation of bacterial abun-
dance (sequence data) against each measured environmental
variable, and redundancy analysis and variation partitioning
analysis of bacterial community composition (after Hellinger
transformation) and significant environmental variables were
run in R version 3.6.0 (R Core Team 2019). The redundancy anal-
ysis (RDA) was implemented after removing collinearity with
threshold of variance inflation factor (> 10). Then we selected
the significant environmental variables for explaining the bacte-
rioplankton variations at subcommunity level by forward selec-
tion (P < 0.05). In variation partitioning analysis, the environ-
mental variables were divided into four groups: weather, phys-
ical, chemical and primary producer (chlorophyll-a). In addi-
tion, the interrelationships between groups of environmental
variables in variation partitioning analysis and bacterioplank-
ton communities were evaluated using direct, indirect and total
effects determined by partial least squares path modeling anal-
ysis (Ndayishimiye et al. 2019). The five groups of variables were
weather, physical, chemical, primary producer (chlorophyll-a)
and bacterioplankton subcommunities (AT, CRT and RT).

To analyze the co-occurrence patterns in different bacterio-
plankton subcommunities (AT, CRT and RT), we performed the
network analysis in R environment (R Core Team 2019). In order
to simplify complexity of data, only OTUs that present at least in
75% of the samples were kept in our analysis. The relationships
between OTUs were calculated using Spearman’s rank correla-
tions, and only strong and statistically significant correlations
(|r| > 0.8, P < 0.01) were integrated into the networks, which were
visualized and analyzed using Gephi version 0.9.2 (Bastian, Hey-
mann and Jacomy 2009). To characterize the network topology,
we calculated the modularity index, degree, betweenness and
closeness of different bacterioplankton following our previous
study (Xue et al. 2018).

The importance of stochastic and deterministic processes
in shaping bacterial community was assessed using a commu-
nity model (Sloan et al. 2006) and a null model (Gotelli and
Mccabe 2002), respectively. For Sloan neutral community model,
the parameters N, m and Nm describe the metacommunity size,
immigration rate and dispersal between communities, respec-
tively. The least-square method was employed to determine the
best fit distribution curve of the neutral model in R version 3.6.0
(R Core Team 2019). The checkerboard score (C-score; Stone and
Robert 1990) was carried out to test the actual distributions for
non-randomness of bacterial OTUs. C-score was selected based
on the reason that the matrix is relatively unaffected by the
minor changes in the data. The sequence-based OTU table was
converted into a binary matrix of presence (1) and absence (0),
and then analyzed for different combinations (Stone and Robert
1990; Gotelli and McCabe 2002). The standardized effect sizes for
C-score were estimated as the difference between the observed
index and the mean of the stimulated index over the standard
deviation of the stimulated index (Crump et al. 2009). C-score
was calculated based on a burn-in of 30 000 simulations and
using sequential swap randomization algorithm in the package
‘EcoSimR’ and R version 3.6.0 (R Core Team 2019).

RESULTS

Temporal variation of environmental variables

All measured environmental variables varied over the study
period (Figure S2, Supporting Information). The water tem-
perature was low between December 2016 and February 2017
(15.34−22.51◦C) and high between June and August 2017
(24.79−35.02◦C). The salinity gradually increased from late 2016
to early 2017 with the highest value (6.10 PSU) in February 2017,
then fluctuated and decreased from June to August 2017. Total
organic carbon concentrations were low in 2016 and early 2017,
but increased to 22.66 mg/L in May 2017. The temporal varia-
tion of environmental variables associated with nutrient enrich-
ment showed that Xinglinwan Reservoir was a turbid (low trans-
parency) and eutrophic urban waterbody.

Bacterioplankton community composition and
temporal dynamics

In total, stations C, L and G yielded 15 801, 17 363 and 20 336
OTUs, respectively (Table S1, Supporting Information). CRT sub-
communities comprised a high proportion of all OTUs (Range:
65.79–67.80%). The bacterial alpha-diversity indices showed a
substantial change over time for both RT and CRT subcommu-
nities (Fig. 1). At station G, observed OTUs, ACE and Chao1 were
high between August and October 2016 with significant decline
between January and April 2017. The values of Shannon, Simp-
son and Pielou’s evenness showed little change over time. The
absolute abundance of bacterioplankton 16S rRNA gene varied
from 2.66 × 109 to 1.58 × 1011 copies/L in this study (Figure S3,
Supporting Information).

The temporal variability in bacterioplankton community was
remarkable in all taxa categories (Fig. 2A), with the difference in
communities among groups of samples (i.e. 13 months) was sig-
nificant (Global R = 0.847, P = 0.001 for AT; Global R = 0.794, P
= 0.001 for CRT; Global R = 0.730, P = 0.001 for RT). At phylum
level, Proteobacteria and Actinobacteria were dominant with
slight temporal variation, while Cyanobacteria fluctuated over
time with high (57.18%) and low (5.52%) relative abundances at
239th Julian day of 2016 and 31th Julian day of 2017, respectively
(Fig. 2B). At genus level, the temporal change was remarkable for
Synechococcuss with relative abundance (47.33%) peaking at 239th
Julian day of 2016; however, it was lower than < 1% between
364th Julian day of 2016 and 97th Julian day of 2017 (Fig. 2C).

Both AT and CRT subcommunities were sensitive to sampling
time span, with a directional change between 0−8 and 9−24 �

weeks (short-term and medium-term) and with a convergent
trend between 25−53 � weeks (long-term). For RT subcommu-
nities, the Bray–Curtis dissimilarity between samples did not
greatly change as time-lags increase compared to AT and CRT
subcommunities (Fig. 3A). The determination coefficient of com-
munity change was the highest (0.33−0.55) during the short term
in G station (Fig. 3B). RT subcommunities accounted for a large
fraction of the community dissimilarity between time points
(36.78−65.50%), whereas the fractions of CRT and AT ranged
between 22.00−35.22% and 8.25−30.21%, respectively (Figure S4,
Supporting Information).

Bacterial community-environment relationship

At station C, bacterial abundance was correlated both with tur-
bidity and NO3-N (n = 11, P < 0.05). At station L, the bacterial
community–environment relationship was highly significant (n
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Figure 1. The bacterial community diversity across the study period in Xinglinwan Reservoir. Sampling stations: C, Control point; L, Lianhua; G, Gaota. Taxa categories:

AT, abundant taxa; CRT, conditionally rare taxa; RT, rare taxa.

= 22, P < 0.001) for dissolved oxygen, chlorophyll-a, precipita-
tion and wind speed. Importantly, all environmental variables
exhibited a significant relationship with bacterial abundance at
station G (n = 116, P < 0.001), with higher correlation coeffi-
cients (Table 1) for chlorophyll-a, electrical conductivity, salin-
ity and pH at P < 0.001. The Spearman correlation coefficients
between environmental variables and bacterial relative abun-
dance showed that the significant correlations were 13, 41, 124
at stations C, L and G, respectively, at phylum level (Figure S5,
Supporting Information). At genus level, significant correlations
were 38, 41, 118 at stations C, L and G, respectively (Figure S5,
Supporting Information). At station G, cyanobacteria were sig-
nificantly correlated with water temperature (P < 0.001); while
cyanobacteria were significantly correlated with precipitation
and air temperature at (P < 0.001) at station L (Figure S5, Support-
ing Information). At genus level, the large variation in Synechococ-
cus was strongly linked with water temperature, pH, oxidation-
reduction potential and precipitation at station C (P < 0.05). At
station L, Synechococcus showed a significant correlation with
precipitation, air temperature, chlorophyll-a, wind speed, water
temperature, dissolved oxygen and nitrate nitrogen. At station
G, it was strongly connected with water temperature, turbidity,
electrical conductivity, salinity, oxidation-reduction potential,
total nitrogen, ammonium nitrogen, total phosphorus, phos-
phate phosphorus and air temperature (Figure S5, Supporting
Information).

Water chemistry was an important environmental condition
explaining changes in bacterioplankton community composi-
tion over time (Fig. 4). Indeed water chemistry explained the
highest proportion of community variation in AT subcommuni-
ties from stations L and G (18% and 23% based on pure variances,
respectively). The pure variances explained by water chemistry
were 14 and 16% in CRT subcommunities at stations L and G,
respectively. For RT subcommunities, unexplained variances at
both stations L and G were great (> 95%). Weather conditions,
water physical and chemical variables and primary producers
influenced directly and indirectly the bacterial community of
Xinglinwan Reservoir (Figure S6, Supporting Information). At
station L, water chemistry showed negative effects on AT (−0.59)
and CRT (−0.73) subcommunities and positive effect on RT sub-
community (0.27), respectively. At station G, water chemistry
exhibited a positive effect on primary producers (0.62−0.75). The
direct effects were positive on AT subcommunity (32%) and neg-
ative on CRT (−0.26) and RT (−0.28) subcommunities, respec-
tively.

Co-occurrence patterns of bacterioplankton
subcommunities

The co-occurrence networks of bacterial subcommunities (AT,
CRT and RT) showed that the potential links between species
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Figure 2. Temporal variation of bacterial community of Xinglinwan Reservoir. (A) Non-metric multidimensional scaling plots based on Bray–Curtis similarity of bacterial
communities considering three groups of taxa across time and sampling stations. Sampling stations: C, Control point; L, Lianhua; G, Gaota. Taxa categories: AT,
abundant taxa; CRT, conditionally rare taxa; RT, rare taxa. Dynamics of the community at (B) phylum and (C) genus levels of taxonomic resolution.

were organized into complex ecological networks of interact-
ing species over time (Fig. 5 and Table S2, Supporting Informa-
tion). The networks had 2137, 1109, 824 nodes, and 2700, 1564
and 4047 edges from stations C, L and G, respectively (Fig. 5).
Further, six major modules were selected for each station, and
their contributions were ranged from 0.56 to 1.73% of nodes
(i.e. OTUs) at station C, from 2.98 to 11.45% of nodes (OTUs) at
station L and from 6.31 to 17.96% of nodes (OTUs) at station
G, respectively (Fig. 5 and Table S2, Supporting Information).

Important phyla that determined the modular structure of net-
works were Proteobacteria, Bacteriodetes, Actinobacteria, Firmi-
cutes, Cyanobacteria, TM7, Planctomycetes and Verrucomicro-
bia. The CRT subcommunity contained a great number of nodes
(76.79%, 86.65% and 78.76% of stations C, L and G, respectively)
in the network compare to AT and RT ones.
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Figure 3. The results of time-lag analysis based on linear regression. (A) The directional change and convergent dynamic in bacterial community composition during
short-term or medium-term and long-term periods, respectively. (B) The strength of change in bacterial community composition over time indicated by the correlation

coefficient and P value. The delta time � describes the time elapsed between two sampling days. Sampling stations: C, Control point; L, Lianhua; G, Gaota. Time scales:
ST, short-term (0−8 � weeks); MT, medium-term (9−24 � weeks); LT, long-term (25−53 � weeks). Taxa categories: AT, abundant taxa; CRT, conditionally rare taxa; RT,
rare taxa. Significant levels: ∗P << 0.05i>; ∗∗P << 0.01i>; ∗∗∗P < 0.001.

Table 1. Spearman’s correlations between bacterial abundance and environmental factors.

Environmental variable Station C Station L Station G

AT CRT RT AT CRT RT AT CRT RT

Water temperature 0.47 − 0.50 − 0.35 0.47 − 0.45 − 0.50 − 0.22 0.23 0.05
pH 0.10 − 0.09 − 0.07 0.36 − 0.31 − 0.58 0.70 − 0.69 − 0.67
Dissolved oxygen 0.29 − 0.29 − 0.41 0.51 − 0.47 − 0.73 0.59 − 0.58 − 0.57
Chlorophyll-a − 0.17 0.22 0.28 0.68 − 0.67 − 0.62 0.76 − 0.75 − 0.73
Turbidity − 0.43 0.47 0.63 − 0.39 0.40 0.37 − 0.43 0.42 0.42
Electrical conductivity − 0.07 − 0.01 0.20 0.52 − 0.53 − 0.29 0.72 − 0.71 − 0.71
Salinity − 0.03 − 0.07 0.19 0.51 − 0.52 − 0.27 0.72 − 0.71 − 0.71
Oxidation-reduction potential − 0.30 0.35 − 0.15 − 0.41 0.40 0.27 − 0.52 0.51 0.54
Total carbon − 0.08 − 0.01 − 0.06 − 0.23 0.28 − 0.06 0.55 − 0.53 − 0.67
Total organic carbon − 0.15 0.11 0.00 − 0.30 0.32 0.15 0.39 − 0.38 − 0.50
Total nitrogen − 0.49 0.41 0.39 − 0.35 0.35 0.37 0.50 − 0.50 − 0.42
Ammonium nitrogen 0.03 − 0.03 0.24 − 0.25 0.22 0.47 0.24 − 0.24 − 0.29
Nitrate nitrogen − 0.71 0.58 0.70 − 0.47 0.51 0.24 − 0.52 0.50 0.66
Nitrite nitrogen − 0.05 − 0.04 0.01 0.50 − 0.49 − 0.39 0.45 − 0.45 − 0.33
Total phosphorus − 0.27 0.24 0.23 − 0.31 0.33 0.37 0.48 − 0.47 − 0.46
Phosphate phosphorus − 0.34 0.28 0.41 − 0.17 0.17 0.32 0.28 − 0.28 − 0.25
Precipitation − 0.42 0.44 0.18 − 0.72 0.75 0.41 − 0.56 0.55 0.54
Air temperature 0.025 − 0.03 − 0.46 0.47 − 0.47 − 0.38 − 0.35 0.36 0.19
Wind speed − 0.31 0.30 − 0.05 − 0.66 0.67 0.33 − 0.26 0.26 0.28

Values in bold are significant at P < 0.05. Taxa categories: AT, abundant taxa; CRT, conditionally rare taxa; RT, rare taxa.
Note that the precipitation and wind speed data are the 7-day accumulation before the sampling day, and the air temperature represents daily average values.

Stochastic and deterministic processes shaping
bacterial community assembly

The Sloan neutral community model showed that the fit value
was 90%, 83% and 46% of explained community variance for AT

subcommunities in stations C, L and G, respectively (Fig. 6A). For
CRT, the explained community variance was also high (78%, 80%
and 65% in stations C, L and G, respectively). For RT subcom-
munities, R2-values were less than zero, indicating no fit to the
neutral model.
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Figure 4. The Venn diagrams showing the results of variation partitioning analysis (VPA) based on bacterioplankton community at subcommunity level (AT, CRT and
RT) and four groups of environmental variables (physical, chemical, primary producer and weather). Note that the variances < 0.01 are not displayed for simplicity.
Res, residuals. Sampling stations: C, Control point; L, Lianhua; G, Gaota. Taxa categories: AT, abundant taxa; CRT, conditionally rare taxa; RT, rare taxa.

In the null model, C-score revealed non-random patterns of
species co-occurrence in the bacterial community (Fig. 6B). High
values of observed and simulated C-score were obtained from
station G. For AT and CRT, observed C-score values were 19.22
and 19.70, respectively, while simulated ones were 16.44 and
18.40, respectively. At stations C and L, observed and simulated
C-score values showed a slight difference except RT subcommu-
nity. AT subcommunities in stations L and G exhibited a marked
species segregation (standardized effect sizes were 10.19 and
14.42, respectively), indicating a non-random distribution.

DISCUSSION

Bacterioplankton in freshwaters are an important component
of ecosystem structure and function (Liu et al. 2015b; Linz
et al. 2020). Our data clearly show that high-frequency sam-
pling approach can facilitate the identification of a broad range
of temporal variations of AT, CRT and RT subcommunities in
Xinglinwan Reservoir. This may suggest that clarifying the pro-
cesses of abundant and rare bacterioplankton dynamics neces-
sitate the use of high-frequency measurement. High-frequency
sampling can display the build-up and breakdown of episodic

shifts in the bacterioplankton community that cannot be cap-
tured with routine seasonal sampling (Martin-Platero et al. 2018).
Low-frequency sampling based data have demonstrated the
basic patterns of seasonal change and succession of bacteri-
oplankton communities (Avila et al. 2017; Nyirabuhoro et al.
2020). However, such patterns have not provided a good indi-
cation of sharp transition of some microbial taxa (Martin-
Platero et al. 2018), yet the microbial communities can display
rapid responses to environmental variation (Lindh et al. 2015)
and such interaction may happen at short temporal scale (i.e.
days or hours). Therefore, microbial community study based
on high-resolution time series was essential to capture both
quick changes due to species interactions and elongated series
dynamics due to shifts in overall ecological conditions. More
importantly, long-term monitoring of bacterioplankton commu-
nity from high-frequency sampling permits better characteriza-
tion of the dynamics of AT, CRT and RT subcommunities.
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Figure 5. Co-occurrence networks of bacterioplankton communities of Xinglinwan Reservoir. The nodes colors refer to the types of (A) modularity class, (B) phylum
and (C) subcommunity, respectively. The size of each node is proportional to the number of connections and only strong and significant correlations (|r|> 0.8, P < 0.01)

are shown. Sampling stations: C, Control point; L, Lianhua; G, Gaota. Taxa categories: AT, abundant taxa; CRT, conditionally rare taxa; RT, rare taxa.

Temporal variations of bacterioplankton community

We found a similar response to temporal change in all subcom-
munities but with different trends (Fig. 3). The bacterial commu-
nity exhibited a directional change in the short- and medium-
time intervals (within 24 weeks), whereas it showed convergent
dynamics over the long-time interval (25−53 weeks). Our results
contribute to understanding the temporal patterns of bacterio-
plankton community at different time scales and can indicate a
seasonal cycle pattern in bacterioplankton community in sub-
tropical reservoir.

The community diversity indices such as observed OTUs,
ACE and Chao1 showed the temporal dynamics with the largest
contribution of conditionally rare taxa (Fig. 1). This may show
that conditionally rare taxa populations contribute more to the
community variation and rare taxa can recover and boom in
their relative abundance at favorable environmental conditions
(Lennon and Jones 2011; Shade et al. 2012).

A group of species in the community that consume the same
resources in a similar way may exhibit similar shifts in commu-
nity composition over time (Ndayishimiye et al. 2020). Hence,
very similar communities within each month and total com-
munity that changed dramatically over time (Fig. 2A) may sug-
gest that the communities tend to be more different over a short
period of time (< half year) and similar over a long period of time
(25−53 weeks). However, although the non-metric multidimen-
sional scaling based on Bray–Curtis distance is routinely used to
assess the degree of separation among bacterial communities

(Jiao et al. 2017; Xue et al. 2018), it cannot truly represent intran-
sitive pairwise similarities in a visualization of RT subcommu-
nity dynamics (Nyirabuhoro et al. 2020). A marked difference in
Bray–Curtis dissimilarity of many samples of AT subcommuni-
ties than in CRT and RT subcommunities (Fig. 2A) may indicate
that AT subcommunities were much more sensitive to change
in different environmental conditions at fine-time scale (Fig. 4).
These differences are possibly associated with distinctive phys-
iology and metabolic function of each bacterioplankton phylo-
type (Lennon and Jones 2011; Nyirabuhoro et al. 2020). Neither
Proteobacteria nor Actinobacteria showed a strong response to
the temporal change, perhaps because they are core or dom-
inant bacteria in waters and play important roles in biogeo-
chemical cycling of elements (Saarenheimo, Tiirola and Rissa-
nen 2015). A pronounced variation of Cyanobacteria (Fig. 2B)
was closely associated with changes in environmental variables
(e.g. water temperature, precipitation and air temperature), indi-
cating that the dynamics of Cyanobacteria is largely controlled
by environmental conditions specifically a change in tempera-
ture (Elliott 2012; Reichwaldt and Ghadouani 2012; Bartosiewicz
et al. 2019). At genus level, Synechococcuss showed a high relative
abundance with a pronounced temporal variation over medium-
and long-term periods (Fig. 2C). This dominance and variation
may indicate the importance of Synechococcuss in the ecological
health of a reservoir (Cabello-Yeves et al. 2017; Mackey et al. 2017).
The dominance of some genera (e.g. Synechococcus) in particu-
lar seasons may be attributed to high concentrations of nitrate
and nitrite nitrogen because the nutrient can allow rare taxa
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Figure 6. Ecological processes shaping bacterial community assembly in Xinglinwan Reservoir. (A) Stochastic process is shown by fit to Sloan’s neutral community

model across stations C, L and G from Xinglinwan Reservoir. Nm indicates the metacommunity size times immigration. The positive and negative R2 values indicate
the fit and no fit to the neutral model, respectively. (B) Null model shown by C-score metric. The values of observed C-score > simulated C-score indicate non-random
co-occurrence patterns. Standardized effect size < -2 and > 2 indicate aggregation and segregation patterns, respectively. Sampling stations: C, Control point; L,

Lianhua; G, Gaota. Taxa categories: AT, abundant taxa; CRT, conditionally rare taxa; RT, rare taxa.

to reproduce abundantly under favorable environmental condi-
tions (Ruiz-González, Niño-Garcı́a and Del Giorgio 2015).

On short-term time scales, bacterioplankton community
revealed trends of indistinct to remarkable temporary variations
(Fig. 3A) perhaps due to an extended high-resolution sampling
period (Korhonen, Soininen and Hillebrand 2010). The time-lag
regression degrees (r-values) of all subcommunities were nega-
tive and significant at long-term scales (25−53 weeks) (Fig. 3B),
possibly due to a resilient status that allows bacterial taxa to
recover after environmental disturbances (Liu et al. 2015b; Need-
ham et al. 2013; Shade et al. 2014). Another potential cause of
a directional change in the short- and middle-time intervals
(within 24 weeks) and a convergent dynamic during the long-
time interval (25−53 weeks) might be in high capability of dif-
ferent bacterioplankton taxa or subcommunities to adapt to a
changing environment (e.g. seasonal variation in temperature)
due to rapid growth rate and evolutionary adaptation (Liu et al.
2015a).

Relationship between bacterioplankton community
and environment variables

Many studies on rare and abundant bacterioplankton communi-
ties have either focused on the community composition in rela-
tionship to environmental disturbances or biogeography across
spatial scale (Liu et al. 2015b; Gilbert et al. 2012; Logares et al.
2013; Mo et al. 2018). However, analyses based on high-resolution
sampling at a specific geographical location may come up with

questions about whether temporal dynamics in bacterioplank-
ton communities are controlled by shifts in environmental con-
ditions over time (Lindh et al. 2015). This study confirms an influ-
ence of environment on bacterioplankton community composi-
tion at different time scales (Fig. 4). For example, synchronized
shifts in the relative abundance data at phylum and genus lev-
els and different environmental variables (Fig. 2 and Figure S2,
Supporting Information) confirmed a close relationship between
bacterioplankton community and environmental change. Envi-
ronmental variables such as nutrients and temperature can
shape or disturb bacterioplankton communities (Gilbert et al.
2012; Shade et al. 2012; Lindh et al. 2015). Consequently, a pro-
nounced influence of physical and chemical variables on bacte-
rioplankton community suggests that the environmental vari-
ables can lead to an increase or a decline in the abundances of
certain bacteria over time (Nyirabuhoro et al. 2020).

In Xinglinwan Reservoir, the influence of environment on
bacterioplankton communities is obviously important (Fig. 4).
A minor influence of meteorological variables (air temperature,
precipitation and wind speed) on bacterioplankton community
may suggest that weather conditions led to slight disturbances
and shifts in bacterial community directly (Chen et al. 2019; Ma
et al. 2019). The variation of each bacterioplankton subcommu-
nity that could be explained by the environment (water physical
and chemical constituents and primary producers and weather
conditions) was lower than 55% (Fig. 4). This can be attributed
to unmeasured environmental variables and species interac-
tions. For unexplained community variances by environmental
conditions, the rare subcommunity (95−99%) was substantially
higher than that of abundant (45−64%) and conditionally rare
taxa (62−78%). Several reasons may explain this phenomenon.
First, the environmental sensitivity might be density-dependent
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for bacterioplankton; for example, the low-abundant rare bacte-
ria can be in dormancy status that create the bacterial resistance
to environmental change (Lennon and Jones 2011). Second, the
large unexplained variances could be due to unmeasured envi-
ronmental and biological factors (Mo et al. 2018). The shift in
environmental variables within three stations determines how
time affects community composition as different taxa interac-
tions are favored if fundamental conditions change (Figures S2
and S5, Supporting Information). Therefore, bacterial commu-
nity was strongly responded to change in environmental con-
ditions at station G (Table 1 and Figure S5, Supporting Informa-
tion). This may suggest that bacterioplankton communities are
sensitive to environmental change, but the trends may depend
on the sampling time. It is highly impracticable and almost
impossible to fully understand the relationship between bacte-
rioplankton community and environment variables if only small
sample size and short-term time interval were included in nat-
ural waters.

Ecological processes shaping bacterioplankton
community assembly

A major challenge in freshwater microbial ecology is to quan-
tify the relative importance of deterministic and stochastic
processes controlling the assembly of microbial communities
(Ndayishimiye et al. 2020). Niche and neutral theories explain
that deterministic and stochastic processes can shape microbial
community, respectively (Jia, Dini-Andreote and Falcao Salles
2018; Chen et al. 2019). Consequently, both deterministic and
stochastic processes can regulate the community composition
over time, but at different degrees (Roguet et al. 2015). In this
work, higher R2-values in a Sloan neutral community model
explained a great fraction of the community variation across
different bacterioplankton subcommunities (e.g. AT and CRT),
suggesting the importance of neutral processes such as migra-
tion, births and deaths in a population. Further, higher values
of standardized effect sizes (> 2) in the null model indicated
a pronounced species segregation or competition in almost all
subcommunities (e.g. in AT subcommunity), suggesting that
the bacterial community of Xinglinwan Reservoir was not ran-
domly assembled and deterministic processes were mainly at
play (Nyirabuhoro et al. 2020). This may also be confirmed by
a strong link between bacterioplankton dynamics and variabil-
ity of environmental conditions (Fig. 4 and Figure S6, Supporting
Information). The influence of both deterministic and stochas-
tic processes on bacterioplankton communities of Xinglinwan
Reservoir may also be connected to environmental changes in
the watershed (Isabwe et al. 2018). Although the importance of
stochastic processes in shaping microbial community assem-
bly in inland waters was low in numerous studies (Chisholm
and Pacala 2010; Roguet et al. 2015), the stochastic processes
can shape the community at different time scales under chang-
ing environment (e.g. natural disasters and extreme weather);
hence, we cannot ignore the role of stochastic processes in shap-
ing bacterial community of Xinglinwan Reservoir (Fig. 6).

Linking the relative importance of ecological processes with
network analyses allow us to better understand the mechanisms
shaping the community assembly (Konopka, Lindemann and
Fredrickson 2015). The network analyses revealed high connec-
tivity as the sample size increased, with well-connected groups
and characterized by higher numbers of modules mostly in CRT
subcommunity of station G (Fig. 5 and Table S2, Supporting Infor-
mation). This interconnected relationship suggests the strong

niche differentiation in closely related species (Xue et al. 2018).
The topological properties of the networks (Fig. 5) indicated a
link between microbial communities and direct connections for
specific OTUs, respectively (Barberán et al. 2012; Xue et al. 2018).
In our networks, CRT frequently occupied the central position
and exhibited a strong relationship with other taxa in the com-
munity, indicating the potential importance of CRT in network
interaction or functioning.

Limitations and recommendations for future research

Bacterioplankton community dynamics in Xinglinwan Reser-
voir was connected to changes in environmental conditions,
this may facilitate a better understanding of ecological patterns
that can characterize ecosystem integrity and potential in bio-
diversity conservation and restoration. Environmental change
is increasingly shaping the microbial community from local
to global scales (Locey and Lennon 2016). A dataset of limited
study period using few sampling stations in a waterbody can
be a limitation in demonstrating the dynamics of different bac-
terioplankton subcommunities. For Xinglinwan Reservoir, our
results indicated the seasonality of bacterioplankton commu-
nities, especially in both alpha- and beta-diversities of AT and
CRT (Fig. 1); however our study period was limited to 13 months.
Hence, a more prolonged investigation of bacterioplankton and
environmental variables could help to evaluate the influence
of environment on the community among different years. The
abundance of microorganisms may increase or decrease period-
ically by natural growth or in response to environmental factors
such as temperature (Faust et al. 2015; Nyirabuhoro et al. 2020).
For future studies, priority should be given to a larger spatial
scale using more reservoirs and generalize our conclusion across
a wide range of climate zones.

CONCLUSION

This study presents the temporal dynamics of bacterioplankton
from surface waters of a subtropical urban reservoir (Xinglin-
wan Reservoir) in southeast China, using high-frequency sam-
pling over 13 months. We compared the patterns and processes
of bacterioplankton communities across short (0−8 weeks),
medium (9−24 weeks) and long (25−53 weeks) time intervals,
and revealed the ecological mechanisms controlling their tem-
poral variation and co-occurrence patterns. Marked tempo-
ral patterns in beta-diversity were detected in abundant taxa
and conditionally rare taxa. Changes in Bray–Curtis dissimilar-
ity of bacterioplankton community revealed a clear directional
change in short and medium time intervals (0−24 weeks) and
a convergent dynamic over a long time interval (25−53 weeks),
respectively. Cyanobacteria showed a strong succession pat-
tern peaking in August with a relative abundance of 57.18%
when temperature was high. Microbial co-occurrence networks
revealed interspecies associations within AT, CRT and RT sub-
communities. The temporal patterns of bacterioplankton com-
munity were shaped by both abiotic and abiotic components, but
a strong influence was largely connected to changes in water
chemistry. Both deterministic and stochastic processes shaped
the AT and CRT subcommunities, whereas RT subcommunity
may be shaped by more complicated ecological processes. The
degree of temporal variation was mainly affected by changes
in the relative abundance of bacterioplankton and sampling
duration (i.e. sampling time of duration). These findings suggest
that there is an urgent need for high-frequency sampling based
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study on microbial community for better understanding, mod-
eling and predicting the microbial responses to environmental
change in future.
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