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Abstract 

The dynamics of bacterioplankton communities in aquatic environments 

are of great importance as they provide valuable insights into the microbial 

diversity, ecological processes, and ecosystem functioning that are specific to 

these environments. However, there is still a lack of knowledge regarding the 

factors that determine variations in the bacterioplankton community in unique 

aquatic habitats such as endorheic ponds in urban environments. We 

conducted high-frequency sampling of bacterioplankton using high-

throughput sequencing technology over a one-month period (August, 2022; n 

= 30) in an endorheic urban pond located in the subtropical monsoon climate 

zone of China. Our primary objective was to gain a comprehensive 

understanding of the factors that influence the dynamics of the 

bacterioplankton community in such a unique freshwater ecosystem. We 

classified the bacterioplankton community into different subcommunities: 

abundant taxa (AT), consisting of 117 operational taxonomic units (OTUs), 

conditionally rare taxa (CRT), consisting of 6,774 OTUs, and rare taxa (RT), 

consisting of 5,012 OTUs. The temporal dynamics of the bacterioplankton 

community exhibited substantial changes, largely driven by fluctuations in the 

dominant Actinobacteria and Proteobacteria phyla, as well as the 

Synechococcus genus, which is a group of cyanobacteria. The community 

compositions within subcommunities, particularly in CRT, exhibited 

significant differences. Water physicochemistry emerged as the most 

influential environmental condition, explaining pure variances of 0.8%, 

0.01%, and 0.02% in AT, CRT, and RT subcommunities, respectively. Co-

occurrence networks revealed significant species associations within the 

bacterioplankton community, emphasizing the key role of stochastic 
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processes in shaping the community structure, especially within CRT and RT 

subcommunities, which accounted for 40% and 18.1% of the explained 

community variance, respectively. The results suggest that the environment 

plays a crucial role as a determinant in shaping the composition of the 

bacterioplankton community in a subtropical endorheic urban pond. 

Key words: Environmental conditions, bacterial community, community 

composition, community assembly mechanisms, endorheic pond, subtropical 

urban environment   
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1. Introduction 

Bacterioplankton, which refer to the bacterial component of the plankton 

that drifts in the water column, play a central role in aquatic environments, 

including urban ponds (Sigee, 2005). They are involved in the breakdown and 

removal of contaminants, including organic matter and heavy metals, and in 

nutrient cycling in the ecosystem, and they can play a role in the food webs of 

urban ponds as they serve as a food source for higher trophic levels (Sigee, 

2005; Sandrin et al., 2009). Several studies have shown that the bacterial 

community in urban ponds is different from that in natural water bodies 

(Karim et al., 2012; Hanashiro et al., 2019; Isabwe et al., 2022). The bacterial 

community in urban ponds is often dominated by opportunistic bacteria that 

can survive in the presence of anthropogenic contaminants (Karim et al., 2012; 

Hanashiro et al., 2019). Moreover, urban ponds have higher bacterial diversity 

compared to natural aquatic systems (Sigee, 2005). Factors that may affect the 

bacterial community structure in urban ponds include the physicochemical 

characteristics of the water, land use, and the presence of anthropogenic 

contaminants (Karim et al., 2012; Hanashiro et al., 2019). 

Despite the significant research that has been carried out on the bacterial 

community in urban ponds, there are still substantial knowledge gaps (Hassall, 

2014; Hill et al., 2017). One of the major gaps is the lack of comprehensive 

studies that examine the bacterial community structure in urban ponds over 

time (Karim et al., 2012). Most studies have been conducted on a single 

occasion, making it difficult to assess the seasonal variation in bacterial 

community structure (Sigee, 2005). Moreover, there is a lack of information 

on the effects of specific contaminants on the bacterial community structure 

in urban ponds. There is also a need for a better understanding of the factors 
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impacting the abundance and distribution of specific bacterial groups in urban 

ponds. 

Studying bacterial communities in urban environments is important, as 

this can provide insight into the impact of human activities on microbial 

diversity and its subsequent effect on human health (Hassall, 2014; Hill et al., 

2017). Urban environments are characterized by high levels of anthropogenic 

pollution, which can alter microbial diversity and abundance (Sigee, 2005). 

As bacterioplankton play a crucial role in nutrient cycling, food chain 

dynamics, and ecosystem processes, any ecological disturbance to microbial 

communities can have serious ecological consequences (Sandrin et al., 2009). 

Additionally, bacterioplankton in urban environments has been linked to 

several environmental health hazards, such as air and water pollution, soil 

contamination, and the spread of infectious diseases (Bahcall, 2015). 

Therefore, a better understanding of the spatio-temporal patterns of bacterial 

communities in urban environments is essential for designing effective 

monitoring and management strategies to mitigate these environmental health 

hazards (Hassall, 2014; Hill et al., 2017). 

The novelty of this research lies in the fact that urban areas are constantly 

changing due to human activities, leading to opportunistic bacterial 

communities that differ from those in natural environments. This presents an 

opportunity to understand the mechanisms that drive the adaptation of these 

microbial communities to urban environments, including their resistance to 

contaminants and their ability to produce harmful substances on urban 

surfaces. Moreover, research on bacterial communities in urban environments 

is a relatively new field of environmental microbiology that has gained 

attention over the past decade (Sigee, 2005; Bahcall, 2015). Hence, there is a 

need for further research to fully understand the impact of urbanization on 
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microbial communities and associated ecological consequences (Bahcall, 

2015) and the development of effective management strategies (Hassall, 2014; 

Hill et al., 2017; 2021). 

This research aims to address the knowledge gap in previous research on 

bacterioplankton in urban ponds. It investigates the temporal variation in 

bacterioplankton community structure in urban ponds and factors influencing 

the abundance and distribution of specific bacterial groups. It also examines 

the impact of specific contaminants on the bacterial community structure in 

urban ponds. Based on previous research on the bacterioplankton in urban 

ponds, we developed the following research questions: (1) How does the 

diversity of freshwater bacteria change temporally and spatially in a 

subtropical endorheic urban pond? (2) How does the freshwater bacterial 

community respond to local environmental conditions in a subtropical 

endorheic urban pond? (3) In what ratios do stochastic processes control the 

bacterial community in a subtropical endorheic urban pond? We hypothesized 

that: (1) the upstream, midstream, and downstream portions of the Shenzhen 

MSU-BIT University (SMBU) pond may exhibit distinct bacterial diversity 

over a short period of time; (2) the bacterial community may respond 

differently to environmental conditions in the upstream, midstream, and 

downstream of SMBU pond; and (3) despite being in an urban area, the 

bacterial community in SMBU pond can be regulated by stochastic processes. 

The expected results provide insights into the factors that regulate bacterial 

communities in urban pond systems and can be valuable for developing 

effective strategies for managing and monitoring these environments.  
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2. Literature review 

2.1. Pond ecology 

Globally, ponds are recognized as one of the most ecologically important 

and biodiverse freshwater habitats, offering a unique opportunity to 

counteract the negative impacts of anthropogenic pressures and reverse the 

declining trend of aquatic biodiversity (Hill et al., 2021). In addition to their 

ecological significance, ponds also provide vital contributions to society 

through the provision of various ecosystem services (Milstein, 2012). Despite 

their importance, freshwater research, policy, and conservation have 

traditionally prioritized larger water bodies such as reservoirs and lakes, 

leading to significant knowledge gaps in our understanding and conservation 

of pond ecosystems (Sigee, 2005; Hill et al., 2021).  

A lentic system (Fig. 1) is an ecological term used to describe “standing 

water” ecosystems, which include ponds, lakes, and reservoirs. These lentic 

systems can range from small, shallow ponds to large, deep lakes, and each 

has unique physical, chemical, and biological characteristics that contribute 

to its ecological functioning (Sigee, 2005). The ecologists conceptualize a 

lentic system as a heterogeneous mass of fresh or salt water, with 

characteristics varying physically (e.g., transparency and temperature), 

chemically (e.g., nutrients and contaminants), and biologically (e.g., growth 

rate and biomass of microbes) (O’Sullivan and Reynolds, 2004). The 

characteristics of a typical lentic system can vary spatially and temporally 

(e.g., on the scale of diel, season, year, or geological time) (Last and Smol, 

2002). The nearshore (littoral zone) allows the penetration of sunlight all the 

way to the sediment. It can serve as a substrate for algae, invertebrates, plants, 

and habitat for fish (Moss, 2017). The open water (limnetic zone), in contrast, 
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does not allow penetration of the sunlight all the way to the bottom of the lake. 

The bottom sediment (benthic zone), which is the lowest level, has a close 

relationship with the substrate and has a surface layer abundant with 

organisms (O’Sullivan and Reynolds, 2004; Smol, 2008). The benthic zone is 

greatly influenced by the overlying water and biological activity taking place 

in a limnetic zone; hence, most of organisms in a benthic zone are lastingly 

attached to the constituents of benthic layers (e.g., soil, mud, sand, and rocky 

outcrops) (Smol, 2008). The benthic zone may also contain a broad range of 

chemical compounds (e.g., molecules and irons) delivered from the watershed 

and atmosphere; thus, the water and sediment chemistry are placed in the 

central function of climate that can affect a watershed, hydrology as well as 

aquatic organisms (O’Sullivan and Reynolds, 2004; Smol, 2008). 

 
Fig. 1. Zonation of a lentic system (Source: Pearson Education, Inc. 

Publishing as Pearson Benjamin Cummings, 2005). 

https://www.slideserve.com/lita/ecology-the-scientific-study-of-interactions-between-different-organisms-and-between-organisms-and-their-environment-or-surroundings/?utm_source=slideserve%26utm_medium=website%26utm_campaign=auto+related+load
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2.2. Endorheic pond system 

Closed basin ponds, also known as endorheic ponds, are a unique type of 

body of water that can be found in many parts of the world, particularly in 

arid or semi-arid regions (Ordónez et al., 1994; Martin-Rosales and Leduc, 

2003; Seeboonruang, 2014; Bellia and Lanfranco, 2020). Unlike other bodies 

of water, endorheic ponds do not have an outflow, can range in size from small 

pools to large lakes, and are formed by precipitation or runoff (Hawes et al., 

2021). Due to the fact that the water in endorheic ponds cannot drain into a 

river or ocean, it can only leave the pond through evaporation or seepage into 

the ground (Sigee, 2005). 

The unique characteristics of endorheic ponds make them vital habitats 

for a variety of flora and fauna, including many species of birds, insects, and 

fish (Ordónez et al., 1994; Martin-Rosales and Leduc, 2003; Seeboonruang, 

2014; Bellia and Lanfranco, 2020). For the reason that the water in endorheic 

ponds is typically saltier than other bodies of water, it can support species that 

are adapted to high-salinity environments (Sigee, 2005). For example, the 

Great Salt Lake is home to several unique species, including brine shrimp and 

brine flies, that are found nowhere else in the world (Post, 1977; Adams et al., 

2015). In addition to supporting flora and fauna, endorheic ponds serve as 

important resources for local communities. In many arid or semi-arid regions, 

these ponds are used for irrigation, livestock watering, and even as a source 

of drinking water (Sigee, 2005). However, the water in endorheic ponds is not 

regularly replenished by rivers or other sources of freshwater; consequently, 

they can be vulnerable to contamination and other forms of environmental 

degradation (Adams et al., 2015). 
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The most important threats to endorheic ponds are overuse and climate 

change (Ordónez et al., 1994; Martin-Rosales and Leduc, 2003; 

Seeboonruang, 2014; Bellia and Lanfranco, 2020). Endorheic ponds cannot 

be replenished by an outflow and are vulnerable to depletion if they are 

overused. In some arid or semi-arid regions, these ponds are also used for 

mining and industrial purposes, which can introduce contaminants into the 

water and degrade its quality. As temperatures rise and precipitation patterns 

shift, many of these ponds become more vulnerable to drought and other 

forms of water scarcity. This could have serious consequences for the flora 

and fauna that depend on these ponds for their survival, as well as for the 

communities that rely on them as a resource (Sigee, 2005). 

2.3. Background on bacterioplankton  

Scientists developed the energy pyramid, which is a graphical 

representation of the feeding levels in an ecosystem, to predict the effects of 

changes in one part of the ecosystem on others and to develop strategies for 

managing and conserving natural resources (Fig. 2). Bacterioplankton occupy 

a central position in the energy pyramid as they are the primary decomposers 

of organic matter in aquatic ecosystems (Prasad, 2022). They break down 

complex organic molecules into simpler compounds, making the nutrients 

available to other aquatic organisms. As such, bacterioplankton are at the base 

of the food web and support the survival of other organisms, such as 

phytoplankton and zooplankton, which in turn support higher trophic levels 

(Sigee, 2005). 
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Fig. 2. Classifications of organisms based on source of energy (Source: 

www.biology-forums.com). 

Bacterioplankton can live in aerobic or anaerobic conditions and are 

produced by mitosis or asexual reproduction. They are very small in size but 

very abundant (Hobbie et al., 1977). Bacterioplankton are divided into the 

following groups: femtoplankton (< 0.2 µm); picoplankton (0.2‒2.0 µm); 

nanoplankton (2.0–20.0 µm); microplankton (20–200 µm); mesoplankton 

(0.2‒2.0 mm); macroplankton (> 2 mm) (Sieburth et al., 1978). However, a 

strict classification of the functional groups is sometimes difficult; as many 

bacterioplankton have a combination of the above functions (Kirchman, 2008). 

Cyanobacteria group such as Prochlorococcus and Synechococcus are 

recognized on top rank of phototrophic bacteria in aquatic ecosystems because 

of their important role in food chain as drivers of light for primary production 

(Lindholm and Weppling, 1987; Vicente and Miracle, 1988; Vila et al., 1996). 

Cyanobacteria provided the first largescale biotic source of oxygen on 

early earth and are capable of oxygenic photosynthesis (Hamilton et al., 2015) 

and fixing nitrogen (Caldwell and Tiedje, 1975; Jurtshuk, 1996; Petrash et al., 

2018). Gammaproteobacteria are new types of phototrophs because of their 
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proteorhodopsin proteins, which are retinal-based photoreceptors enabling 

phototrophic function in water (Sabehi et al., 2005). Chemotrophic bacteria 

require carbon to survive and are classified into two important categories 

(Pjevac et al., 2015). Chemoautotrophs are capable to synthesize their own 

source of energy from oxidation of reduced inorganic compounds such as iron, 

sulfur, sulphide, and magnesium. Contrary to popular belief, 

chemoheterotrophs are unable to synthesize their own food, so they get their 

energy from the oxidation of inorganic minerals in their environment (Jaspers 

et al., 2001). This makes them major decomposers of organic matter and 

allows them to mineralize a high proportion of the daily primary production 

(Sigee, 2005).   

Bacterioplankton community composition, production, and abundance 

change seasonally in most aquatic systems, and these changes appear to be 

linked to climatic variations that affect several biogeochemical processes 

(Hobbie et al., 1977; Jurtshuk, 1996; Nyirabuhoro et al., 2020, 2021). Because 

of their quick turnover rates and relationship with numerous environmental 

variables, bacterioplankton are sensitive to environmental alteration such as 

climate change, increases in nutrient concentrations or pollution by a wide 

array of human-made chemicals (Hobbie et al., 1977; Jurtshuk, 1996; Jiao et 

al., 2018). As an example, in subtropical reservoirs, cyanobacteria are able to 

produce blooms during eutrophication and warm weather (Yang et al., 2008, 

2012). These cyanobacterial blooms can result in the death of organisms such 

as fish and other aquatic fauna (Dokulil and Teubner, 2000). Even though 

their importance in aquatic ecosystems is obvious, bacterioplankton taxa in 

various subtropical reservoirs are less described.   
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2.4. Rare bacteria and their importance 

The rare biosphere consists of microbes that exist in low abundance 

within the community (Pedrós-Alió, 2012; Lynch and Neufeld, 2015; 

Nyirabuhoro et al., 2020). However, when conditions become favorable, the 

rare biosphere microbes can disproportionately affect ecosystem function 

(Shade et al., 2014). The exploration of this rare biosphere has numerous 

points of interest in ecology (Pedrós-Alió, 2012). First, it can show a 

reasonable estimate of the total number of bacterial taxa in the environment; 

right now, we do not even know the accurate order of magnitude. Second, it 

is able to answer the problem of whether “everything is everywhere.” Third, 

it allows the investigation of ecological mechanisms that let existence of many 

species in low numbers. Fourth, it opens an opportunity for research into the 

huge reserve of genes with potential applications hidden in the rare biosphere. 

More importantly, rare microbes possess an extraordinarily diverse set of 

enzymes, some of which can prove greatly relevant to industrial processes, 

such as thermophilic cellulases for biofuels applications (Lynch and Neufeld, 

2015). Isolation in pure culture was the only way to detect some rare bacteria, 

but current culturing techniques are incapable of isolating most of the bacteria 

in nature. The current development of fast and cheap high-throughput 

sequencing and imaging techniques, including flow cytometry, permits access 

to rare species. The use of these tools is starting to reveal functional 

relationships. 

One of the most familiar forms in biodiversity investigation is that only 

a few species are common, whereas most species are rare (Lennon and Jones, 

2011; Shade et al., 2014). This phenomenon can be demonstrated using a rank 

abundance curve (Fig. 3), which shows the total number of species and their 
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relative abundances in a sample or community. Theory predicts that rare 

species may be at risk of extinction even though they represent a reservoir of 

genetic diversity that is capable of responding speedily to environmental 

change (Lennon and Jones, 2011). For example, it is likely that rare taxa are 

disproportionately active relative to common taxa because rare taxa consist of 

populations that lack the ability to enter and exit dormancy (Jones and Lennon, 

2010). Alternatively, microbial rank abundance curves may be more dynamic 

and possibly characterized by transitions between active and dormant states 

that can eventually affect the relative abundance of microbial taxa. In either 

case, the rare biosphere seems to be metabolically active and potentially 

important when attempting to make links between the structure and function 

of microbial communities (Lennon and Jones, 2011; Shade et al., 2014). 

 
Fig. 3. A dynamic rank abundance curve for a microbial community that is 

influenced by dormancy. In most ecosystems, a small number of microbial 

species are dominant (abundant), and the remaining species are rare. The 

relationship between species abundance and the rank order of species in a 

community is shown by the blue line. Abundance can change over time owing 

to various factors (black lines). For example, species abundance can decrease 
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because of predation and resource limitation, as well as dormancy, which 

prevents microorganisms from replicating. However, dormancy can also 

reduce the likelihood of extinction; after resuscitation, a population may 

return to a dominant position in the rank abundance curve. In the absence of 

dormancy, the persistence of a given species is more dependent on 

immigration (dashed arrow) and the species is more likely to be lost from the 

local community (Source: Lennon and Jones, 2011). 

2.5. Criteria for defining rare taxa from abundant ones 

Several high-throughput sequencing methods that were formerly 

developed for small subunit ribosomal ribonucleic acid gene sequencing have 

shown an enormous complement of low-abundance microbial taxa (Liu et al., 

2015). Defining the rare biosphere has been arbitrary and the methods mostly 

employed include relative abundance cut-offs sequence counts in generated 

data sets (e.g., two sequences per sample) and empirical thresholds. The 

choice of thresholds can depend on the technology used to find out species 

(basic unit of classification and a taxonomic rank of an organism, as well as a 

unit of biodiversity) or the sake of the study (Reid and Buckley, 2011). Some 

researchers used a cutoff of 0.1% local relative abundance for rare taxa 

definition (Fuhrman, 2009; Vergin et al., 2013); others used 0.01% (Galand 

et al., 2009; Liu et al., 2015; Logares et al., 2015; Nyirabuhoro et al., 2020). 

Further, a threshold of 1% of relative abundance has been extensively utilized 

in numerous studies to define abundant species (Pedrós-Alió, 2012; Vergin et 

al., 2013; Logares et al., 2014). Practically, it is widespread to remove low-

abundance sequences from analyses at a specific ecological threshold, such as 

the contribution to community dissimilarity (Lynch and Neufeld, 2015). 

Despite the threshold employed for defining the rare biosphere, microbial 
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community abundance distributions based on marker gene surveys typically 

reveal a long tail of low-relative-abundance operational taxonomic units. The 

length and shape of this tail differ depending on the diversity of the sampled 

community and on the underlying species-abundance distribution (Fig. 4), 

which is inadequately understood for most microbial communities (Lynch and 

Neufeld, 2015). The microbes that are periodically recruited from the rare 

biosphere can switch between abundant and rare, depending on periodic 

environmental conditions such as temperature, nutrient and seasonality 

(Aanderud et al., 2016; Nyirabuhoro et al., 2020, 2021). The microbes that are 

occasionally recruited from the rare biosphere persist with relatively rare 

abundances, responding to occasional episodic cues such as precipitation and 

pressure (Lynch and Neufeld, 2015). Microbial taxa that demonstrate periodic 

increases in abundance but are permanently rare are adapted to live at low 

relative abundance, constantly avoiding predation. This lifestyle is associated 

with increased susceptibility to starvation. Permanently rare taxa, which 

include potential keystone species, demonstrate persistent low-abundance 

distributions and an increased susceptibility to starvation. Transiently rare 

taxa are occasionally rare due to immigration. Their persistence depends on 

appropriate conditions for survival and reproduction. Taxa showing periodic 

or occasional recruitment from the rare biosphere can be considered to be 

conditionally rare taxa (CRT). 
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Fig. 4. Hypothetical temporal abundance profiles for rare-biosphere 

microorganisms (Source: Lynch and Neufeld, 2017). Abundance refers to the 

numerical count or relative contribution of a taxon to a community 

observation. Abundance includes a continuum from most to least abundant of 

dominant, prevalent, and rare taxa; Relative abundance refers to the evenness 

of distribution of individuals among species in a community. 

2.6. Importance of conditionally rare and abundant taxa 

Previous studies acknowledged microbes that are rare at definite points 

in time and space and shift to abundance at other points (conditionally rare 

taxa) as major contributors to community dynamics in different ecosystems 

(Campbell et al., 2011; Shade et al., 2014). Within an observation of a 

microbial community, conditionally rare taxa may be prevalent and remain 

important for ecosystem function (Shade et al., 2014). They are important in 

maintaining the function and stability of ecosystems; hence, they are 
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considered the seed bank of the community, which is a reservoir of inactive 

individuals that can potentially be resuscitated in the future under a different 

set of environmental conditions (Lennon and Jones, 2011). Despite the 

importance of the seed bank, conditionally rare taxa can be active with 

potential ecological roles: First, they are potentially responsible for changes 

in the community structure and composition over space and time (Campbell 

et al., 2011; Hugoni et al., 2013). This may be due to the ease of their 

reproduction by binary fission, so that species can grow rapidly under suitable 

conditions in nature (Campbell et al., 2011). Second, some nutrient cycling 

processes offer illustrative examples of the effects of conditionally rare taxa. 

Conditionally rare bacteria are highly active foundation species in freshwater 

and important for nitrogen and carbon uptake as “keystone species” (species 

with key roles in community structure and/or ecosystem functioning). As an 

example, a decrease of 75% of the measured species richness may reduce soil-

denitrifying activity by a factor of 4-5-fold, suggesting that dominant species 

cannot perform this process alone (Jousset et al., 2017). Third, conditionally 

rare bacteria play a key role in the degradation of organic compounds, 

including pollutants. As an example, the removal of rare microbes in activated 

sludge and freshwater can seriously diminish the capacity to degrade 

pollutants and toxins (Fuentes et al., 2014). Fourth, conditionally rare bacteria 

also revealed their importance in medicine. In the human lung, a high diversity 

of low-abundance bacteria is likely to be linked with a reduced severity of 

bacterial infection in individuals with cystic fibrosis. On the other hand, rare 

species may contribute to pathogenesis when the conditions become favorable 

to them (e.g., oral microflora can lead to periodontal disease) (Jousset et al., 

2017). 
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2.7. Traditional and new methods in water sampling strategy 

Water is an essential liquid that is vital for all life on earth (Sigee, 2005). 

In environmental microbiology, water is a crucial factor, as it is often used as 

a sample matrix for the detection and quantification of microorganisms (Maier 

et al., 2009). The quality of water is a key factor in determining the health of 

an ecosystem, and monitoring aquatic environments is an essential part of 

environmental management (Sigee, 2005; Maier et al., 2009). Microbes, such 

as bacteria, viruses, and fungi, are abundant in water, and their presence or 

absence provides valuable information about the health of ecosystems 

(Varnam and Evans, 2000; Sigee, 2005; Maier et al., 2009). For example, the 

presence of certain bacteria in water indicates contamination of the water with 

fecal matter or other pollutants (Sigee, 2005). 

Water can be collected from various sources, including rural and urban 

ponds, rivers, lakes, oceans, groundwater, wastewater, and even drinking 

water (Varnam and Evans, 2000; Sigee, 2005; Maier et al., 2009). Sampling 

is defined as the process of selecting a portion of material (i.e., small enough 

in volume) to be transported suitably and handled in the laboratory while still 

accurately representing the part of the environment that was sampled (Madrid 

and Zayas, 2007). The main difficulties in sampling the environment are 

representativeness and integrity (Sigee, 2005; Madrid and Zayas, 2007). This 

is because it is important to obtain a sample that accurately reflects the 

characteristics of the environment being studied (Madrid and Zayas, 2007). A 

representative water sample is one that precisely represents the larger 

populations of diverse microorganisms, while integrity refers to the 

preservation of the physical, chemical, and biological characteristics of water 

during collection, transportation, and analysis (Sigee, 2005). If a water sample 
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is not representative, it may not provide accurate information about the 

environment, including microbial communities (Madrid and Zayas, 2007). On 

the contrary, if water is collected from a more contaminated environment, 

such as stormwater from urban areas, industrial wastewater, or radioactively 

contaminated cooling water from nuclear power plants, but the sample is not 

representative of the larger body of water, the results of the analysis may not 

accurately reflect the level of contamination (Varnam and Evans, 2000; Sigee, 

2005; Maier et al., 2009). Similarly, if samples are not handled with integrity, 

water may become contaminated and altered, which can affect the accuracy 

and reliability of the results (Madrid and Zayas, 2007). Therefore, ensuring 

representativeness and integrity is important in obtaining reliable data from a 

water sample (Sigee, 2005; Madrid and Zayas, 2007). This can be achieved 

through careful planning of the sampling, the use of appropriate sampling and 

sample preservation techniques, and the careful handling and transport of the 

sample to the laboratory (Fig. 5). 
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Fig. 5. Items to be taken into account while developing a sampling plan 

(Source: Madrid and Zayas, 2007). 

Traditional methods of water sampling involve physically collecting 

water from a specific location and transporting it to a laboratory for analysis 

(Madrid and Zayas, 2007). These approaches typically involve using a 

sampling bottle, which is typically made of glass or plastic material, to collect 

the water sample (Sigee, 2005). In general, the bottle is filled with water by 

submerging it to the desired depth, and then the bottle is sealed to prevent 

contamination or loss of sample integrity during transportation. Other 

traditional water sampling methods may involve using automated samplers 

such as submersible utility pumps to collect water samples at a specific time 

interval or flow rate (Madrid and Zayas, 2007). Moreover, traditional water 

sampling methods typically involve measuring physical characteristics of 
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water, such as depth, transparency, temperature, electrical conductivity, total 

dissolved solids, and turbidity, as well as chemical properties like pH, 

dissolved oxygen, nutrients, and heavy metals, and biological characteristics, 

such as microbial content (Sigee, 2005). Although traditional water sampling 

methods have been widely used for many years, they do have limitations, such 

as the potential for sample contamination, inconsistency in sample collection 

techniques, and the need for extensive laboratory analysis (Madrid and Zayas, 

2007). As a result, more advanced practices have been developed to provide 

more accurate and efficient water sampling and analysis (Varnam and Evans, 

2000; Sigee, 2005; Maier et al., 2009). 

Advanced water sampling methods refer to new and innovative 

techniques which address the limitations of traditional water sampling 

methods. Some examples of advanced water sampling methods include real-

time water quality monitoring, autonomous underwater vehicles (AUVs), 

optical sensors, passive sampling, and DNA-based methods (Varnam and 

Evans, 2000; Sigee, 2005; Maier et al., 2009). Real-time water quality 

monitoring involves using automated sensors measuring various water quality 

parameters in real-time. This technique provides continuous monitoring and 

data collection, which identify changes in water quality and detect 

contamination events more quickly (Barabde and Danve, 2015). Autonomous 

underwater vehicles (AUVs) are unmanned vehicles that are programmed to 

collect water samples and data at specific locations and depths. AUVs are 

mostly equipped with several sensors measuring water quality parameters. 

AUVs are particularly advantageous for sampling deep water and large water 

bodies, as they can be operated autonomously or controlled remotely from a 

base station (Griffiths, 2002). Optical sensors employ light-based technology 

to quantify various water quality parameters, such as dissolved organic matter, 
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chlorophyll-a, and turbidity. Like AUVs, optical sensors also provide fast, 

accurate, and non-invasive measurement of water quality parameters (Sigee, 

2005). Passive sampling involves using specialized supplies, such as resins or 

membranes, to collect water over a period of time. This technique provides a 

more representative water sample over time to help identify trends and 

changes in aquatic environments (Vrana et al., 2005). DNA-based methods 

use genetic sequencing technology to quantify microbial communities in 

water. This technique provides a more accurate and detailed analysis of 

microbes present in water, allowing for the detection of potential health risks 

and contamination events more quickly (Sigee, 2005; Blancher et al., 2022).  

2.8. DNA-based monitoring of environmental microbial community 

DNA-based methods provide a comprehensive understanding of 

microbial community composition and functional potential (Bruce et al., 2021; 

Blancher et al., 2022). The procedure for DNA-based monitoring of 

environmental microbial communities involves several steps, including 

sample collection, DNA extraction, amplification, and analysis of sequencing 

data (Fig. 6). Several techniques (e.g., polymerase chain reaction (PCR) based 

techniques, metagenomics, microarrays, quantitative PCR (qPCR), and DNA 

barcoding) have been developed for DNA-based biomonitoring. Each 

technique has its own strengths, limitations, and specific applications. Hence, 

researchers must cautiously consider which technique to use depending on 

their research question, available resources, and the specific characteristics of 

the sample being analyzed. For example, water may require different 

techniques than soil or air samples due to differences in the physicochemical 

properties of these matrices (Sigee, 2005). 
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Fig. 6. Decision-making process in selecting a methodology for DNA-based 

biomonitoring together with practical recommendations to guide this process 

(Source: Bruce et al., 2021). 

Amplicon sequencing involves amplifying a specific DNA region, such 

as the 16S rRNA gene for bacteria or the internal transcribed spacer (ITS) 

region for fungi, using polymerase chain reaction (PCR). The amplified DNA 

fragments are then sequenced using high-throughput sequencing technologies 

(Lundberg et al., 2013). Amplicon sequencing is relatively inexpensive and 

has several advantages, including high throughput, sensitivity, and specificity. 

It can be used to analyze multiple samples instantly for microbial community 

composition and diversity. However, the technique has some limitations, 
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including potential biases in amplification and the inability to identify novel 

microbes (Sigee, 2005). 

16S rRNA amplicon sequencing is a widely used technique for 

freshwater bacterial community analysis (Nyirabuhoro et al., 2020, 2021). 

The technique involves several steps from sampling to OTU table generation 

(Fig. 7), which can be summarized as follows: sample collection, DNA 

extraction, amplification of the 16S rRNA gene, sequencing, quality control 

and filtering, operational taxonomic unit (OTU) clustering, taxonomic 

assignment, statistical analysis, and OTU table generation. The first step is to 

collect the environmental sample, such as water, that contains the bacterial 

community of interest. The bacterial DNA is extracted from the sample using 

a commercial kit or a laboratory protocol. This step requires that the DNA 

extraction method be optimised to obtain high-quality DNA that is appropriate 

for downstream processing. The bacterial 16S rRNA gene is amplified using 

PCR with universal primers that target conserved regions of the gene. The 

PCR conditions should be optimized to ensure that the amplification is 

specific, efficient, and reproducible. The amplified DNA is sequenced using 

a high-throughput sequencing platform, such as Illumina or PacBio. The 

sequencing depth should be appropriate to ensure that the diversity and 

abundance of the bacterial community are accurately represented. The raw 

sequence data are subjected to quality control and filtering to eliminate low-

quality reads, adapter sequences, and chimeric sequences that may affect 

downstream analysis. The sequence data are then clustered into operational 

taxonomic units (OTUs) based on a defined similarity threshold, typically 

97%. These OTUs serve as proxies for bacterial species or phylotypes. The 

OTUs are assigned to taxonomic categories based on reference databases, 

such as Greengenes or SILVA. The taxonomic assignment provides evidence 
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of the identity and abundance of the bacterial community. The OTU table is 

analyzed using different statistical methods to compare the bacterial 

community structure and composition between samples, identify biomarkers, 

and evaluate the effect of environmental factors on the community. The final 

output of 16S rRNA amplicon sequencing is an OTU table, which lists the 

abundance of each OTU in each environmental sample. The OTU table is a 

valuable resource for further downstream analysis, such as functional 

profiling and network analysis (Nyirabuhoro et al., 2020, 2021; Al et al., 

2022). 

 
Fig. 7. The process of generating an OTU (operational taxonomic unit) table 

from 16S rRNA amplicon sequencing involves multiple steps.  

Metagenomic sequencing is a more comprehensive technique for DNA-

based biomonitoring (Ni et al., 2013). It involves sequencing all the DNA in 

a sample, including the DNA of microorganisms as well as that of other 

organisms present in the sample. It has several advantages, including the 
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capability to identify novel microorganisms and functional genes. However, 

the technique has limitations such as high cost, potential biases in DNA 

extraction and sequencing, and greater computational requirements (Sigee, 

2005). 

Shotgun metagenomic sequencing involves sequencing all the DNA in a 

sample without prior amplification or enrichment (Quince et al., 2017). The 

technique has several advantages, including the ability to identify novel 

microorganisms and functional genes, as well as the ability to determine the 

genomic content of individual microorganisms. However, the technique has 

limitations such as high cost, potential biases in DNA extraction and 

sequencing, and greater computational requirements (Sigee, 2005; Sharpton, 

2014). 

2.9. Numerical and statistical techniques 

Numerical and statistical methods play an important role in analyzing 

biodiversity and microbial community data (Young et al., 1998; Legendre and 

Legendre, 2012). These methods aid researchers to estimate and understand 

the diversity and complexity of microbial communities and their relationships 

with environment (Sigee, 2005). The choice of statistical method depends on 

the research objectives and the characteristics of the microbial community 

being studied (Ilstrup, 1990; Young et al., 1998). 

Some of the commonly used statistical methods for analyzing 

biodiversity and bacterial communities are diversity indices, analysis of 

similarities (ANOSIM), non-metric multidimensional scaling (NMDS), 

redundancy analysis (RDA) or canonical correspondence analysis (CCA), and 

variance partitioning analysis (VPA) (Burlage et al., 1998; Sigee, 2005). 

Diversity indices are mathematical measures used to calculate the diversity 
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and evenness of species in a community. These indices are commonly used to 

compare the diversity of microbial communities under different 

environmental conditions (Peet, 1974). Examples of diversity indices include 

the Shannon-Wiener diversity index, Simpson diversity index, and the species 

richness index (Sigee, 2005). ANOSIM is used to compare the similarity of 

microbial communities in different environments. ANOSIM calculates a 

similarity index (R) between microbial communities and tests whether there 

is a significant difference between the communities (Anderson and Walsh, 

2013). Non-metric multidimensional scaling (NMDS) is used to visualize and 

compare the similarity of microbial communities based on their taxonomic 

composition. NMDS can help to identify patterns in microbial community 

data that may be associated with environmental factors (Zuur et al., 2007). 

RDA and CCA are multivariate statistical methods that are employed to 

analyze the relationships between multiple environmental variables and the 

distribution of species in a community. These methods allow researchers to 

identify which environmental factors are most strongly associated with 

changes in species composition. The difference between RDA and CCA is 

that RDA assumes linear relationships between species and environmental 

variables, whereas CCA can model non-linear relationships (ter Braak and 

Šmilauer, 2012). Variance Partitioning Analysis (VPA) is used to partition the 

variation in species composition into components associated with different 

environmental factors. VPA is based on the idea that multiple environmental 

factors can contribute to the variation in species composition, and VPA 

provides a way to quantify the relative contributions of these factors to the 

variation observed in the community (Zhou and Ning, 2017). 
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2.10. Network analysis 

A network is a system composed of interconnected elements, referred to 

as nodes or vertices, and the relationships between them, represented as edges 

or links (Brinkmeier and Schank, 2005). Network analysis is a field that 

applies mathematical and statistical techniques to model networks in various 

domains, including ecology (Fath et al., 2007; Wulff et al., 2012), providing 

a framework to understand the complex patterns of interactions, dependencies, 

and flows within a system. Key concepts in network analysis include nodes, 

edges, degree, centrality, clustering, network density, modularity, small-

world effect, and network visualization (Brinkmeier and Schank, 2005). 

Nodes, also referred to as vertices, are the fundamental components of a 

network, representing distinct entities such as genes in a biological network. 

Edges, also known as links, represent the connections between nodes, 

illustrating how nodes are interrelated. The degree of a node in a network 

denotes the count of edges connected to that specific node, serving as a metric 

for its connectivity and significance within the network. Centrality measures 

assess the importance of a node within a network, with various types of 

centrality measures, including degree centrality, betweenness centrality, and 

eigenvector centrality, capturing different aspects of node significance. 

Clustering pertains to the inclination of nodes in a network to assemble into 

tightly interconnected clusters or groups, estimating the degree to which nodes 

within a cluster exhibit stronger connections to one another compared to nodes 

in different clusters. Network density, on the other hand, quantifies the level 

of interconnectivity among nodes by measuring the proportion of actual edges 

present in relation to all possible edges within a network. Modularity serves 

as a metric that gauges the existence of modules or communities within a 
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network, assessing the extent to which nodes within a module form denser 

connections amongst themselves compared to nodes in other modules. The 

small-world effect characterizes the phenomenon observed in numerous real-

world networks, where nodes tend to form clusters or communities, while still 

maintaining a relatively short average path length between any two nodes. 

This property indicates that the network demonstrates both local clustering 

and global connectivity. Network visualization encompasses the graphical 

depiction of a network, enabling visual exploration and analysis of its 

structure, relationships, and patterns. Various layout algorithms and visual 

encoding techniques are employed to represent nodes, edges, and their 

attributes in a meaningful and informative manner (Brinkmeier and Schank, 

2005). 

2.11. Community assembly models 

Understanding the ecological processes governing freshwater bacterial 

community biogeography, diversity, functions, and succession is a central but 

poorly understood topic in ecology (Nyirabuhoro et al., 2020, 2021). One of 

the most central questions in ecology is how microbial diversity is produced 

and maintained (Nemergut et al., 2013; Zhou and Ning ,2017). The processes 

shaping the diversity among species are largely considered to be ecological 

processes and are grouped into four central ecological concepts: ecological 

dispersal, diversification, drift, and selection (Vellend, 2010; Nemergut et al., 

2013; Zhou and Ning, 2017). 

Dispersal is referred to as the process of continually moving from one 

place to another and the successful establishment of organisms across space 

(Nemergut et al., 2013; Zhou and Ning, 2017). Many factors (e.g., 

environmental filtering and biotic interactions) influence the movement of 



33 
 

organisms; thus, dispersal can be ambiguously treated as being deterministic 

or stochastic (Nyirabuhoro et al., 2020, 2021). Diversification is an 

evolutionary process of producing new genetic variation and is situated 

between speciation and extinction (Nemergut et al., 2013). The importance of 

diversification is largely ignored in community ecology research because it 

involves long-term evolutionary processes spanning millions of years for 

many microbes (Zhou and Ning, 2017). At present, no specific method is 

available to examine the relative importance of diversification in shaping 

microbial community structure (Nemergut et al., 2013; Dini-Andreote et al., 

2015; Zhou and Ning, 2017). Drift is referred to as stochastic variation with 

respect to species characteristics in the relative abundances of different 

species within a community over time due to inborn random processes such 

as birth, death, and reproduction (Zhou and Ning, 2017). Drift is important 

when selection is weak and the local community size is small (Evans et al., 

2017). Ecological drift is unambiguously stochastic and difficult to test 

empirically because no species in nature are precisely demographically 

similar (Zhou and Ning, 2017). Selection is referred to as the ecological forces 

that change community structure due to fitness differences for example in 

survival, growth and reproduction among different organisms (Nemergut et 

al., 2013; Zhou and Ning, 2017). Ecological selection can be generated by 

deterministic variables (e.g., moisture, pH and temperature) at both local and 

regional scales and synergistic effects of biotic interactions such as 

competition, mutualism and predation (Dini-Andreote et al., 2015). 

Ecological selection can be divided into two main categories: homogeneous 

and heterogeneous selections. For homogeneous selection, environmental 

conditions are not changing and little variation in community structure could 

exist. For heterogeneous selection, environmental conditions change across 
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space and time, and high variation in community structure is often expected 

(Zhou and Ning, 2017). Ecological selection is unequivocally not stochastic 

(Dini-Andreote et al., 2015). 

Numerous statistical approaches have been developed to assess the 

relative importance of environmental influence and dispersal limitation (Zhou 

and Ning, 2017). Three important types of multivariate statistical approaches 

are often employed to compare community structure differences between and 

within treatments: permutational multivariate analysis of variance, analysis of 

similarities, permutational analysis of multivariate dispersions and ordination 

methods (e.g., principal-coordinates analysis, nonmetric multidimensional 

scaling, principal-component analysis and detrended correspondence 

analysis); correlation-type analyses between community structure and 

environment variables (e.g., Mantel test, multiple regression on (dis) 

similarity matrices, redundancy analysis and canonical correspondence 

analysis); variation partitioning analysis. Multivariate analysis approaches are 

often compounded by the issue of unmeasured environmental variables 

because it is very difficult to measure all environmental variables in practice. 

In variation partitioning analysis, great caution is necessary to partition 

community variation, and it should be utilized as an exploratory tool together 

with other techniques such as neutral theory-based models and null model 

analysis (Zhou and Ning, 2017). 

Neutral theory-based process models are one of the major approaches 

used to infer processes from diversity patterns (Fig. 8). There are over ten 

different neutral models, each with slightly different predictions for different 

factors (Nemergut et al., 2013; Zhou and Ning, 2017). The most important 

one is Hubbell’s neutral model, which has only three parameters: population 

size of the local community; rate of immigration; and fundamental diversity 
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number. All of these parameters are estimated theoretically and directly from 

ecological data, but in practice, it is a challenge to do so because quantifying 

the population size of a metacommunity is problematic (Zhou and Ning, 2017). 

Further, the rates of migration and speciation cannot be estimated directly; 

thus, the parameters can only be indirectly quantified by fitting a neutral 

model to the observed community structure data (Sloan et al., 2006). 

 
Fig. 8. A diagram showing ecological processes influencing microbial 

community within the context of the determinism and stochasticity dualism 

and various steps in partitioning different ecological processes on the basis of 

both phylogenetic and taxonomic diversity. βNTI, β nearest-taxon index 

based on a null model test of the phylogenetic β-diversity index β mean 

nearest-taxon distance; RCBray, modified Raup-Crick index based on a null 

model test of the Bray-Curtis taxonomic β-diversity index (Source: Zhou and 

Ning, 2017). 

2.12. Research methodology 

The methodology for a research project on DNA-based biomonitoring of 

microbial communities depends on the specific research questions and study 
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area but should follow a similar general framework of study area selection, 

sampling design, sample collection and processing, data analysis, 

interpretation and discussion, and conclusions and recommendations (Sigee, 

2005). 

Study area selection involves selecting a specific region or site, such as 

urban park ponds, where the presence of bacterioplankton will be assessed. 

Sampling design involves developing a sampling design that is appropriate 

for the study area and research questions. This could involve selecting a 

specific sampling method and determining the number and location of 

sampling sites. Sample collection and processing involve the collection of 

environmental samples from the selected sites using the chosen sampling 

method, processing the samples in the laboratory by filtering, washing, or 

centrifuging to separate the bacterioplankton from other organisms and debris, 

and using 16S rRNA amplicon sequencing to identify bacterioplankton. Data 

analysis requires analyzing the OUTs using appropriate statistical methods, 

such as ordination techniques, and assessing the diversity, abundance, and 

distribution of the bacterioplankton in relation to environmental variables 

such as water quality, weather, and air pollution. Interpretation and discussion 

involve interpreting the results of the data analysis in the context of the 

research questions and existing literature on the bacterial community and 

discussing the potential implications of the results for understanding of the 

determinants of bacterial community in urban park ponds. Conclusions and 

recommendations involve summarizing the main findings of the study, 

drawing conclusions about the determinants of bacterial community in urban 

park ponds, and making recommendations for future research or management 

actions that could help protect and conserve these organisms and the 

ecosystems they inhabit.  
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3. Materials and methods 

3.1. Study area description and sampling 

This study was conducted in three adjacent ponds located at the main 

campus of Shenzhen MSU-BIT University (SMBU) in Shenzhen, China (Fig. 

9). SMBU pond is built within a wetland that has been transformed into a 

garden-forest landscape. They are situated on the east bank of the Pearl River 

estuary in Shenzhen, a sub-provincial city in the south eastern province of 

Guangdong, China. SMBU pond is located within an urban area covering 

1,748 km2, with elevations ranging from 0 to 944 m above sea level. In 

addition, a geographic area is characterized by a warm, monsoon-influenced, 

humid subtropical climate, with mild and relatively dry winters attributed, in 

part, to the South China Sea. SMBU pond experiences very humid and hot 

weather conditions during the summer, when the monsoon reaches its peak 

intensity. The average annual temperature and precipitation in the area are 

22.4 °C and 1,948 mm, respectively (Zhong et al., 2022). 
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Fig. 9. The study site map (first row, left) showing the locations of the 

Shenzhen MSU-BIT University (SMBU) pond (first row, right) in Shenzhen, 

Guangdong, southeast China. The cross-section (second row) of three studied 

portions of SMBU pond (upstream, midstream, and downstream). The three 

sampling stations are shown using different symbols. The map was created by 

QGIS version 3.24.1 (QGIS Development Team (2022). 

A total of 30 water samples were collected from three stations in SMBU 

pond, which are the upstream, midstream, and upstream, in August 2022 at 

approximately 9:00 a.m. The water samples were first pre-filtered using a 200 

μm pore-sized sieve to remove large particles; then, a volume of 600 mL was 

filtered through a 0.22 μm polycarbonate membrane (47 mm diameter, 

Millipore, Billerica, MA) using a vacuum filtration system (filtering time: 30‒

60 min). The filter membranes with microbial plankton were then packed into 

sterilized tubes and preserved at 80 ◦C until DNA extraction. 

Environmental variables that were measured for each pond are typically 

meteorological variables, air quality parameters, and the physicochemical 

properties of water. Air temperature and humidity were measured using Live 

Thermometer version 1.1. Light intensity, wind speed, and atmospheric 

pressure were measured using Smart Luxmeter version 1.0.7, ZephyrFree 

WindMeter version 3.1.2, and GPS Essentials version 4.4.64, respectively. 

Carbon monoxide (CO), nitrogen monoxide (NO), nitrogen dioxide (NO2), 

ozone (O3), sulphur dioxide (SO2), ammonia (NH3), particulates PM2.5, and 

particulates PM10 were measured using Live Thermometer version 1.1. Water 

depth was estimated using a sounding cable: a plumb bob was attached to a 

rope, released slowly into the water, and when the plumb bob just touched the 

rock bottom of the pond, a mark was formed on the rope exactly at the water 
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level, then the depth was measured by tape. Transparency was measured using 

a Secchi disc. Water temperature, turbidity, total dissolved solids, electrical 

conductivity, pH, oxydo-reduction potential, dissolved oxygen saturation, 

dissolved oxygen concentration, resistivity, and salinity were measured using 

a multiparameter device (HI 9829, HANNA Instrument Inc., Woonsocket, RI, 

USA), and the mean-values were computed for further analysis.  

3.2. DNA extraction, Illumina sequencing and bioinformatics 

Total DNA of bacterioplankton was extracted directly from the 

membrane using the FastDNA SPIN Kit and the FastPrep Instrument (MP 

Biomedicals, Santa Ana, CA, USA) according to the manufacturer’s 

instructions. The DNA quality and concentration were tested using a 

NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 

USA). After checking for quality, 20-μl DNA sample was amplified using 

universal bacterial primers (341F-806R) and subjected to sequencing of the 

V3-V4 hypervariable region of the bacterial 16S rRNA gene in two library 

batches on Illumina MiSeq and HiSeq platforms at the Novogene sequencing 

facility (Novogene Technology Co. Ltd, Beijing, China).  Each DNA sample 

was individually PCR-amplified in triplicated 25 μl reactions included an 

initial denaturation at 94 °C for 5 min, followed by 25 cycles of 30 s at 94 °C, 

30 s at 50 °C and 30 s at 72 °C. At the end of the amplification, the amplicons 

were subjected to final 7 min extension at 72 °C. Each reaction contained 1 × 

PCR buffer, 2.5 mM dNTPs, 0.625 U of Taq DNA polymerase, 10 μM of each 

primer, and 20 ng of target DNA. The triplicate PCR products were pooled 

together, and sequencing was performed on the Illumina MiSeq platform 

(Illumina, Inc., San Diego, CA, USA) using 2 × 250 bp paired-end sequencing 
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approach. The removal of barcode and primer sequence was carried out in 

QIIME 1.9.1 (Caporaso et al., 2010).  

Bioinformatic analyses of 16S rRNA gene sequences were conveyed 

using VSEARCH (Rognes et al., 2016). Chimeras were discarded using 

default settings in VSEARCH from a set of unique sequences to construct 

biologically corrected sequences. Quality-filtered sequences were assigned to 

OTUs at a 97% sequence similarity threshold. The OTU taxonomies were 

assigned using the sintax algorithm on query sequences mapped against the 

Greengenes database (DeSantis et al., 2006). Unknown OTUs were removed 

before the downstream analyses. The resulting OTU tables were subjected to 

subsequent processing for singleton, archaea, chloroplast, and mitochondrial 

sequence removal. Finally, the bacterial sequences were normalized to the 

same number of sequences (48378 per sample), and 11903 OTUs at a 97% 

sequence similarity level were obtained. In addition, the bacterioplankton 

community was categorized into three categories: abundant taxa (AT), 

conditionally rare taxa (CRT), and rare taxa (RT) (Nyirabuhoro et al., 2020). 

3.3. Definition of abundant and rare taxa 

The differentiation of the rare from the abundant biosphere is not based 

on a specific or fixed threshold of relative abundance; thus, the cutoff point is 

artificial (Pedrós-Alió, 2012; Lynch and Neufeld, 2015). The selection of 

thresholds may vary depending on the methodology used to identify species 

or the purpose of the research (Reid and Buckley, 2011). Some studies have 

defined rare taxa using a cutoff of 0.1% as a local relative abundance 

(Fuhrman, 2009; Vergin et al., 2013), while others have used a threshold of 

0.01% (Mangot et al., 2013; Logares et al., 2014, 2015; Liu et al., 2015). 

Moreover, a relative abundance threshold of 1% has frequently been utilized 
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to define abundant species in numerous investigations (Vergin et al., 2013; 

Logares et al., 2014; Liu et al., 2015). For this study, the bacterial community 

was divided into different categories of taxa by setting a local relative 

abundance threshold of 1% for abundant taxa and 0.01% for rare taxa. Our 

community was artificially classified into five categories (Dai et al., 2016; 

Chen et al., 2017; Xue et al., 2018; Liu et al., 2019): (i) always abundant taxa 

(AAT), OTUs with a relative abundance ≥ 1% in all samples; (ii) conditionally 

abundant taxa (CAT), OTUs with relative abundance ≥ 1% in some samples 

and ≥ 0.01% in other samples, but never being rare; (iii) conditionally 

abundant or rare taxa (CRAT), OTUs with relative abundance from rare < 

0.01% to abundant ≥1% in samples; (iv) conditionally rare taxa (CRT), OTUs 

with < 0.01% local relative abundance in some samples and ≥ 0.01% in others 

but never ≥ 1%; (v) rare taxa (RT), OTUs with relative abundance < 0.01% in 

all samples (Table 1). To simplify the analysis, OTUs with relative abundance > 

1% at least once in a sample (i.e., AAT, CAT, and CRAT) were combined 

together as abundant taxa (AT) in this study (Nyirabuhoro et al., 2020). 

Table 1. Criteria used for categorizing the different taxa within 

bacterioplankton, and number of total OTUs and associated sequences 

represented by each taxon.  

Taxa Selection Criteria 

Abundant taxa (AT)  

 ‒ ≥ 1% local relative abundance at 

least once 

Always abundant taxa ≥ 1% local relative abundance 

always 

Conditionally abundant taxa 
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≥ 1% local relative abundance in 

some samples and > 0.01% in all 

samples 

Conditionally rare and abundant taxa ≥ 1% local relative abundance in 

some samples and < 0.01% in 

others 

Moderate taxa (MT)  

‒ < 1% and > 0.01% local relative 

abundance in all samples 

Conditionally rare taxa (CRT)  

‒ < 1% and < 0.01% local relative 

abundance in samples 

Rare taxa (RT)  

‒ < 0.01% local relative abundance 

always 

All taxa ‒ 

The selected taxa categories for this study are in bold. 

3.4. Statistical analyses 

The bacterioplankton diversity was assessed using the Shannon-Wiener 

index, a widely used metric in ecological studies due to its sensitivity to 

differences between sites (Magurran, 1988). To compare the Shannon-Wiener 

index across the three stations, we used the Mann-Whitney U test with a 

statistical significance level of P < 0.05. NMDS based on Bray-Curtis was 

applied to investigate differences in bacterioplankton communities among 

three stations. The degree of separation of bacterial community composition 
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across the seasons was tested with ANOSIM. The R-value is supposed to vary 

between 0 and 1. Values of R closer to 1 indicate complete separation of 

sample groups, while values near 0 indicate no separation between groups. 

Both NMDS and ANOSIM were performed in PRIMER 6.0 software. The 

bacterial community dynamics at phylum and genus levels of taxonomic 

resolution were quantified using relative abundance data in R version 4.3.0 (R 

Core Team, 2023). 

To examine the correlation between bacterioplankton (sequence data) 

and environmental variables, Pearson correlation coefficients were calculated 

with a significance level set at P < 0.05. In addition, RDA and VPA in R 

version 4.3.0 (R Core Team, 2023) were used to quantify the bacterial 

community response to environmental conditions. VPA was implemented by 

removing collinearity shown by the variance inflation factor (> 10) and using 

sequence data of bacterioplankton at the subcommunity level, significant 

environmental variables (P < 0.05) in RDA, and three groups of 

environmental variables: weather, physical, and chemical parameters. 

The importance of stochastic and deterministic processes in shaping 

bacterial communities was assessed using the neutral community model 

(Sloan et al., 2006) and the null model (Gotelli and Mccabe, 2002), 

respectively. For the Sloan neutral community model, the parameters N, m, 

and Nm describe the metacommunity size, immigration rate, and dispersal 

between communities, respectively. The least-square method was employed 

to determine the best-fit distribution curve of the neutral model in the R 

environment (R Core Team, 2023). To calculate the difference between 

observed and simulated communities and the standardized effect size in the 

null model, we utilized sequence data, the C-score metric, 5000 random 
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matrices, SIM9 algorithm, and EcoSim Professional version 1.0 (Entsminger, 

2014). 

To analyze the co-occurrence patterns in different bacterioplankton 

subcommunities, we performed the network analysis in the R environment (R 

Core Team, 2023). The relationships between OTUs were calculated using 

Spearman’s rank correlations, and only strong and statistically significant 

correlations (│r│ > 0.6, P < 0.01) were integrated into the networks, which 

were visualized and analyzed using Gephi version 0.9.2 (Bastian et al., 2009). 

To characterize the network topology, we calculated the degree, betweenness, 

and closeness across different bacterioplankton subcommunities using the 

Wilcoxon rank-sum test with a significant difference of P < 0.05 (Xue et al., 

2018).  
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4. Results 

4.1. Temporal dynamics of environmental conditions  

Table 2, which displays the mean and standard errors of 25 measured 

environmental variables at each station (n = 10) and across the three stations 

in SMBU pond (n = 30), provides a more comprehensive overview of different 

environmental conditions in a subtropical endorheic urban pond. At all 

stations, the meteorological variables indicate relatively warm conditions, 

which are characteristic of a humid subtropical climate. The variation in air 

temperature, light intensity, wind speed, humidity, and air pressure across the 

three stations ranged from 27 to 29 °C, 26336.5 to 51835.6 lx, 1.42 to 1.78 m 

s-1, 76.8 to 80.1%, and 999.905 to 999.946 kPa, respectively. The 

concentrations of carbon monoxide, nitrogen monoxide, nitrogen dioxide, 

ozone, sulphur dioxide, ammonia, particulates PM10, and particulates PM2.5 

varied across the three stations, with ranges of 525.448 to 624.181, 9.815 to 

21.805, 22.647 to 31.642, and 37.561 to 58.746, 47.659 to 73.313, 0.068 to 

0.229, 57.795 to 90.22, and 48.969 to 75.765 µg m3, respectively, indicating 

the air quality differences among the sampling sites. The pond was generally 

shallow, with warm water temperatures ranging from 27.993 to 30.399 °C. It 

was also transparent, well-oxygenated, and had variable pH levels. 

Table 2. The mean values plus standard errors of twenty-five measured 

environmental variables in the garden of Shenzhen MSU-BIT University.  

Parameter Upstream Middle 

stream 

Downstream 

Air temperature (°C) 29.02 

± 0.72 

28.2  

± 0.749 

27.15 

± 0.744 
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Light intensity (lx) 51835.6  

± 15435.64 

26336.5  

± 9897.895 

29286.4  

± 11038 

Wind speed (m/s) 1.78  

± 0.269 

1.42  

± 0.179 

1.49  

± 0.282 

Humidity (%) 76.8  

± 2.867 

78.4  

± 2.941 

80.1  

± 2.233 

Pressure (hPa) 999.905  

± 0.577 

999.912  

± 0.574 

999.946  

± 0.574 

Carbon monoxide (µg m3) 525.448  

± 60.324 

624.181  

± 78.504 

602.151  

± 94.941 

Nitrogen monoxide (µg m3) 9.815  

± 8.358 

20.51  

± 9.816 

21.805  

± 11.657 

Nitrogen dioxide (µg m3) 26.175  

± 4.784 

31.642  

± 5.636 

22.647 

± 4.403 

Ozone O3 (µg m3) 58.746  

± 21.465 

37.561 

± 17.848 

38.141 

± 19.426 

Sulfur dioxide (µg m3) 56.743  

± 16.954 

73.313  

± 17.683 

47.659  

± 14.823 

Ammonia (µg m3) 0.112  

± 0.05 

0.068  

± 0.03 

0.229  

± 0.066 

Particulates PM10 (µg m3) 57.795  

± 16.928 

74.674  

± 20.51 

90.22  

± 28.419 

Particulates PM2.5 (µg m3) 48.969  

± 15.828 

62.873  

± 18.144 

75.765  

± 26.076 

Water depth (m) 0.469  

± 0.016 

0.49  

± 0.012 

1.187  

± 0.075 
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Transparency (m) 0.396  

± 0.031 

0.42  

± 0.031 

0.898  

± 0.098 

pH 6.644  

± 0.062 

7.047  

± 0.07 

8.048  

± 0.086 

Oxydo-reduction potential 

(mV) 

173.09  

± 10.727 

169.17  

± 10.553 

133.02  

± 10.753 

Dissolved oxygen saturation 

(%)  

73.82  

± 12.258 

96.43  

± 11.586 

198.73 

 ± 18.793 

Dissolved oxygen 

concentration (ppm)  

5.663  

± 1.017 

7.03  

± 0.736 

13.672  

± 0.981 

Electrical conductivity (µs 

cm-1) 

407.7  

± 31.186 

370.1  

± 38.367 

192.6  

± 11.025 

Resistivity (MΩcm) 0.003 

 ± 0 

0.003  

± 0 

0.005  

± 0 

Total dissolved solids (ppm) 205  

± 15.496 

185.2  

± 19.163 

96.6  

± 5.518 

Salinity (PSU) 0.196  

± 0.015 

0.175  

± 0.019 

0.087  

± 0.005 

Turbidity (FNU) 8.710  

± 3.076 

8.56  

± 2.304 

3.58  

± 0.728 

Water temperature (℃) 27.993  

± 0.402 

29.097  

± 0.425 

30.399  

± 0.421 

The averaging time for each air pollutant (i.e., carbon monoxide, nitrogen 

monoxide, nitrogen dioxide, ozone, sulphur dioxide, ammonia, particulate 

matter 10, or particulate matter 2.5) is one hour; however, the results are 

interpreted using the annual limits for environmental air pollutants set by the 

World Health Organization in its guidelines for global air quality (World 
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Health Organization, 2021) and the China National Ambient Air Quality 

Standard (GB3095-2012). 

4.2. Temporal dynamics of bacterioplankton community 

The rarefaction curves generated for similarity-based OTUs with a 

sequence similarity level of 97% showed the adequacy of the sampling effort 

and compared the microbial community diversity across the samples (Fig. 10).  

 
Fig. 10. Rarefaction curves of similarity-based operational taxonomic units 

(OTUs) at 97% sequence similarity level. Left - the individual samples, right 

– the combined set of 30 samples. Sampling stations: US, upstream; MS, 

midstream; DS, downstream. 

A total of 11,903 OTUs were obtained from 30 samples collected at three 

stations. Among them, AT, CRT, and RT subcommunities accounted for 117, 

6,774, and 5,012 OTUs, respectively (Fig. 11a). Shannon-Wiener index 

exhibited a substantial change over time, particularly in CRT and RT 

subcommunities, indicating a significant difference among the three stations 

(P < 0.01). In CRT, the mean plus standard error values for the Shannon-
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Wiener index were 7.20 ± 0.04, 6.96 ± 0.07, and 6.01 ± 0.09 at the upstream, 

midstream, and downstream locations, respectively. For RT, the 

corresponding values were 6.94 ± 0.05, 6.74 ± 0.09, and 5.40 ± 0.15 (Fig. 11b). 

The bacterioplankton community showed substantial dissimilarity within 

three taxa categories, with a significant difference among groups of samples 

(AT: Global R = 0.693, P = 0.001; CRT: Global R = 0.741, P = 0.001; RT: 

Global R = 0.599, P = 0.001) (Fig. 11c). 

 



50 
 

Fig. 11. Community structuring of bacterioplankton. (a) Venn diagram 

showing the numbers of unique and shared OTUs between three different 

groups of samples. (b) Shannon-Wiener index across three different groups of 

samples. Stars indicate a significant difference at **P<0.01 ***P<0.001 

according to Tukey’s post-hoc test. (c) Non-metric multidimensional scaling 

(NMDS) plots based on the Bray-Curtis distance of taxonomic composition 

of bacterial communities. Sampling stations: US, upstream; MS, midstream; 

DS, downstream. Taxa categories: AT, abundant taxa; CRT, conditionally 

rare taxa; RT, rare taxa.  

The bacterioplankton community exhibited significant temporal changes 

across all taxa categories (Fig. 12). The dominant phyla, Actinobacteria and 

Proteobacteria, showed slight temporal variation, with Actinobacteria ranging 

between 13.72% and 52.85% and Proteobacteria ranging between 12.65% and 

52.28%. Cyanobacteria, on the other hand, displayed substantial fluctuations 

over time, with a high relative abundance of 51.53% on the 223rd Julian day 

of 2022 and a low relative abundance of 3.06% on the 234th Julian day of 2022. 

The temporal change at the genus level was remarkable for Synechococcus, 

which peaked on the 223rd Julian day of 2022 with a relative abundance of 

35.22% (Fig. 12). 
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Fig. 12. Temporal variation of the bacterial community in SMBU pond in 

August 2022. The dynamics of the community are shown at the phylum and 

genus levels of taxonomic resolution. 

4.3. Relationships between bacterioplankton and the environment 

The bacterial abundance was strongly correlated with water 

physicochemical parameters, especially water depth, transparency, pH, 

dissolved oxygen, electrical conductivity, salinity, and water temperature, as 

well as a few meteorological and air quality parameters (Fig. 13). 

Actinobacteria showed significant positive correlations with ammonia, water 

depth, transparency, pH, and dissolved oxygen (P < 0.05), and significant 
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negative correlations with electrical conductivity and salinity (P < 0.01). 

Proteobacteria exhibited significant positive correlations with oxydo-

reduction potential, electrical conductivity, and salinity (P < 0.05), and 

significant negative correlations with water depth, pH, and dissolved oxygen 

(P < 0.01). There was no significant correlation found between cyanobacteria 

and any environmental variable. Moreover, Synechococcus showed only a 

negative correlation with NH4, water depth, transparency, and pH. 

 
Fig. 13. Heat maps showing Spearman correlation coefficients between 

environmental variables and bacterial relative abundance (sequence data) at 

phylum and genus levels, respectively. Significant levels: *P<0.05; **P<0.01; 

***P<0.001. AiT, air temperature; WS, wind speed; Hum, humidity; Pre, 
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pressure; CO, carbon monoxide; NO, nitrogen monoxide; NO2, nitrogen 

dioxide; SO2, sulfur dioxide; NH4, ammonia; PM10, particulates PM10; WD, 

water depth; Trans, transparency; ORP, oxydo-reduction potential; DO, 

dissolved oxygen concentration; Cond, electrical conductivity; Sal, salinity; 

Tur, turbidity; WT, water temperature. 

Water physicochemistry and weather were responsible for explaining 

significant changes in the composition of the bacterioplankton community 

across the three sites (Fig. 14). Water physicochemistry accounted for the 

highest proportion of community variation in both AT, CRT, and RT 

subcommunities, with proportions of 0.8%, 0.01%, and 0.02% based on pure 

variances, respectively. The weather accounted for 0.2%, 0.6%, and 0.3% of 

the pure variances in the AT, CRT, and RT subcommunities, respectively. 

 
Fig. 14. The Venn diagrams showing the results of variation partitioning 

analysis (VPA) based on the bacterioplankton community in the pond and in 
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the three subcommunities, and three groups of environmental variables 

(weather, air quality, and water physiochemistry). Note that the variances < 

0.01 and residuals are not displayed for simplicity. Sampling stations: US, 

upstream; MS, midstream; DS, downstream. Taxa categories: AT, abundant 

taxa; CRT, conditionally rare taxa; RT, rare taxa. 

4.4. Co-occurrence patterns and community assembly mechanisms  

The co-occurrence patterns among OTUs showed potential connections 

between bacterioplankton, indicating complex ecological networks of 

interacting species that change over time (Fig. 15). The networks had a total 

of 9,080 nodes and 78,340 edges (n = 30). Furthermore, six major selected 

modules contributed a total of 78.04% of nodes (i.e., OTUs), with each 

module's contribution varying between 6.65% and 23.98%. The values for 

betweenness centrality varied across the bacterioplankton subcommunities, 

with 19,482 ± 4,187 for AT, 24,562 ± 800 for CRT, and 27,304 ± 1,108 for 

RT. Similarly, the values for closeness centrality were 0.021 ± 0.016 for AT, 

0.047 ± 0.003 for CRT, and 0.065 ± 0.004 for RT. In terms of degree centrality, 

the highest value was observed in AT, with a value of 79.8 ± 8.5 for AT, 23.3 

± 0.6 for CRT, and 7.9 ± 0.1 for RT. 
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Fig. 15. The co-occurrence patterns among OTUs revealed by network 

analysis. Properties of the correlation-based network. (a) The nodes were 

colored according to different types of modularity classes. A connection 

stands for a strong (Spearman’s r > 0.8 or r < −0.8) and significant (P-value 

< 0.01) correlation. The size of each node is proportional to the number of 

connections (i.e., degrees). (b) Comparison of node-level topological features 

among four different subcommunities. Taxa categories: AT, abundant taxa; 

CRT, conditionally rare taxa; RT, rare taxa. 

The neutral community model, which investigates the degree to which 

bacterioplankton communities are influenced by stochastic processes, 

revealed a high degree of fit across the three sites, with values ranging 

between 72.1% and 77.5% of the explained community variance (Fig. 16). At 

the subcommunity level, the fit was relatively low. Specifically, in AT, the 

explained community variance was less than zero, indicating that there was 



56 
 

no fit to the neutral model. In CRT and RT, the values were 40% and 18.1%, 

respectively. 

 
Fig. 16. The frequency of occurrence in the bacterial community OTUs as a 

function of mean relative abundance in the pond and across different 

categories of taxa. Lines indicate the best fit for the neutral community model. 

Nm indicates the size of the metacommunity multiplied by the immigration 

rate. R2 indicates the fit to the neutral model, and negative R2 values indicate 

no fit to this model. The X axis was log-transformed. Sampling stations: US, 

upstream; MS, midstream; DS, downstream. Taxa categories: AT, abundant 

taxa; CRT, conditionally rare taxa; RT, rare taxa.  
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5. Discussion 

5.1. Dynamics of rare and abundant bacterioplankton subcommunities 

Bacterioplanktonic communities, consisting of a few abundant taxa (AT) 

and many CRT and RT, are a central component of aquatic environments (Liu 

et al., 2015; Wang et al., 2020). However, understanding the processes of 

abundant and rare bacterioplankton dynamics dictates the use of high-

frequency measurements (Nyirabuhoro et al., 2021). The high-frequency 

sampling, conducted twice weekly, facilitated the identification of diverse 

temporal variations in the AT, CRT, and RT sub-communities in the SMBU 

pond (Fig. 12). These findings suggest that high-frequency sampling is crucial 

to capturing the build-up and breakdown of episodic shifts in 

bacterioplanktonic communities (Nyirabuhoro et al., 2020, 2021). Our 

observations align with the findings of Avila et al. (2017), who demonstrated 

that fundamental patterns of seasonal changes and successions of 

bacterioplankton communities are typically reflected only in data obtained 

through low-frequency sampling. Indeed, our observations are consistent with 

the findings of Lindh et al. (2015), who also emphasized that these patterns 

may not accurately capture sharp transitions in certain microbial taxa. This is 

due to the rapid responses exhibited by microbial communities in response to 

environmental variations, with such interactions occurring at short temporal 

scales, ranging from hours to days. 

Our chosen sampling strategy (i.e., twice a week) further emphasizes the 

significance of employing high-resolution time series analysis in microbial 

community studies (Sigee, 2005). This approach enables the detection of rapid 

changes resulting from species interactions as well as prolonged dynamics 

attributed to shifts in overall ecological conditions (Mo et al., 2021). 
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Moreover, compared to previous strategies, our sampling strategy, which 

involves regular sampling intervals and frequent sampling of bacterial 

communities, enhances the characterization of AT, CRT, and RT 

subcommunity dynamics (Liu et al., 2015; Jiao et al., 2018; Nyirabuhoro et 

al., 2020). 

All taxonomic groups, including phyla and genera, exhibited significant 

daily fluctuations, and these dynamics remained consistent over a one-month 

period (Fig. 12). This suggests that the bacterial community in the endorheic 

pond can undergo temporal dynamics over the short term, similar to reservoirs 

or lakes (Sigee, 2005). In comparison to previous research, our findings 

contribute to a deeper understanding of the temporal patterns exhibited by 

bacterial communities across different timescales. Specifically, our results 

suggest the presence of a potential seasonal cycle pattern, particularly during 

warm and cold conditions in the subtropics (Mo et al., 2021; Nyirabuhoro et 

al., 2021).  

The temporal dynamics of the bacterioplankton community, as revealed 

by the Shannon-Wiener diversity index (Fig. 11b), indicate that CRT and RT 

subcommunities made significant contributions. Additionally, it suggests that 

rare taxa have the ability to recover and thrive in response to favorable 

environmental conditions (Fig. 13), leading to an increase in their relative 

abundance (Sigee, 2005). Liu et al. (2015), Wang et al. (2020), and 

Nyirabuhoro (2021) propose that this phenomenon is more likely to occur in 

subtropical regions, particularly under warm and eutrophic conditions. They 

suggest that certain rare taxa have adaptations to low-nutrient environments, 

while others may prefer high temperatures or low pH levels. These 

adaptations and preferences increase their likelihood of thriving and 

contributing to the community dynamics in such subtropical regions. Our 
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findings are also consistent with previous studies that underscore the 

importance of rare taxa in community dynamics and their ability to enter a 

state of dormancy when faced with unfavorable conditions (Lennon and Jones, 

2011; Shade et al., 2012; Wang et al., 2020). 

Indeed, competition among microbial species for limited resources can 

be a potential explanation for the observed temporal dynamics in the 

bacterioplankton community (Nyirabuhoro, 2021). In a competitive 

environment, certain microbial species may outcompete others for resources, 

leading to changes in relative abundances and community composition 

(Nemergut et al., 2013; Dini-Andreote et al., 2015; Zhou and Ning, 2017). 

This competitive interaction can drive shifts in the dominant taxa and 

contribute to the temporal patterns observed in the bacterioplankton 

community (Nyirabuhoro, 2020, 2021). Additionally, competition can induce 

alterations in community compositions over time, with certain species 

potentially becoming more dominant while others experience a decrease in 

abundance or complete disappearance (Wikner and Hagström, 1999; Joint et 

al., 2002). 

The significant variation in Bray-Curtis dissimilarity observed among 

numerous samples of AT, CRT, and RT subcommunities (Fig. 11c) obviously 

indicates the high responsiveness of each subcommunity to changes in various 

environmental conditions at a fine temporal scale (Jiao et al., 2017; Xue et al., 

2018). This finding further emphasizes the sensitivity and adaptability of 

bacterioplankton to their immediate surroundings, highlighting their 

remarkable capability to respond and adjust to even subtle changes in 

environmental conditions (Lennon and Jones, 2011; Shade et al., 2012; Wang 

et al., 2020). Furthermore, our observations are consistent with the findings 

of Lennon and Jones (2011), which suggest that the adaptability of different 
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bacterioplankton subcommunities is attributed to their distinct physiological 

and metabolic characteristics exhibited by each phylo-type. As a result, the 

unique physiology and metabolic functions of these bacterioplankton groups 

enable them to respond and adjust to variations in their environment, 

ultimately contributing to the overall dynamics and resilience of the microbial 

community. 

5.2. Bacterial community response to environmental variation  

The dominance of Proteobacteria and Actinobacteria in a microbial 

community, as indicated in Fig. 12, can be attributed to various factors. These 

include adaptation to environmental conditions, metabolic versatility, and 

ecological interactions. These bacterial groups have evolved mechanisms to 

effectively respond to variations in temperature, pH, salinity, and other 

physicochemical parameters that are characteristic of subtropical 

environments (Mo et al., 2018; Nyirabuhoro, 2020, 2021). Furthermore, 

Proteobacteria and Actinobacteria may engage in mutualistic relationships, 

where they derive benefits from associations with other microbes, or 

competitive interactions, where they outcompete other bacterial groups for 

resources. These interactions contribute to their ability to establish dominance 

and shape the bacterioplankton community composition in subtropical aquatic 

environments (Liu et al., 2015; Mo et al., 2018; Nyirabuhoro, 2020, 2021; 

Wang et al., 2020). The dominance of certain genera, such as Synechococcus, 

during specific times can be attributed to the availability of nutrients in the 

environment. These nutrients facilitate the abundant reproduction of rare taxa 

under favorable environmental conditions, leading to the dominance of 

specific genera at those times (Ruiz-González et al., 2015). 
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Previous research on rare and abundant bacterioplankton communities 

primarily focused on the biogeography across different spatial scales and 

along various environmental gradients (Gilbert et al., 2012; Liu et al., 2015; 

Logares et al., 2013; Mo et al., 2018; Wang et al., 2020). However, in specific 

geographic locations like the subtropics, the extent to which temporal changes 

in bacterial communities are impacted by shifts in environmental conditions 

across space may raise questions (Liu et al., 2015; Wang et al., 2020). Hence, 

the varying environmental conditions across the three stations in SMBU pond 

(Table 2), together with the correlations between several physicochemical 

variables and bacterioplankton subcommunities (Fig. 13), provide insights 

into how spatial variation can potentially influence the composition of the 

bacterioplankton community in an endorheic pond.  

The pure variance, accounting for 0.8% in AT subcommunity (Fig. 14), 

underscores the significance of water physicochemistry as a crucial factor in 

shaping the bacterioplankton community in endorheic ponds. Similarly, the 

pure variance of 0.6% and 0.2% for CRT and RT, respectively (Fig. 14), 

highlights the importance of weather in shaping bacterioplankton 

subcommunities in endorheic ponds. These findings suggest that both water 

physicochemistry and weather conditions can have a significant impact on 

driving the dynamics of the bacterioplankton community in endorheic ponds, 

similar to what is observed in urban reservoirs (Nyirabuhoro, 2021). On the 

other hand, the low proportion of explained variation (Fig. 14) suggests that 

there are other factors beyond the measured environmental conditions that 

contribute to the complexity of bacterioplankton community dynamics (Mo et 

al., 2018). Firstly, there are measured environmental variables that were not 

included in the analysis. For example, certain environmental variables have 

been excluded from RDA and VPA due to issues of multicollinearity. These 
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omitted variables could potentially have a significant influence on the 

dynamics and composition of the bacterioplankton community. Additionally, 

the influence of species interactions within the bacterioplankton community 

cannot be fully quantified using methods like RDA and VPA. This is because 

bacterioplankton species can engage in various complex interactions, such as 

competition, predation, and cooperation, which can have significant effects 

on the dynamics of the community. These interactions may not be fully 

captured by the measured environmental variables alone, underscoring the 

importance of considering species interactions when interpreting the 

dynamics of the bacterioplankton community (Zhou and Ning, 2017). 

In general, variations in the physicochemical characteristics of water and 

meteorological variables explain the observed variations in AT, CRT, and RT 

subcommunities in endorheic ponds through various mechanisms. Firstly, 

water quality parameters such as temperature, pH, dissolved oxygen, and 

nutrient concentrations have a direct impact on the growth and metabolism of 

bacterioplankton. So, any changes in these physicochemical parameters can 

result in a shift in the composition of the bacterial community, leading to 

changes in the relative abundance of different subcommunities (Sigee, 2005). 

Secondly, weather conditions such as temperature, precipitation, and wind can 

also have an indirect effect on the bacterial community through their impact 

on water quality parameters. For example, rainfall can increase the amount of 

nutrients and organic matter entering the aquatic environment, which can 

stimulate the growth of certain bacterioplankton groups (Mo et al., 2018; 

2021). Lastly, high temperatures can increase the metabolic rates of some 

bacterioplankton, leading to changes in community composition 

(Nyirabuhoro et al., 2021). 
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5.3. Assembly mechanisms underlying occurrence of rare and abundant 
bacterioplankton 

The integration of network analyses and relative importance of 

ecological processes allows for a more comprehensive understanding of how 

these processes shape microbial communities (Konopka et al., 2015). 

Furthermore, the occurrence of rare and abundant bacterioplankton in the 

environment is typically influenced by community assembly processes, which 

play a crucial role in determining the composition of microbial communities 

(Mo et al., 2021; Nyirabuhoro et al., 2021). These community assembly 

processes play a crucial role in determining which species become rare and 

which become abundant within a given community (Zhou and Ning, 2017). 

The co-occurrence patterns among OTUs in the bacterioplankton 

communities of SMBU pond clearly indicate the presence of complex 

ecological networks where different bacterioplankton species interact with 

each other (Fig. 15). These co-occurrence patterns further provide evidence 

of interactions that are likely to be shaped by stochastic processes, similar to 

other freshwater systems in urban environments (Isabwe et al., 2018; Mo et 

al., 2021; Nyirabuhoro et al., 2021). 

The use of a Sloan neutral community model resulted in higher R2-values 

(Fig. 16), suggesting that a substantial portion of the bacterioplankton 

community variation across three stations and within CRT and RT 

subcommunities could be explained by neutral processes (Isabwe et al., 2018). 

This further suggests that factors such as migration, births, and deaths within 

the population play a crucial role in shaping the dynamics of the 

bacterioplankton community (Zhou and Ning, 2017). While the importance of 

stochastic processes in shaping microbial community assembly in freshwater 

is often found to be low in numerous studies (Chisholm and Pacala, 2010; 
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Roguet et al., 2015; Isabwe et al., 2018), it is important to acknowledge that 

stochastic processes can still have an impact on the community dynamics, 

especially during times of environmental change, such as natural disasters and 

extreme weather events (Zhou and Ning, 2017). 

5.4. Ecological implication and recommendations for future research 

Endorheic ponds are important ecosystems with their own unique 

characteristics and ecological significance (Ordónez et al., 1994; Martin-

Rosales and Leduc, 2003; Seeboonruang, 2014). The dynamics of the 

bacterioplankton community in these ponds are influenced by changes in 

environmental conditions that are specific to this type of ecosystem. 

Fluctuations in water levels, salinity, temperature, and nutrient availability, 

among other factors, were found to be important in studied subtropical urban 

endorheic pond. These environmental changes revealed a significant impact 

on the composition, abundance, and diversity of the bacterioplankton 

community in water. Changes in the structure and diversity of the 

bacterioplankton community can serve as indicators of environmental health 

and ecosystem functioning (Sigee, 2005). By studying the dynamics of 

various bacterioplankton subcommunities, such as AT, CRT, and RT, 

researchers can gain insights into the specific ecological patterns that 

characterize urban ponds and assess the impacts of environmental changes on 

the microbial community.  

The limited study period and the use of only a few sampling stations can 

pose limitations when trying to demonstrate the dynamics of different 

bacterioplankton subcommunities (Liu et al., 2015; Wang et al., 2020). In the 

case of SMBU pond, the findings indicated the presence of bacterioplankton 

community dynamics (Fig. 12). However, it is important to note that our study 
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was conducted over a one-month period, which may not capture the full range 

of variations and long-term trends. Therefore, conducting a more extensive 

and prolonged investigation that encompasses multiple months would be 

valuable in order to evaluate the influence of environmental factors on the 

bacterioplankton community across different timescales. For future studies, it 

is recommended to prioritize conducting research on a larger spatial scale by 

including more endorheic ponds from various urban environments and 

geographic regions. Additionally, considering a wide range of climate zones 

would provide insights into how microbial communities in endorheic ponds 

respond to varying climatic conditions. By expanding the scope of the study, 

it would be possible to generalize the conclusions and findings to a broader 

context, increasing the robustness and applicability of the research outcomes.  
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6. Conclusion 

This study presents the temporal dynamics of bacterioplankton in the 

surface waters of an endorheic pond located at Shenzhen MSU-BIT 

University in Shenzhen, southeast China. We conducted high-frequency 

sampling over a one-month period to gain a better understanding of the factors 

that drive the dynamics of the bacterioplankton community in such a unique 

freshwater ecosystem. The temporal dynamics of the bacterioplankton 

community were primarily associated with variations in the Actinobacteria 

and Proteobacteria phyla, as well as the presence of the Synechococcus genus. 

The community compositions within the three studied subcommunities, 

specifically in CRT, showed notable differences. Water physicochemistry 

played a more significant role in shaping the bacterioplankton community 

composition within AT subcommunity, whereas weather conditions had a 

greater impact on CRT and RT subcommunities. Species associations within 

the bacterioplankton community, uncovered through co-occurrence networks, 

highlighted the prominent influence of stochastic processes in shaping the 

community structure, particularly within CRT and RT subcommunities. These 

findings highlight the importance of conducting high-frequency sampling 

studies on microbial communities to enhance our understanding, modelling, 

and prediction of microbial responses to environmental change in the future. 
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